Otros
Query-based Video summarization using machine learning and coordinated representations
Fecha
2020-08-03Registro en:
Atencio, P. (2020). Query-based Video Summarization Using Machine Learning and Coordinated Representations. Universidad Nacional de Colombia.
Autor
Atencio Ortiz, Pedro Sandino
Institución
Resumen
Video constitutes the primary substrate of information of humanity, consider the video data uploaded daily on platforms as YouTube: 300 hours of video per minute, video analysis is currently one of the most active areas in computer science and industry, which includes fields such as video classification, video retrieval and video summarization (VSUMM).
VSUMM is a hot research field due to its importance in allowing human users to simplify the information processing required to see and analyze sets of videos, for example, reducing the number of hours of recorded videos to be analyzed by a security personnel. On the other hand, many video analysis tasks and systems requires to reduce the computational load using segmentation schemes, compression algorithms, and video summarization techniques.
Many approaches have been studied to solve VSUMM. However, it is not a single solution problem due to its subjective and interpretative nature, in the sense that important parts to be preserved from the input video requires a subjective estimation of an importance sco- re. This score can be related to how interesting are some video segments, how close they represent the complete video, and how segments are related to the task a human user is performing in a given situation. For example, a movie trailer is, in part, a VSUMM task but related to preserving promising and interesting parts from the movie but not to be able to reconstruct the movie content from them, i.e., movie trailers contains interesting scenes but not representative ones. On the contrary, in a surveillance situation, a summary from the closed-circuit cameras needs to be representative and interesting, and in some situations related with some objects of interest, for example, if it is needed to find a person or a car.
As written natural language is the main human-machine communication interface, recently some works have made advances in allowing to include textual queries in the VSUMM process which allows to guide the summarization process, in the sense that video segments related with the query are considered important.
In this thesis, we present a computational framework to perform video summarization over an input video, which allows the user to input free-form sentences and keywords queries to guide the process by considering user intention or task intention, but also considering general objectives such as representativeness and interestingness. Our framework relies on the use of pre-trained deep visual and linguistic models, although we trained our visual-linguistic coordination model. We expect this model will be of interest in cases where VSUMM tasks requires a high degree of specification of user/task intentions with minimal training stages and rapid deployment. El video constituye el sustrato primario de información de la humanidad, por ejemplo, considere los datos de video subidos diariamente en plataformas cómo YouTube: 300 horas de video por minuto. El análisis de video es actualmente una de las áreas más activas en la informática y la industria, que incluye campos como la clasificación, recuperación y generación de resúmenes de video (VSUMM).
VSUMM es un campo de investigación de alto dinamismo debido a su importancia al permitir que los usuarios humanos simplifiquen el procesamiento de la información requerido para ver y analizar conjuntos de videos, por ejemplo, reduciendo la cantidad de horas de videos grabados para ser analizados por un personal de seguridad. Por otro lado, muchas tareas y sistemas de análisis de video requieren reducir la carga computacional utilizando esquemas de segmentación, algoritmos de compresión y técnicas de VSUMM.
Se han estudiado muchos enfoques para abordar VSUMM. Sin embargo, no es un problema de solución única debido a su naturaleza subjetiva e interpretativa, en el sentido de que las partes importantes que se deben preservar del video de entrada, requieren una estimación de una puntuación de importancia. Esta puntuación puede estar relacionada con lo interesantes que son algunos segmentos de video, lo cerca que representan el video completo y con cómo los segmentos están relacionados con la tarea que un usuario humano está realizando en una situación determinada. Por ejemplo, un avance de película es, en parte, una tarea de VSUMM, pero esta ́ relacionada con la preservación de partes prometedoras e interesantes de la película, pero no con la posibilidad de reconstruir el contenido de la película a partir de ellas, es decir, los avances de películas contienen escenas interesantes pero no representativas. Por el contrario, en una situación de vigilancia, un resumen de las cámaras de circuito cerrado debe ser representativo e interesante, y en algunas situaciones relacionado con algunos objetos de interés, por ejemplo, si se necesita para encontrar una persona o un automóvil.
Dado que el lenguaje natural escrito es la principal interfaz de comunicación hombre-máquina, recientemente algunos trabajos han avanzado en permitir incluir consultas textuales en el proceso VSUMM lo que permite orientar el proceso de resumen, en el sentido de que los segmentos de video relacionados con la consulta se consideran importantes.
En esta tesis, presentamos un marco computacional para realizar un resumen de video sobre un video de entrada, que permite al usuario ingresar oraciones de forma libre y consultas de palabras clave para guiar el proceso considerando la intención del mismo o la intención de la tarea, pero también considerando objetivos generales como representatividad e interés. Nuestro marco se basa en el uso de modelos visuales y linguísticos profundos pre-entrenados,
aunque también entrenamos un modelo propio de coordinación visual-linguística. Esperamos que este marco computacional sea de interés en los casos en que las tareas de VSUMM requieran un alto grado de especificación de las intenciones del usuario o tarea, con pocas etapas de entrenamiento y despliegue rápido.