dc.relation | Altmann, A., Toloşi, L., Sander, O., & Lengauer, T. (2010). Permutation importance: a corrected feature importance measure. Bioinformatics, Volume 26, 1340–1347. Obtenido de https://doi.org/10.1093/bioinformatics/btq134
Bettayeb, B., Bassetto, S., & Sahnoun, M. (2014). Quality control planning to prevent excessive scrap production. Journal of Manufacturing Systems, 400-411.
Biswas, P., & Sarker, B. (2008). Optimal batch quantity models for a lean production system with in-cycle rework and scrap. International Journal of Production Research.
Biswas, P., & Sarker, B. (2008). Optimal batch quantity models for a lean production system with in-cycle rework and scrap. International Journal of Production Research, 6585-6610.
Breiman, L. (2001). Random Forest. Obtenido de https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
Carmignani , G. (2017). Scrap value stream mapping (S-VSM): a new approach to improve the supply scrap management process. International Journal of Production Research, 3559-3576.
Chen, J.-M., Lin, Y.-H., & Chen, Y.-C. (2010). Economic optimisation for an imperfect production system with rework and scrap rate. Int. J. Industrial and Systems Engineering, 92–109.
Conceição, G. M., Nascimento Saldiva, P. H., & Singer, J. d. (2001). Modelos MLG e MAG para análise da associação entre poluição atmosférica e marcadores de morbi-mortalidade: uma introdução baseada em dados da cidade de São Paulo. Revista Brasileira de Epidemiología.
Florian, E., Coupek, D., Caputo, D., Colledani, M., Penalva, M., Ortiz, J. A., . . . Kollegger, G. (2018). Zero Defect Manufacturing Strategies for Reduction of Scrap and Inspection Effort in Multi-Stage Production Systems. Procedia CIRP, 368–373.
García, G. (2014). Sistema de predicción de ruido urbano mediante redes neuronales. Universidad de Granada, 223.
Guazzelli, A. (2013). Predicciones sobre el futuro, parte 4: Ponga en marcha una solución predictiva. IBM developerWorks.
Hastie, T., & Tibshirani, R. (1987). Generalized additive models: Some applications. Journal of the American Statistical Association, 371-386.
Huber, S., Wiemer, H., Schneider, D., & Ihlenfeldt, S. (2019). DMME: Data mining methodology for engineering applications–a holistic extension to the CRISP-DM model. Procedia CIRP, 403-408.
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning with applications in R. Springer.
Kvålseth, T. (1985). Cautionary Note about R 2. The American Statistician, 279-285. Recuperado el 29 de Diciembre de 2020, de https://www.ars.usda.gov/ARSUserFiles/80000000/SpatialWorkshop/19KramerSupplRsq.pdf
Lein, Y., & Liu, H. (2003). Feature Selection for High-Dimensional Data: A Fast Correlation-Based Filter Solution. 856–863. Obtenido de https://www.aaai.org/Papers/ICML/2003/ICML03-111.pdf
Lewis, R. J. (2000). An Introduction to Classification and Decision Trees (CART) Analysis. Obtenido de https://www.researchgate.net/profile/Roger_Lewis6/publication/240719582_An_Introduction_to_Classification_and_Regression_Tree_CART_Analysis/links/0046352d3fb18f1740000000/An-Introduction-to-Classification-and-Regression-Tree-CART-Analysis.pdf
Martínez Rodríguez, E. (2005). Errores frecuentes en la interpretación del coeficiente de determinación lineal. Anuario Jurídico y Económico Escuarialense.
Masuch, R., Kelm, B., & Menze, B. (2009). A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data. BMC Bioinformatics. Obtenido de https://doi.org/10.1186/1471-2105-10-213
Moreno Sarmiento, E. (2008). Predicción con Series de Tiempo y Regresión. Politécnico Gran Colombiano.
Murugaiah, U., Jebaraj Benjamin, S., Srikamaladevi Marathamuthu, M., & Muthaiyah, S. (2010). Scrap loss reduction using the 5‐whys analysis. International Journal of Quality & Reliability Management, 527-540.
Nasir, M. (1993). Time Series Modelling and Prediction Using Neural Networks. Universiti Teknologi Mara.
Navot, A., Shpigelman, L., Tishby, N., & Vaadia, E. (s.f.). Nearest Neighbor Based Feature Selection for Regression and its Application to Neural Activity. Recuperado el 26 de Diciembre de 2020, de https://papers.nips.cc/paper/2005/file/5a2756a3cb9cde852cad3c97e120b656-Paper.pdf
Pandey, P., & Ahsan Akhtar Hasin , M. (1998). Lead time adjustment through scrap management, Production Planning & Control. 138-142.
Pedersen, E. J., Miller, D. L., Simpson, G. L., & Ross, N. (2018). Hierarchical generalized additive models: an introduction with mgcv. Peerj.
Pérez Rave, J., La Rotta, D., Madera, Y., Sánchez, K., Restrepo, G., & Rodríguez, M. (2011). Identificación y caracterización de mudas de transporte, procesos, movimientos y tiempos de espera en nueve pymes manufactureras incorporando la perspectiva del nivel operativo. Ingeniare: Revista Chilena de Ingeniería, 396-408.
Rajkumar, S., Digambar, S., Dattatray, K., & Dattatray, R. (2019). Scrap Reduction Techniques. International Research Journal of Engineering and Technology (IRJET).
Ravindra, K., Rattan, P., Mor, S., & Aggarwal, A. N. (2019). Generalized Additive Models: Building evidence of air pollution, climate change and human health. Environment International.
Ribeiro, V., Goldschmidt, R., & Choren, R. (2009). Métodos para Previsão de Séries Temporais e suas Tendências de Desenvolvimento. Monografías en Sistemas e Computação, 1-26.
Ruiz, P. (2007). La gestión de costes en Lean manufacturing. Cómo evaluar las mejoras en costes en un sistema Lean. Netbiblo, 17.
Socconini, L. (2019). Lean Manufacturing. Paso a paso. Barcelona: Marge Books.
Specht, D. F. (1991). A General Regression Neural Network. IEEE Transactions on Neural Networks, 2. Obtenido de https://d1wqtxts1xzle7.cloudfront.net/56278595/grnn.pdf?1523302618=&response-content-disposition=inline%3B+filename%3DA_General_Regression_Neural_Network.pdf&Expires=1609038386&Signature=F5lBPNL6xiRAYp5HNoyBz5jmW1788zaNgy01U54VJoZtsY9FznGNr-E~4nfqgS~0l2oE
Velásquez, J. D., Zambrano, C., & Vélez, L. (2011). ARNN: Un paquete para la predicción de series de tiempo usando redes neuronales autorregresivas. Revista Avances en Sistemas e Informática, 177-181.
Villa, F. (2010). Modelado y Predicción del Precio de la Electricidad en Mercados de Corto Plazo Liberalizados Usando Redes Cascada Correlación. Universidad Nacional de Colombia.
Willmott, C. (1982). Some Comments on the Evaluation of Model Performance. Bulletin of the American Meteorological Society, 1309–1313. Recuperado el 29 de Diciembre de 2020, de www.jstor.org/stable/26222954
Wirth, R., & Hipp, J. (2000). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining.
Wood, S. N. (2018). Generalized Additive Models: An Introduction with R (2nd Edition). Journal of Statistical Software.
Wood, S., & Wood, M. S. (2015). Package ‘mgcv’. R Package Version. 1-7.
Yang, J., Yao, D., Zhan, X., & Zhan, X. (2014). Predicting Disease Risks Using Feature Selection Based on Random Forest and Support Vector Machine. Bioinformatics Research and Applications, 8492, 1-11.
Zhang, G. B. (1998). Forecasting with artificial neural networks: the state of the art. International Journal of Forecasting, 35-62. | |