dc.contributorMacías Quiroga, Iván Fernando
dc.contributorGiraldo Gómez, Gloria Inés
dc.contributorProcesos Químicos, Catalíticos y Biotecnológicos - PQCB
dc.creatorVelásquez Bustos, Willy Alexander
dc.date.accessioned2022-07-05T14:09:25Z
dc.date.accessioned2022-09-21T17:45:18Z
dc.date.available2022-07-05T14:09:25Z
dc.date.available2022-09-21T17:45:18Z
dc.date.created2022-07-05T14:09:25Z
dc.date.issued2022
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81677
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3403222
dc.description.abstractLa tartrazina es un colorante sintético empleado en la industria de alimentos, altamente soluble en agua y de difícil remoción en aguas residuales (dada su estructura compleja compuesta por anillo aromáticos, enlaces -N=N- y grupos sulfónicos), teniendo una vida media de 300 días en presencia de UV y su vertimiento presenta un riesgo para el ambiente, ya que impide la penetración de la luz, afectando así los procesos fotosintéticos y el oxígeno disuelto del medio, además de ser toxico para algunas especies acuáticas ya que su descomposición puede generar aminas aromáticas (sustancias cancerígenas y mutagénicas), por esta razón su tratamiento debe ser evaluado y estudiado. La remoción de colorantes ha sido ampliamente estudiada y evaluada mediante diferentes tecnologías, siendo la adsorción la más estudiada debido a su alta efectividad y diseño simple, así mismo se han evaluado diferentes tipos de adsorbentes, teniendo la arcilla un gran interés debido a su fácil modificación (por ejemplo, con sales de amonio y polímeros), y bajo costo. En el presente trabajo se realizaron ensayos de adsorción tipo batch, evaluando el compósito quitosano-bentonita como adsorbente en la remoción de tartrazina, analizando el efecto de las variables de adsorción (pH, velocidad de agitación, cantidad de adsorbente, tiempo de contacto y concentración de colorante) sobre la remoción, posteriormente se planteó un diseño experimental con el fin de observar el efecto de la carga de compósito y concentración de colorante, ya que con un pequeño cambio de estos factores se obtiene una gran variación en la remoción, con los parámetros encontrados a lo largo del estudio se realizó las isotermas de adsorción y finalmente se evaluó el compósito quitosano-bentonita sobre una muestra de agua residual no doméstica. Estableciendo por medio de una metodología de enfoque único que las mejores condiciones de relación de quitosano-bentonita, pH, velocidad de agitación, y tiempo de contacto, fueron de 1:1 g/g, 3.5, 300 rpm y 120 minutos respectivamente. Por medio de un diseño factorial 23 y una metodología de superficie de respuesta, ajustando los datos experimentales a un modelo de segundo orden, con un coeficiente de determinación r2=0.983 y se encontró que las mejores condiciones para la carga de adsorbente y concentración de colorante fueron de 0.350 g/L y 20.293 mg/L respectivamente. El modelo de isoterma que mejor represento el sistema a las temperaturas evaluadas (25, 35 y 45 °C) fue el modelo de Redlich-Peterson con r2>0.998, encontrando con los diferentes modelos que con el aumento de temperatura el sistema se favorece. Finalmente se evaluó el compósito quitosano-bentonita sobre la muestra de ARnD obteniendo una remoción de tartrazina del 98.616%. (Texto tomado de la fuente)
dc.description.abstractTartrazine is a synthetic dye used in the food industry, highly soluble in water and difficult to remove in wastewater (given its complex structure composed of aromatic ring, -N=N- bonds and sulfonic groups), having a half-life of 300 days in the presence of UV and its discharge presents a risk to the environment, It is also toxic for some aquatic species since its decomposition can generate aromatic amines (carcinogenic and mutagenic substances), and for this reason its treatment must be evaluated and studied. The removal of dyes has been widely studied and evaluated by means of different technologies, being adsorption the most studied due to its high effectiveness and simple design, likewise, different types of adsorbents have been evaluated, with clay being of great interest due to its easy modification (for example, with ammonium salts and polymers) and low cost. In the present work, batch adsorption tests were carried out, evaluating the chitosan-bentonite composite as adsorbent in the removal of tartrazine, analyzing the effect of the adsorption variables (pH, agitation speed, amount of adsorbent, contact time and dye concentration) on the removal, Subsequently, an experimental design was proposed in order to observe the effect of the composite load and dye concentration, since with a small change in these factors a great variation in the removal is obtained, with the parameters found throughout the study the adsorption isotherms were made and finally the chitosan-bentonite composite was evaluated on a sample of non-domestic wastewater. Establishing by means of a single approach methodology that the best conditions for chitosan-bentonite ratio, pH, agitation speed, and contact time were 1:1 g/g, 3.5, 300 rpm, and 120 minutes, respectively. By means of a 23 factorial design and response surface methodology, fitting the experimental data to a second order model, with a coefficient of determination r2=0.983, the best conditions for adsorbent loading and dye concentration were found to be 0.350 g/L and 20.293 mg/L respectively. The isotherm model that best represented the system at the temperatures evaluated (25, 35 and 45 °C) was the Redlich-Peterson model with r2>0.998, finding with the different models that with increasing temperature the system is favored. Finally, the chitosan-bentonite composite was evaluated on the ARnD sample, obtaining a tartrazine removal of 98.616%.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisherDepartamento de Ingeniería Química
dc.publisherFacultad de Ingeniería y Arquitectura
dc.publisherManizales, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationAberoumand, A., A review article on edible pigments properties and sources as natural biocolorants in foodstuff and food industry. World Journal of Dairy & Food Sciences, 2011. 6: p. 71-78.
dc.relationAhn, D., W. Chang, and T. Yoon, Dyestuff wastewater treatment using chemical oxidation, physical adsorption and fixed bed biofilm process. Process biochemistry, 1999. 34: p. 429-439.
dc.relationAlexandre, M. and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Materials science and engineering: R: Reports, 2000. 28: p. 1-63.
dc.relationAmbrogi, V., et al., Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. Journal of colloid interface science 2017. 491: p. 265-272.
dc.relationAnirudhan, T. and M. Ramachandran, Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): kinetic and competitive adsorption isotherm. Process Safety and Environmental Protection, 2015. 95: p. 215-225.
dc.relationAnirudhan, T. and S. Rijith, Synthesis and characterization of carboxyl terminated poly (methacrylic acid) grafted chitosan/bentonite composite and its application for the recovery of uranium (VI) from aqueous media. Journal of environmental radioactivity, 2012. 106: p. 8-19.
dc.relationAnirudhan, T., S. Rijith, and A. Tharun, Adsorptive removal of thorium (IV) from aqueous solutions using poly (methacrylic acid)-grafted chitosan/bentonite composite matrix: process design and equilibrium studies. Colloids Surfaces A: Physicochemical Engineering Aspects, 2010. 368: p. 13-22.
dc.relationAnitha, A., et al., Approaches for functional modification or cross-linking of chitosan, in Chitosan-based systems for biopharmaceuticals: delivery, targeting and polymer therapeutics. 2012, John Wiley & Sons. p. 108-124.
dc.relationAnsari, R., B. Mohammad, and F. Ali, Application of polyaniline nanolayer composite for removal of tartrazine dye from aqueous solutions. Journal of Polymer Research, 2011. 18: p. 1931-1939.
dc.relationArnold, R., Removal of dyes from solution on clay surfaces, in Dyes and pigments: new research. 2009, Nova Science. p. 309-331.
dc.relationAzkarate, S., et al., Industria alimentaria y medio ambiente: Unidad didáctica. 2001: Gobierno-Vasco. p. 170.
dc.relationBafana, A., S. Devi, and T. Chakrabarti, Azo dyes: past, present and the future. Environmental Reviews, 2011. 19: p. 350-371.
dc.relationBanerjee, S. and M. Dastidar, Use of jute processing wastes for treatment of wastewater contaminated with dye and other organics. Bioresource technology, 2005. 96: p. 1919-1928.
dc.relationBarrios, L., et al., Study of Toxicity Associated to Dumping of Wastewater Containing Dyes and Pigments in the Aburra Valley Metropolitan Area. Revista EIA, 2016. 26: p. 61-74.
dc.relationBarrios , L., et al., Tecnologías para la remoción de colorantes y pigmentos presentes en aguas residuales. Dyna, 2015. 82: p. 118-126.
dc.relationBazgir, A., et al., Modeling of azo dyes adsorption on magnetic NiFe 2 O 4/RGO nanocomposite using response surface methodology. Journal of Environmental Health Science Engineering 2019. 17: p. 931-947.
dc.relationBello, E., et al., VIII fase del programa de seguimiento y monitoreo de efluentes industriales y corrientes superficiales de Bogotá D. C. Secretaria Ambiental de Bogotá, 2005: p. 16-57.
dc.relationBentahar, S., et al., Removal of a cationic dye from aqueous solution by natural clay. Groundwater for Sustainable Development, 2018. 6: p. 255-262.
dc.relationBergaya, F. and G. Lagaly, General introduction: clays, clay minerals, and clay science, in Handbook of Clay Science. 2006. p. 1-18.
dc.relationBhatnagar, A. and A. Jain, A comparative adsorption study with different industrial wastes as adsorbents for the removal of cationic dyes from water. Journal of Colloid Interface Science 2005. 281: p. 49-55.
dc.relationBouberka, Z., et al., Removal of Supranol Yellow 4GL by adsorption onto Cr-intercalated montmorillonite. Journal of Hazardous Materials, 2006. 133: p. 154-161.
dc.relationBrigatti, M., E. Galan, and B. Theng, Structures and mineralogy of clay minerals, in Handbook of Clay Science. 2006. p. 19-86.
dc.relationBrown, G., Crystal structures of clay minerals and their X-ray identification. Vol. 5. 1982: The Mineralogical Society of Great Britain and Ireland.
dc.relationCalvo, M. Colorantes artificiales. 2006 [cited 2020 April 20]; Available from: http://milksci.unizar.es/bioquimica/temas/aditivos/colornat.html.
dc.relationCamacho, J. and C. Celada, Definición de zonas potenciales para esmectitas en los departamentos del Valle del Cauca, Tolima y Caldas. 2004, Ingeominas: Bogotá. p. 1-219.
dc.relationCámara-de-Comercio-de-Medellín-para-Antioquia, Las 500 empresas más grandes de Antioquia, in Revista Antioqueña de Economía y Desarrollo. Oct, 2012.
dc.relationCarley, A. and R. Joyner, The application of deconvolution methods in electron spectroscopy—a review. Journal of Electron Spectroscopy, 1979. 16: p. 1-23.
dc.relationCastellanos, R., Estudio de dos alternativas de tecnologías no convencionales para el tratamiento de aguas residuales vertidas en el sector noroeste del humedal Guaymaral en la ciudad de Bogotá. 2018, Escuela colombiana de ingeniería Julio Garavito: Bogotá-Colombia.
dc.relationChan, L., W. Cheung, and G. McKay, Adsorption of acid dyes by bamboo derived activated carbon. Desalination, 2008. 218: p. 304-312.
dc.relationChen, J., et al., Interfacial characteristics of carbon nanotube-polymer composites: A review. Composites Part A: Applied Science and Manufacturing, 2018. 114: p. 149-169.
dc.relationChristie, R., Environmental Aspects of Textile Dyeing. 2007, Cambridge, England: Woodhead publishing limited.
dc.relationCinanni, V., I. Gough, and A. Sciuto, A water treatment and recovery plant for highly acidic heavy metal laden effluents. Desalination, 1996. 106: p. 145-150.
dc.relationClark, M., Handbook of textile and industrial dyeing: principles, processes and types of dyes. 2011: Elsevier.
dc.relationCooney, D., Adsorption design for wastewater treatment, in Adsorption design for wastewater treatment. 1998, CRC press. p. 1-7.
dc.relationCrini, G., Non-conventional low-cost adsorbents for dye removal: a review. Bioresource technology, 2006. 97: p. 1061-1085.
dc.relationCrini, G., Kinetic and equilibrium studies on the removal of cationic dyes from aqueous solution by adsorption onto a cyclodextrin polymer. Dyes and pigments, 2008. 77: p. 415-426.
dc.relationDada, A., et al., Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. Journal of Applied Chemistry, 2012. 3: p. 38-45.
dc.relationde Oliveira Brito, S., et al., Brazil nut shells as a new biosorbent to remove methylene blue and indigo carmine from aqueous solutions. Journal of Hazardous Materials, 2010. 174: p. 84-92.
dc.relationDe Oliveira, C., et al., Characterization of bentonite clays from Cubati, Paraíba (Northeast of Brazil). Cerâmica, 2016. 62: p. 272-277.
dc.relationDelval, F., et al., The sorption of several types of dye on crosslinked polysaccharides derivatives. Dyes and Pigments, 2002. 53: p. 79-92.
dc.relationDennis, H., et al., Effect of melt processing conditions on the extent of exfoliation in organoclay-based nanocomposites. Polymer, 2001. 42: p. 9513-9522.
dc.relationDevi, N. and J. Dutta, Preparation and characterization of chitosan-bentonite nanocomposite films for wound healing application. International Journal of Biological Macromolecules, 2017. 104: p. 1897-1904.
dc.relationDo, D., Adsorption analysis: equilibria and kinetics. Vol. 2. 1998: Imperial college press London.
dc.relationDo Nascimento, G., Structure of Clays and Polymer–Clay Composites Studied by X-ray Absorption Spectroscopies. Clays, Clay Minerals and Ceramic Materials Based on Clay Minerals, 2016: p. 1.
dc.relationDotto, G., M. Vieira, and L. Pinto, Kinetics and Mechanism of Tartrazine Adsorption onto Chitin and Chitosan. Industrial & Engineering Chemistry Research, 2012. 51: p. 6862-6868.
dc.relationEren, E., Investigation of a basic dye removal from aqueous solution onto chemically modified Unye bentonite. Journal of Hazardous Materials, 2009. 166: p. 88-93.
dc.relationFan, J., et al., Adsorption of water-soluble dye X-BR onto styrene and acrylic ester resins. Separation and Purification Technology, 2006. 51: p. 338-344.
dc.relationFang, Y., X. Liu, and W. Fei, Nacre-mimetic CH/MMT fabrication coating on PET fabric for improving anti-dripping performance. International Journal of Clothing Science Technology, 2020. 32: p. 803-812.
dc.relationFlores, A., Estudios de equilibrio de adsorción de fluoruros sobre compositos a base de quitosano. 2015, Universidad Autónoma de San Luis Potosí: San Luis Potosí, México.
dc.relationFoorginezhad, S. and M. Zerafat, Microfiltration of cationic dyes using nano-clay membranes. Ceramics International, 2017. 43: p. 15146-15159.
dc.relationFornes, T., et al., Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer, 2001. 42: p. 09929-09940.
dc.relationGarfield, S., Mauve: how one man invented a color that changed the world. 2002: WW Norton & Company
dc.relationGautam, R., et al., Removal of tartrazine by activated carbon biosorbents of Lantana camara: Kinetics, equilibrium modeling and spectroscopic analysis. Journal of Environmental Chemical Engineering, 2015. 3: p. 79-88.
dc.relationGerente, C., et al., Application of chitosan for the removal of metals from wastewaters by adsorption—mechanisms and models review. Critical Reviews in Environmental Science Technology 2007. 37: p. 41-127.
dc.relationGershwin, M. and G. Halpern, Bronchial asthma: principles of diagnosis and treatment. 2012: Springer
dc.relationGhoneim, M., H. Desoky, and N. Zidan, Electro-Fenton oxidation of Sunset Yellow FCF azo-dye in aqueous solutions. Desalination, 2011. 274: p. 22-30.
dc.relationGiannelis, E., R. Krishnamoorti, and E. Manias, Polymer-silicate nanocomposites: model systems for confined polymers and polymer brushes, in Polymers in confined environments. 1999, Springer. p. 107-147.
dc.relationGierszewska, M., E. Jakubowska, and E. Olewnik-Kruszkowska, Effect of chemical crosslinking on properties of chitosan-montmorillonite composites. Polymer Testing, 2019. 77.
dc.relationGimbert, F., et al., Adsorption isotherm models for dye removal by cationized starch-based material in a single component system: error analysis. Journal of hazardous materials, 2008. 157: p. 34-46.
dc.relationGobara, M. and A. Baraka, Tartrazine solution as dosimeter for gamma radiation measurement. International Letters of Chemistry, Physics Astronomy, 2014. 14: p. 106-118.
dc.relationGonzalez, T., Medellín: Investigan caso de contaminación por colorantes textiles, in Fashion Network. 2016: Medellín-Colombia
dc.relationGreluk, M. and Z. Hubicki., Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalination, 2011. 278: p. 219-226.
dc.relationGrisdanurak, N., et al., The study of copper adsorption from aqueous solution using crosslinked chitosan immobilized on bentonite. Journal of Applied Polymer Science, 2012. 125: p. E132-E142.
dc.relationGroves, G., Application of membrane separation processes to the treatment of industrial effluents for water reuse. Desalination, 1983. 47: p. 277-284.
dc.relationGupta, S. and B. Babu. Economic feasibility analysis of low cost adsorbents for the removal of Cr (VI) from waste water. in Proceedings of International Convention on Water Resources Development and Management, BITS Pilani. 2008. Citeseer.
dc.relationGupta, V., Application of low-cost adsorbents for dye removal–a review. Journal of Environmental Management, 2009. 90: p. 2313-2342.
dc.relationGupta, V., et al., Adsorptive removal of dyes from aqueous solution onto carbon nanotubes: a review. Advances in colloid and interface science, 2013. 193: p. 24-34.
dc.relationGürses, A., et al., Classification of dye and pigments, in Dyes and Pigments. 2016, Springer. p. 31-45.
dc.relationGutiérrez, C. and L. Tijerino, Estudio de la capacidad de adsorción de las resinas A-21, DAX-8 E IRA-958 en la remoción de ácido húmido y ácido tánico en agua de origen natural y agua preparada en el laboratorio. 2016, Universidad Nacional de Ingeniería: Lima-Perú.
dc.relationGutiérrez, D., El azul de la quebrada Manizales era tinta para dulces, in Periodico la patria. 2020: Manizales-Caldas.
dc.relationHall, K.R., et al., Pore-and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Industrial Engineering Chemistry Fundamentals 1966. 5: p. 212-223.
dc.relationHameed, B., A. Din, and A. Ahmad, Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Journal of Hazardous Materials, 2007. 141: p. 819-825.
dc.relationHe, H., et al., Synthesis of organoclays: A critical review and some unresolved issues. Applied Clay Science, 2014. 100: p. 22-28.
dc.relationHejazi, M., et al., A study of the effects of acid, plasticizer, cross-linker, and extracted chitin nanofibers on the properties of chitosan biofilm. Composites Part A: Applied Science and Manufacturing, 2018. 109: p. 221-231.
dc.relationHsu, S., M. Wang, and J. Lin, Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Applied Clay Science, 2012. 56: p. 53-62.
dc.relationHuang, R., et al., Utilization of cross-linked chitosan/bentonite composite in the removal of methyl orange from aqueous solution. Water Science and Technolgy, 2015. 71: p. 174-82.
dc.relationHuang, Z., et al., Modified bentonite adsorption of organic pollutants of dye wastewater. Materials Chemistry and Physics, 2017. 202: p. 266-276.
dc.relationHunger, K., Industrial dyes: chemistry, properties, applications. 2007: John Wiley & Sons.
dc.relationIAlimentos, Las tres autoridades ambientales que regulan los alimentos 2015.
dc.relationInbaraj, B., et al., Removal of cationic dyes from aqueous solution using an anionic poly-γ-glutamic acid-based adsorbent. Journal of Hazardous Materials, 2006. 137: p. 226-234.
dc.relationIndex, C., Society of Dyers and Colourists and American Association of Textile Chemists and Colorists. Colour Index, 1971.
dc.relationIsmadji, S., F. Soetaredjo, and A. Ayucitra, Clay materials for environmental remediation. 2015: Springer.
dc.relationİyim, T. and G. Güçlü, Removal of basic dyes from aqueous solutions using natural clay. Desalination, 2009. 249: p. 1377-1379.
dc.relationJain, R., M. Bhargava, and N. Sharma, Electrochemical studies on a pharmaceutical azo dye: Tartrazine. Industrial & Engineering Chemistry Research, 2003. 42: p. 243-247.
dc.relationKaragozoglu, B., et al., The adsorption of basic dye (Astrazon Blue FGRL) from aqueous solutions onto sepiolite, fly ash and apricot shell activated carbon: kinetic and equilibrium studies. Journal of Hazardous Materials, 2007. 147: p. 297-306.
dc.relationKausar, A., et al., Dyes adsorption using clay and modified clay: a review. Journal of Molecular Liquids, 2018. 256: p. 395-407.
dc.relationKhan, A. and R. Singh, Adsorption thermodynamics of carbofuran on Sn (IV) arsenosilicate in H+, Na+ and Ca2+ forms. Colloids Surfaces 1987. 24: p. 33-42.
dc.relationKhan, N. and U. Zareen, Sand sorption process for the removal of sodium dodecyl sulfate (anionic surfactant) from water. Journal of Hazardous Materials, 2006. 133: p. 269-275.
dc.relationKim, G., et al., Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer, 2001. 42: p. 1095-1100.
dc.relationKula, I., et al., Adsorption of Cd (II) ions from aqueous solutions using activated carbon prepared from olive stone by ZnCl2 activation. Bioresource Technology, 2008. 99: p. 492-501.
dc.relationLee, Y., et al., Preparation and characterization of polymer–carbon composite membranes for the removal of the dissolved salts from dye wastewater. Dyes and Pigments, 2008. 76: p. 372-378.
dc.relationLi, B., et al., Synthesis, characterization, and antibacterial activity of cross-linked chitosan-glutaraldehyde. Marine drugs, 2013. 11: p. 1534-1552.
dc.relationLiu, Q., et al., Adsorption of an anionic azo dye by cross-linked chitosan/bentonite composite. International Journal of Biological Macromolecules, 2015. 72: p. 1129-1135.
dc.relationMacias, I., Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2. 2018, Universidad Nacional de colombia: Manizales-Caldas.
dc.relationMacias, I., G. Giraldo, and N. Sanabria, Characterization of colombian clay and its potential use as adsorbent. Scientific World Journal, 2018. Article ID 5969178
dc.relationMalik, A. and E. Grohmann, Environmental Protection Strategies for Sustainable Development. Springer, 2012: p. 6-7.
dc.relationMalviya, R., et al., Fabrication and Characterization of Chitosan-Tamarind Seed Polysaccharide Composite Film for Transdermal Delivery of Protein/Peptide. Polymers, 2021. 13: p. 1531.
dc.relationMandloi, M., S. Chaudhari, and G. Folkard, Evaluation of Natural Coagulants for Direct Filtration. Environmental Technology, 2004. 25: p. 481-489.
dc.relationMartins, A., et al., Chitosan/TPP microparticles obtained by microemulsion method applied in controlled release of heparin. International Journal of Biological Macromolecules, 2012. 51: p. 1127-1133.
dc.relationMendoza, L.H., A theoretical study of chemical reactivity of tartrazine through DFT reactivity descriptors. Journal of the Mexican Chemical Society 2014. 58: p. 416-423.
dc.relationMeng, F., et al., Adsorption of metanil yellow from aqueous solution using polyaniline-bentonite composite. Colloid and Polymer Science, 2017. 295: p. 1165-1175.
dc.relationMiller, J. and J.C. Miller, Métodos de calibración en análisis instrumental: regresión y correlación, in Estadística y Quimiometría para Química Analítica. 2012, Prentice Hall. p. 111-156.
dc.relationMittal, A., L. Kurup, and J. Mittal, Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. Journal of Hazardous Materials, 2007. 146: p. 243-248.
dc.relationMittal, A., V. Thakur, and V. Gajbe, Adsorptive removal of toxic azo dye Amido Black 10B by hen feather. Environmental Science Pollution Research 2013. 20: p. 260-269.
dc.relationMonteiro Jr, O. and C. Airoldi, Some studies of crosslinking chitosan–glutaraldehyde interaction in a homogeneous system. International Journal of Biological Macromolecules, 1999. 26: p. 119-128.
dc.relationMotshekga, S., et al., Preparation and antibacterial activity of chitosan-based nanocomposites containing bentonite-supported silver and zinc oxide nanoparticles for water disinfection. Applied Clay Science, 2016. 114: p. 330-339.
dc.relationMuzzarelli, R., Natural chelating polymers International series of monographs in analytical chemistry. 1973, Pergamon Press, Oxford, UK.
dc.relationNam, P., et al., A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites. Polymer, 2001. 42: p. 9633-9640.
dc.relationNeira, G., A. Pinilla, and J. Henao, Chitosan-modified bentonitic clay for biodegradable composite materials. Dyna, 2011. 78: p. 59-65.
dc.relationNesic, A., S. Velickovic, and D. Antonovic, Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye. Journal of Hazardous Materials, 2012. 209-210: p. 256-63.
dc.relationNgah, W. and S. Fatinathan, Adsorption characterization of Pb (II) and Cu (II) ions onto chitosan-tripolyphosphate beads: kinetic, equilibrium and thermodynamic studies. Journal of Environmental Management, 2010. 91: p. 958-969.
dc.relationNgah, W. and I. Isa, Comparison study of copper ion adsorption on chitosan, Dowex A‐1, and Zerolit 225. Journal of Applied Polymer Science, 1998. 67: p. 1067-1070.
dc.relationNilsen, J., et al., Chitosan: Gels and Interfacial Properties. Polymers, 2015. 7: p. 552-579.
dc.relationOancea, P. and V. Meltzer, Photo-Fenton process for the degradation of Tartrazine (E102) in aqueous medium. Journal of the Taiwan Institute of Chemical Engineers, 2013. 44: p. 990-994.
dc.relationOancea, P. and V. Meltzer, Kinetics of tartrazine photodegradation by UV/H 2 O 2 in aqueous solution. Chemical Papers, 2014. 68: p. 105-111.
dc.relationOkamoto, K. and M. Okamoto, Polymer clay nanocomposite. Kogyo Zairyo(Engineering Materials), 2004. 52: p. 48-49.
dc.relationOkamoto, M., et al., Dispersed structure change of smectic clay/poly (methyl methacrylate) nanocomposites by copolymerization with polar comonomers. Polymer, 2001. 42: p. 1201-1206.
dc.relationOlewnik, E. and J. Richert, Effect of the compatibilizing agent on the structure, mechanical and thermal properties of polylactide filled with modified and unmodified montmorillonite. Polymer Composites, 2014. 35: p. 1330-1337.
dc.relationÖnal, Y., Kinetics of adsorption of dyes from aqueous solution using activated carbon prepared from waste apricot. Journal of Hazardous Materials, 2006. 137: p. 1719-1728.
dc.relationÖnal, Y., C. Akmil, and Ç. Sarıcı, Investigation kinetics mechanisms of adsorption malachite green onto activated carbon. Journal of Hazardous Materials, 2007. 146: p. 194-203.
dc.relationOtavo , R., N. Sanabria, and G. Giraldo, Tartrazine removal from aqueous solution by HDTMA-Br-modified colombian bentonite. Scientific World Journal, 2019. Article ID 2042563.
dc.relationOussalah, A., et al., Cationic and anionic dyes removal by low-cost hybrid alginate/natural bentonite composite beads: adsorption and reusability studies. International Journal of Biological Macromolecules, 2019. 124: p. 854-862.
dc.relationÖzcan, A., B. Erdem, and A. Özcan, Adsorption of Acid Blue 193 from aqueous solutions onto Na–bentonite and DTMA–bentonite. Journal of Colloid and Interface Science, 2004. 280: p. 44-54.
dc.relationPadhi, B., Pollution due to synthetic dyes toxicity & carcinogenicity studies and remediation. International Journal of Environmental Sciences, 2012. 3: p. 940-955.
dc.relationPatel, H. and V. Vashi, Characterization and Treatment of Textile Wastewater. 2015: Butterworth-Heinemann.
dc.relationPereira, F., et al., Green biosorbents based on chitosan-montmorillonite beads for anionic dye removal. Journal of Environmental Chemical Engineering, 2017. 5: p. 3309-3318.
dc.relationPiccin, J., et al., Kinetics and mechanism of the food dye FD&C Red 40 adsorption onto chitosan. Journal of Chemical & Engineering Data, 2011. 56: p. 3759-3765.
dc.relationRahman, A., T. Urabe, and N. Kishimoto, Color removal of reactive procion dyes by clay adsorbents. Procedia Environmental Sciences, 2013. 17: p. 270-278.
dc.relationRamos, R., Importancia y aplicaciones de la adsorción en fase líquida. Sólidos porosos, preparación, caracterización y aplicaciones, 2007. 1: p. 160-70.
dc.relationRashed, M., Adsorption technique for the removal of organic pollutants from water and wastewater. Organic pollutants-monitoring, risk and treatment, 2013. 7: p. 167-194.
dc.relationRauf, M., et al., Adsorption of dyes from aqueous solutions onto sand and their kinetic behavior. Chemical Engineering Journal, 2008. 137: p. 238-243.
dc.relationRodriguez, A., et al., Adsorption of anionic and cationic dyes on activated carbon from aqueous solutions: equilibrium and kinetics. Journal of Hazardous Materials, 2009. 172: p. 1311-20.
dc.relationRuthven, D.M., Principles of adsorption and adsorption processes. 1984: John Wiley & Sons.
dc.relationSahnoun, S. and M. Boutahala, Adsorption removal of tartrazine by chitosan/polyaniline composite: kinetics and equilibrium studies. International journal of biological macromolecules, 2018. 114: p. 1345-1353.
dc.relationSalud, M., Resolución N°10593 de 16 de julio de 1985. 1985: Bogotá-Colombia.
dc.relationSamadi, N., R. Hasanzadeh, and M. Rasad, Adsorption isotherms, kinetic, and desorption studies on removal of toxic metal ions from aqueous solutions by polymeric adsorbent. Journal of Applied Polymer Science, 2015. 132.
dc.relationSantos, S. and R. Boaventura, Adsorption of cationic and anionic azo dyes on sepiolite clay: Equilibrium and kinetic studies in batch mode. Journal of Environmental Chemical Engineering, 2016. 4: p. 1473-1483.
dc.relationSaravanan, D., T. Gomathi, and P. Sudha, Sorption studies on heavy metal removal using chitin/bentonite biocomposite. International Journal of Biological Macromolecules, 2013. 53: p. 67-71.
dc.relationSeader, J., E. Henley, and D. Roper, Separation process principles. Vol. 25. 1998, New york: John Wiley & Sons.
dc.relationShanker, U., M. Rani, and V. Jassal, Degradation of hazardous organic dyes in water by nanomaterials. Environmental Chemistry Letters, 2017. 15: p. 623-642.
dc.relationSharma, R., S. Jafari, and S. Sharma, Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control, 2020. 112: p. 107086.
dc.relationSilva, S., et al., Application of infrared spectroscopy to analysis of chitosan/clay nanocomposites, in Infrared Spectroscopy: Materials Science, Engineering and Technology. 2012. p. 43-62.
dc.relationSinha, S., et al., New polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and properties. Macromolecules, 2002. 35: p. 3104-3110.
dc.relationStanković, N., et al., Characterization of bentonite clay from'Greda'deposit. Processing and Application of Ceramics, 2011. 5: p. 97-101.
dc.relationTassalit, D., et al., Comparison between TiO2 and ZnO photocatalytic efficiency for the degradation of tartrazine contaminant in water. International Journal of Education Learning Systems, 2016. 1.
dc.relationTuesta, E., et al., Modificación química de arcillas y su aplicación en la retención de colorantes. Revista de la Sociedad Química del Perú, 2005. 71: p. 26-36.
dc.relationTürgay, O., et al., The treatment of azo dyes found in textile industry wastewater by anaerobic biological method and chemical oxidation. Separation and Purification Technology, 2011. 79: p. 26-33.
dc.relationUddin, M., A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 2017. 308: p. 438-462.
dc.relationVieira, M., et al., Azo dyes adsorption in fixed bed column packed with different deacetylation degrees chitosan coated glass beads. Journal of Environmental Chemical Engineering, 2018. 6: p. 3233-3241.
dc.relationWan Ngah, W., N. Ariff, and M. Hanafiah, Preparation, Characterization, and Environmental Application of Crosslinked Chitosan-Coated Bentonite for Tartrazine Adsorption from Aqueous Solutions. Water, Air, and Soil Pollution, 2010. 206: p. 225-236.
dc.relationWan Ngah, W., L. Teong, and M. Hanafiah, Adsorption of dyes and heavy metal ions by chitosan composites: A review. Carbohydrate Polymers, 2011. 83: p. 1446-1456.
dc.relationWang, H., et al., A novel-green adsorbent based on betaine-modified magnetic nanoparticles for removal of methyl blue. Science Bulletin, 2017. 62: p. 319-325.
dc.relationWang, S., et al., Biopolymer chitosan/montmorillonite nanocomposites: preparation and characterization. Polymer Degradation and Stability, 2005. 90: p. 123-131.
dc.relationWawrzkiewicz, M. and Z. Hubicki, Removal of tartrazine from aqueous solutions by strongly basic polystyrene anion exchange resins. Journal of Hazardous Materials, 2009. 164: p. 502-509.
dc.relationWu, J., et al., Removal of cationic dye methyl violet 2B from water by cation exchange membranes. Journal of Membrane Science, 2008. 309: p. 239-245.
dc.relationYang, Y. and H. Chen, Study on the Intercalation Organobentonite and its Adsorption. Journal of Xinyang Normal University 2007. 3.
dc.relationYao, C., et al., Porous chitosan scaffold cross-linked by chemical and natural procedure applied to investigate cell regeneration. Applied Surface Science, 2012. 262: p. 218-221.
dc.relationZhang, L., et al., Crosslinked quaternized chitosan/bentonite composite for the removal of Amino black 10B from aqueous solutions. International Journal of Biological Macromolecules, 2016. 93: p. 217-225.
dc.relationZhang, L., et al., Adsorption of methyl orange (MO) by Zr (IV)-immobilized cross-linked chitosan/bentonite composite. International Journal of Biological Macromolecules, 2015. 81.
dc.relationZhang, X., et al., Adsorption of dyes and phenol from water on resin adsorbents: effect of adsorbate size and pore size distribution. Journal of Hazardous Materials, 2006. 137: p. 1115-1122.
dc.relationZhang, Z., et al., A novel biosorbent for dye removal: extracellular polymeric substance (EPS) of Proteus mirabilis TJ-1. Journal of Hazardous Materials, 2009. 163: p. 279-284.
dc.relationZhou, Y., et al., Highly Efficient Degradation of Tartrazine with a Benzoic Acid/TiO2 System. ACS Omega, 2019. 4: p. 546-554.
dc.relationZollinger, H., Color chemistry: syntheses, properties, and applications of organic dyes and pigments. 2003: John Wiley & Sons.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleCompósitos quitosano-bentonita como material adsorbente para la remoción de un colorante aniónico azo en solución acuosa
dc.typeTesis


Este ítem pertenece a la siguiente institución