dc.contributor | Lozano Peña, Jorge Enrique | |
dc.contributor | Madera y Guadua | |
dc.creator | Pérez Cabrera, David Sebastian | |
dc.date.accessioned | 2020-03-06T16:31:09Z | |
dc.date.available | 2020-03-06T16:31:09Z | |
dc.date.created | 2020-03-06T16:31:09Z | |
dc.date.issued | 2019-12-02 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/75932 | |
dc.description.abstract | The materials have physical-mechanical properties intrinsic to their nature and these have
always been considered positive or negative according to their most widespread uses. In
terms of structural applications in construction, wood has large dimensional variations due
to moisture changes which can generate internal stress in the structures, this is considered
a disadvantage in this area. This phenomenon of dimensional change before humidity is
called hygromorphic behavior: studying it in materials opens the possibility of its
implementation in situations that exploit the passive response as a tool that reacts to the
surrounding environment. Based on the ability of natural subsystems to adapt their shape
to changing environmental conditions for functional purposes, such as those presented by
pine cones opening or closing to release their seeds in the presence of moisture changes,
some investigations emulate this behavior with composite materials, such as bilayers with
wood, textile or polymer components.
This research characterizes the hygromorphic behavior of a wood bilayer that responds
passively to the humidity of Bogota's environment with programmed deformations. For this
purpose, there were manufactured several test pieces composed of commercially available
wood natural species, with an adhesive interface; Subsequently, they were subjected to
controlled humidity conditions in the laboratory, and their deformations were reported
based on the radial curvature generated, the speed of response to the deformation, the
uniformity of the deformation, the presence of delamination and the recovery of the initial
condition. | |
dc.description.abstract | Los materiales tienen propiedades físico mecánicas intrínsecas a su naturaleza y estas
siempre se han considerado positivas o negativas según sus usos más extendidos. En
cuanto a aplicaciones estructurales en la construcción, la madera tiene considerables
variaciones dimensionales ante la humedad lo que puede generar esfuerzos internos en
las estructuras, lo que se considera una desventaja en este ámbito. Este fenómeno de
cambio dimensional ante la humedad se denomina comportamiento higromórfico:
estudiarlo en los materiales abre la posibilidad de su implementación en situaciones que
exploten la respuesta pasiva como herramienta que reacciona al ambiente circundante.
Con base en la capacidad de los subsistemas naturales de adaptar su forma a las
condiciones ambientales cambiantes con fines funcionales, como las que presentan las
piñas de pino abriéndose o cerrándose para liberar sus semillas ante el cambio de la
humedad, se han desarrollado investigaciones que emulan este comportamiento con
materiales compuestos, tales como bicapas con componentes de madera, textiles o
polímeros.
Esta investigación caracteriza el comportamiento higromórfico de un bicapa en madera
que responde de manera pasiva a la humedad del ambiente de Bogotá con deformaciones
programadas. Para tal fin se fabricaron varias probetas compuestas de madera con
especies naturales disponibles comercialmente, y una interfase de adhesivo;
posteriormente fueron sometidas a condiciones de humedad controlada en el laboratorio,
se reportó comportamiento con base en su deformación (medida en términos de la
curvatura radial generada), la velocidad de respuesta de la deformación, la uniformidad de
la deformación, la presencia de delaminación y la recuperación de la condición inicial. | |
dc.language | spa | |
dc.publisher | scuela de Arquitectura y Urbanismo | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | 101 Taipei Financial Center Corp. (n.d.). Retrieved August 29, 2018, from https://www.taipei-101.com.tw/en/observatory-damper.aspx#SCROLL2 | |
dc.relation | Abraham, Y., & Elbaum, R. (2013). Hygroscopic movements in Geraniaceae: The structural variations that are responsible for coiling or bending. New Phytologist, 199(2), 584–594. https://doi.org/10.1111/nph.12254 | |
dc.relation | BARBA, J. J. (2016). PIERRE CHAREAU: ARQUITECTURA MODERNA Y DISEÑO. Retrieved June 10, 2019, from https://www.metalocus.es/es/noticias/pierre-chareauarquitectura- moderna-y-diseno | |
dc.relation | Barozzi, M., Lienhard, J., Zanelli, A., & Monticelli, C. (2016). The Sustainability of Adaptive Envelopes: Developments of Kinetic Architecture. Procedia Engineering, 155, 275–284. https://doi.org/10.1016/j.proeng.2016.08.029 | |
dc.relation | Beesley, P., Haque, U., Khan, O., Scholz, T., & Shepard, M. (2009). Responsive Architecture / Performing Instruments, 4, 45. | |
dc.relation | Bettotti, P., Maestri, C. A., Guider, R., Mancini, I., Nativ-Roth, E., Golan, Y., & Scarpa, M. (2016). Dynamics of Hydration of Nanocellulose Films. Advanced Materials Interfaces, 3(5), 1500415. https://doi.org/10.1002/admi.201500415 | |
dc.relation | Burgert, I., & Fratzl, P. (2009). Actuation systems in Plants as prototypes for bioinspired devices. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 367(1893), 1541–1557. https://doi.org/10.1098/rsta.2009.0003 | |
dc.relation | Cartagena, J. acuerdo de. (1984). Manual de diseño para maderas del grupo andino. (J. acuerdo de Cartagena, Ed.). Lima. | |
dc.relation | Doris Kim Sung. (2012). Metal that breathes. TED. Retrieved from https://www.ted.com/talks/doris_kim_sung_metal_that_breathes | |
dc.relation | Entandrophragma cylindricum (PROTA) - PlantUse English. (n.d.). Retrieved July 25, 2019, from https://uses.plantnetproject. org/en/Entandrophragma_cylindricum_(PROTA) | |
dc.relation | Eslava, J. (1992). Variación temporal de la humedad relativa del aire en Santafe de Bogota. Revista Academica Colombiana de Ciencias. | |
dc.relation | Gong, J., Lin, H., Dunlop, J. W. C., & Yuan, J. (2017). Hierarchically Arranged Helical Fiber Actuators Derived from Commercial Cloth. Advanced Materials, 29(16). https://doi.org/10.1002/adma.201605103 | |
dc.relation | Holstov, A., Bridgens, B., & Farmer, G. (2015). Hygromorphic materials for sustainable responsive architecture. Construction and Building Materials, 98, 570–582. https://doi.org/10.1016/j.conbuildmat.2015.08.136 | |
dc.relation | Holstov, A., Farmer, G., & Bridgens, B. (2017). Sustainable materialisation of responsive architecture. Sustainability (Switzerland), 9(3). https://doi.org/10.3390/su9030435 | |
dc.relation | IDEAM. (2014a). Valores maximos multianuales de temperatura media en °C - periodo 1981 - 2010. Atlas Climatológico de Colombia, 4801501. Retrieved from http://bart.ideam.gov.co/portal/prono_fin_semana/meteorologia/info/tmedmen.html | |
dc.relation | IDEAM. (2014b). Valores minimos multianuales de temperatura media en °C - periodo 1981 - 2010. Atlas Climatológico de Colombia, 4801501. Retrieved from http://bart.ideam.gov.co/portal/prono_fin_semana/meteorologia/info/tmedmen.html | |
dc.relation | Le Duigou, A., & Castro, M. (2015). Moisture-induced self-shaping flax-reinforced polypropylene biocomposite actuator. Industrial Crops & Products, 71, 1–6. https://doi.org/10.1016/j.indcrop.2015.03.077 | |
dc.relation | Le Duigou, A., Castro, M., Bevan, R., & Martin, N. (2016). 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Materials and Design, 96, 106–114. https://doi.org/10.1016/j.matdes.2016.02.018 | |
dc.relation | Li, S., & Wang, K. W. (2016). Plant-inspired adaptive structures and materials for morphing and actuation: a review. Bioinspiration & Biomimetics, 12(1), 011001. https://doi.org/10.1088/1748-3190/12/1/011001 | |
dc.relation | Loonen, R. C. G. M., Trčka, M., Cóstola, D., & Hensen, J. L. M. (2013). Climate adaptive building shells: State-of-the-art and future challenges. Renewable and Sustainable Energy Reviews, 25, 483–493. https://doi.org/10.1016/j.rser.2013.04.016 | |
dc.relation | López, M., Rubio, R., Martín, S., & Ben Croxford. (2017, January). How plants inspire façades. From plants to architecture: Biomimetic principles for the development of adaptive architectural envelopes. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2016.09.018 | |
dc.relation | Madera de Haya: Características y Principales Usos | Maderame. (n.d.). Retrieved July 25, 2019, from https://maderame.com/madera-haya/ | |
dc.relation | Meagher, M. (2015). Designing for change: The poetic potential of responsive architecture. Frontiers of Architectural Research, 4(2), 159–165. https://doi.org/10.1016/j.foar.2015.03.002 | |
dc.relation | Menges, A., & Reichert, S. (2012). Material capacity: Embedded responsiveness. Architectural Design, 82(2), 52–59. https://doi.org/10.1002/ad.1379 | |
dc.relation | Negroponte, N. (1969). Toward a Theory of Architecture Machines. Source: Journal of Architectural Education (Vol. 23). Retrieved from https://www.jstor.org/stable/pdf/1423828.pdf?refreqid=excelsior%3A40ab7624ac6e6 685d8944a983dd551af | |
dc.relation | Negroponte, N. (1970). The Architecture Machine. (MIT Press, Ed.). | |
dc.relation | Plátano occidental / Plátano de Virginia / Sicómoro americano | Platanus occidentalis | Madera. (n.d.). Retrieved July 25, 2019, from https://www.timberpolis.es/s210402/Plátano-occidental---Plátano-de-Virginia--- Sicómoro-americano-Platanus-occidentalis | |
dc.relation | Reyssat, E., & Mahadevan, L. (2009). Hygromorph: from pine cone to biomimetic bilayers. Journal of the Royal Society-Interface, 6(June), 951–957. | |
dc.relation | Richter, H. G., Antonio, J., Guzmán, S., Fuentes Talavera, F. J., Rodríguez Anda, R., Andrea, P., … Rosa Morada Tzalam, R. (2009). Fichas de Propiedades Tecnológicas de las Maderas. Retrieved from http://savagewoods.com/chakte_viga.html | |
dc.relation | Sterk, T. D. E. (2005). Building upon Negroponte: A hybridized model of control suitable for responsive architecture. Automation in Construction, 14(2 SPEC. ISS.), 225–232. https://doi.org/10.1016/j.autcon.2004.07.003 | |
dc.relation | Telles Antonio, R., Nájera Luna, J. A., Alanís Rodríguez, E., Aguirre Calderón, O. A., Jiménez Pérez, J., Gómez Cárdenas, M., & Muñoz Flores, H. J. (2017). Revista mexicana de ciencias forestales. Revista mexicana de ciencias forestales (Vol. 8). Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Retrieved from http://www.scielo.org.mx/scielo.php?script=sci_abstract&pid=S2007- 11322017000200037&lng=es&nrm=iso | |
dc.relation | Timoshenko, S. (1925). Analysis of Bi-Metal Thermostats. J. Opt. Soc. Am., 11(3), 233–255. https://doi.org/10.1364/JOSA.11.000233 | |
dc.relation | Wikipedia. (n.d.). Biomimesis. Retrieved from https://es.wikipedia.org/wiki/Biomimesis | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Caracterización del comportamiento higromórfico de un material responsivo de dos capas en madera bajo condiciones de humedad relativa de la ciudad de Bogotá | |
dc.type | Otro | |