dc.contributorNasi Lignarolo, Enrico
dc.contributorBiofísica de la Señalización Celular
dc.creatorGuevara Espitia, Camilo Andrés
dc.date.accessioned2022-03-15T19:47:42Z
dc.date.available2022-03-15T19:47:42Z
dc.date.created2022-03-15T19:47:42Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81226
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl litio es el fármaco estándar para el tratamiento del trastorno bipolar. Sin embargo, su mecanismo de acción a nivel celular no está dilucidado. En líneas celulares en nuestro laboratorio se observaron efectos modulatorios del litio sobre respuestas fisiológicas dependientes de la vîa de los fosfoinositoles. Considerando la expresión de distintas isoformas de las proteínas Gq y PLCβ en el sistema nervioso, este trabajo se propuso extender estas observaciones a un primer modelo neuronal. Para ello se utilizaron cultivos primarios de neuronas enzimáticamente disociadas de cerebelo de embrión de pollo. Algunas neuronas fueron identificadas como células de Purkinje y su estimulación con el agonista glutamatérgico quisquilato evocó corrientes de entrada registradas con la técnica de patch clamp e incrementos de calcio intracelular medidos con indicadores fluorescentes de calcio. El rol de la vía de la PLC sobre estas respuestas fue comprobado mostrando su sensibilidad al inhibidor de la PLC U-73122 y la contribución mayoritaria de depósitos intracelulares sobre la movilización de calcio. Finalmente se examinó el efecto del litio sobre las respuestas al quisquilato. En algunas células, exposición aguda a 10mM de litio produjo potenciación de la respuesta mientras que en otras hubo una depresión. Este efecto dual puede ser producto de dos subpoblaciones de neuronas con expresión de diferentes isoformas de la PLCβ. Este trabajo constituye el primer reporte del efecto del litio sobre respuestas asociadas a la vía de la PLC en neuronas primarias de pollo, y abre las puertas para su exploración en otras regiones cerebrales. (Texto tomado de la fuente)
dc.description.abstractLithium is the treatment of choice for bipolar disorder. However, its cellular mechanism of action has not been elucidated. Previous work from our laboratory found modulatory effects of lithium on physiological responses dependent on the phosphoinositide signaling pathway in mammalian cell lines. Considering the expression of different isoforms of Gq protein and PLCβ in the nervous system, this work aims to extend these observations into a first neuronal model. To achieve this, primary cultures of enzymatically dissociated neurons from chick embryo cerebellum were developed. Some neurons were identified as Purkinje cells and their stimulation with the glutamatergic agonist quisqualate evoked inward currents recorded with the patch clamp technique and increases in intracellular calcium measured with fluorescent calcium indicators. The role of the PLC pathway on these responses was verified by showing its sensitivity to the PLC inhibitor U-73122 and the main contribution of intracellular compartments on calcium mobilization. Finally, the effect of lithium on the responses evoked by quisqualate was examined. In some cells, acute exposure to 10mM lithium potentiated the response, while in others it was depressed. We suggest that the observed effect is the consequence of two subpopulations of neurons with different expression of PLCβ isoforms. This work constitutes the first report in chick primary neurons of the effect of lithium on the PLC pathway and is a first step for the exploration of this phenomenon in other brain regions.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisherDepartamento de Biología
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbdul-Ghani, M. A., Valiante, T. A., Carlen, P. L., & Pennefather, P. S. (1996). Metabotropic glutamate receptors coupled to IP3 production mediate inhibition of IAHP in rat dentate granule neurons. Journal of Neurophysiology, 76(4), 2691–2700. https://doi.org/10.1152/jn.1996.76.4.2691
dc.relationAdamski, F. M., Timms, K. M., & Shieh, B.-H. (1999). A unique isoform of phospholipase Cβ4 highly expressed in the cerebellum and eye. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1444(1), 55–60. https://doi.org/10.1016/S0167-4781(98)00260-7
dc.relationAkar, S., & Sur, E. (2010). The development of chicken cerebellar cortex and the determination of AgNOR activity of the Purkinje cell nuclei. 9.
dc.relationAkkouh, I. A., Skrede, S., Holmgren, A., Ersland, K. M., Hansson, L., Bahrami, S., Andreassen, O. A., Steen, V. M., Djurovic, S., & Hughes, T. (2020). Exploring lithium’s transcriptional mechanisms of action in bipolar disorder: A multi-step study. Neuropsychopharmacology, 45(6), 947–955. https://doi.org/10.1038/s41386-019-0556-8
dc.relationAmdisen, A. (1978). Clinical and Serum-Level Monitoring in Lithium Therapy and Lithium Intoxication. Journal of Analytical Toxicology, 2(5), 193–202. https://doi.org/10.1093/jat/2.5.193
dc.relationBáez-Becerra, C., Filipello, F., Sandoval-Hern ndez, A., Arboleda, H., & Arboleda, G. (2018). Liver X Receptor Agonist GW3965 Regulates Synaptic Function upon Amyloid Beta Exposure in Hippocampal Neurons. Neurotoxicity Research, 33(3), 569–579. https://doi.org/10.1007/s12640-017-9845-3
dc.relationBaldessarini, R. J., Tondo, L., Davis, P., Pompili, M., Goodwin, F. K., & Hennen, J. (2006). Decreased risk of suicides and attempts during long-term lithium treatment: A meta-analytic review. Bipolar Disorders, 8(5p2), 625–639. https://doi.org/10.1111/j.1399-5618.2006.00344.x
dc.relationBastianelli, E., & Pochet, R. (1993). Transient expression of calretinin during development of chick cerebellum Comparison with calbindin-D28k. Neuroscience Research, 17(1), 53–61. https://doi.org/10.1016/0168-0102(93)90029-P
dc.relationBatchelor, A. M., Madge, D. J., & Garthwaite, J. (1994). Synaptic activation of metabotropic glutamate receptors in the parallel Fibre-Purkinje cell pathway in rat cerebellar slices. Neuroscience, 63(4), 911–915. https://doi.org/10.1016/0306-4522(94)90558-4
dc.relationBearden, C. E., Thompson, P. M., Dalwani, M., Hayashi, K. M., Lee, A. D., Nicoletti, M., Trakhtenbroit, M., Glahn, D. C., Brambilla, P., Sassi, R. B., Mallinger, A. G., Frank, E., Kupfer, D. J., & Soares, J. C. (2007). Greater Cortical Gray Matter Density in Lithium-Treated Patients with Bipolar Disorder. Biological Psychiatry, 62(1), 7–16. https://doi.org/10.1016/j.biopsych.2006.10.027
dc.relationBecker, E. B. E., & Stoodley, C. J. (2013). Autism Spectrum Disorder and the Cerebellum. In International Review of Neurobiology (Vol. 113, pp. 1–34). Elsevier. https://doi.org/10.1016/B978-0-12-418700-9.00001-0
dc.relationBerridge, M. J., Downes, C. P., & Hanley, M. R. (1982). Lithium amplifies agonist-dependent phosphatidylinositol responses in brain and salivary glands. Biochemical Journal, 206(3), 587–595. https://doi.org/10.1042/bj2060587
dc.relationBerridge, M. J., & Irvine, R. F. (1984). Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312(5992), 315–321. https://doi.org/10.1038/312315a0
dc.relationBerthele, A., Platzer, S., Laurie, D. J., Weis, S., Sommer, B., Zieglg nsberger, W., Conrad, B., & T lle, T. R. (1999). Expression of metabotropic glutamate receptor subtype mRNA (mGluR1–8) in human cerebellum: NeuroReport, 10(18), 3861–3867. https://doi.org/10.1097/00001756-199912160-00026
dc.relationBoni, L. T., & Rando, R. R. (1985). The nature of protein kinase C activation by physically defined phospholipid vesicles and diacylglycerols. The Journal of Biological Chemistry, 260(19), 10819–10825.
dc.relationBult CJ, Blake JA, Smith CL, Kadin JA, Richardson JE, the Mouse Genome Database Group. 2019. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 2019 Jan. 8;47 (D1): D801–D806.
dc.relationCallender, J. A., & Newton, A. C. (2017). Conventional protein kinase C in the brain: 40 years later. Neuronal Signaling, 1(2), NS20160005. https://doi.org/10.1042/NS20160005
dc.relationCarter, A. G., Vogt, K. E., Foster, K. A., & Regehr, W. G. (2002). Assessing the Role of Calcium-Induced Calcium Release in Short-Term Presynaptic Plasticity at Excitatory Central Synapses. The Journal of Neuroscience, 22(1), 21–28. https://doi.org/10.1523/JNEUROSCI.22-01-00021.2002
dc.relationChen, A., Hu, W. W., Jiang, X. L., Potegal, M., & Li, H. (2017). Molecular mechanisms of group I metabotropic glutamate receptor mediated LTP and LTD in basolateral amygdala in vitro. Psychopharmacology, 234(4), 681–694. https://doi.org/10.1007/s00213-016-4503-7
dc.relationColin, S. F., Chang, H. C., Mollner, S., Pfeuffer, T., Reed, R. R., Duman, R. S., & Nestler, E. J. (1991). Chronic lithium regulates the expression of adenylate cyclase and Gi-protein alpha subunit in rat cerebral cortex. Proceedings of the National Academy of Sciences, 88(23), 10634–10637. https://doi.org/10.1073/pnas.88.23.10634
dc.relationConsalez, G. G., Goldowitz, D., Casoni, F., & Hawkes, R. (2021). Origins, Development, and Compartmentation of the Granule Cells of the Cerebellum. Frontiers in Neural Circuits, 14, 611841. https://doi.org/10.3389/fncir.2020.611841
dc.relationCushing, A., Price-Jones, M. J., Graves, R., Harris, A. J., Hughes, K. T., Bleakman, D., & Lodge, D. (1999). Measurement of calcium flux through ionotropic glutamate receptors using Cytostar-T scintillating microplates. Journal of Neuroscience Methods, 90(1), 33–36. https://doi.org/10.1016/S0165-0270(99)00058-8
dc.relationde Sousa, R. T., Zanetti, M. V., Talib, L. L., Serpa, M. H., Chaim, T. M., Carvalho, A. F., Brunoni, A. R., Busatto, G. F., Gattaz, W. F., & Machado-Vieira, R. (2015). Lithium increases platelet serine-9 phosphorylated GSK-3β levels in drug-free bipolar disorder during depressive episodes. Journal of Psychiatric Research, 62, 78–83. https://doi.org/10.1016/j.jpsychires.2015.01.016
dc.relationDelBello, M., Strakowski, S., Zimmerman, M., Hawkins, J., & Sax, K. (1999). MRI Analysis of the Cerebellum in Bipolar Disorder A Pilot Study. Neuropsychopharmacology, 21(1), 63–68. https://doi.org/10.1016/S0893-133X(99)00026-3
dc.relationDeverett, B., Kislin, M., Tank, D. W., & Wang, S. S.-H. (2019). Cerebellar disruption impairs working memory during evidence accumulation. Nature Communications, 10(1), 3128. https://doi.org/10.1038/s41467-019-11050-x
dc.relationDurán, S. (2017). Inmunodetección de las proteínas de la cascada de fosfoinositoles en céulas HEK293 y evaluación de los efectos del litio sobre corrientes de membrana activadas por esta vía. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá . Recuperado de https://repositorio.unal.edu.co/handle/unal/59178
dc.relationEbadi, M. S., Simmons, V. J., Hendrickson, M. J., & Lacy, P. S. (1974). Pharmacokinetics of lithium and its regional distribution in rat brain. European Journal of Pharmacology, 27(3), 324–329. https://doi.org/10.1016/0014-2999(74)90007-7
dc.relationEbstein, R. P., Hermoni, M., & Belmaker, R. H. (1980). The effect of lithium on noradrenaline-induced cyclic AMP accumulation in rat brain: Inhibition after chronic treatment and absence of supersensitivity. The Journal of Pharmacology and Experimental Therapeutics, 213(1), 161–167.
dc.relationEdwards, D., Sommerhage, F., Berry, B., Nummer, H., Raquet, M., Clymer, B., Stancescu, M., & Hickman, J. J. (2017). Comparison of NMDA and AMPA Channel Expression and Function between Embryonic and Adult Neurons Utilizing Microelectrode Array Systems. ACS Biomaterials Science & Engineering, 3(12), 3525–3533. https://doi.org/10.1021/acsbiomaterials.7b00596
dc.relationEinat, H., Yuan, P., Gould, T. D., Li, J., Du, J., Zhang, L., Manji, H. K., & Chen, G. (2003). The Role of the Extracellular Signal-Regulated Kinase Signaling Pathway in Mood Modulation. The Journal of Neuroscience, 23(19), 7311–7316. https://doi.org/10.1523/JNEUROSCI.23-19-07311.2003
dc.relationEllisman, M. H., Deerinck, T. J., Ouyang, Y., Beck, C. F., Tanksley, S. J., Walton, P. D., Airey, J. A., & Sutko, J. L. (1990). Identification and localization of ryanodine binding proteins in the avian central nervous system. Neuron, 5(2), 135–146. https://doi.org/10.1016/0896-6273(90)90304-X
dc.relationEmamghoreishi, M., Keshavarz, M., & Nekooeian, A. A. (2015). Acute and chronic effects of lithium on BDNF and GDNF mRNA and protein levels in rat primary neuronal, astroglial and neuroastroglia cultures. Iranian Journal of Basic Medical Sciences, 18(3), 240–246.
dc.relationErnfors, P., Wetmore, C., Olson, L., & Persson, H. (1990). Identification of cells in rat brain and peripheral tissues expressing mRNA for members of the nerve growth factor family. Neuron, 5(4), 511–526. https://doi.org/10.1016/0896-6273(90)90090-3
dc.relationFarhy Tselnicker, I., Tsemakhovich, V., Rishal, I., Kahanovitch, U., Dessauer, C. W., & Dascal, N. (2014). Dual regulation of G proteins and the G-protein–activated K + channels by lithium. Proceedings of the National Academy of Sciences, 111(13), 5018–5023. https://doi.org/10.1073/pnas.1316425111
dc.relationFatemi, S. H., Halt, A. R., Realmuto, G., Earle, J., Kist, D. A., Thuras, P., & Merz, A. (2002). Purkinje Cell Size is Reduced in Cerebellum of Patients With Autism. Cellular and Molecular Neurobiology, 22(2), 171–175. https://doi.org/10.1023/A:1019861721160
dc.relationFiez, J. A., Petersen, S. E., Cheney, M. K., & Raichle, M. E. (1992). IMPAIRED NON-MOTOR LEARNING AND ERROR DETECTION ASSOCIATED WITH CEREBELLAR DAMAGE: A SINGLE CASE STUDY. Brain, 115(1), 155–178. https://doi.org/10.1093/brain/115.1.155
dc.relationFujita, H., Aoki, H., Ajioka, I., Yamazaki, M., Abe, M., Oh-Nishi, A., Sakimura, K., & Sugihara, I. (2014). Detailed Expression Pattern of Aldolase C (Aldoc) in the Cerebellum, Retina and Other Areas of the CNS Studied in Aldoc-Venus Knock-In Mice. PLoS ONE, 9(1), e86679. https://doi.org/10.1371/journal.pone.0086679
dc.relationFukami, K., Inanobe, S., Kanemaru, K., & Nakamura, Y. (2010). Phospholipase C is a key enzyme regulating intracellular calcium and modulating the phosphoinositide balance. Progress in Lipid Research, 49(4), 429–437. https://doi.org/10.1016/j.plipres.2010.06.001
dc.relationFukaya, M., Uchigashima, M., Nomura, S., Hasegawa, Y., Kikuchi, H., & Watanabe, M. (2008). Predominant expression of phospholipase Cβ1 in telencephalic principal neurons and cerebellar interneurons, and its close association with related signaling molecules in somatodendritic neuronal elements. European Journal of Neuroscience, 28(9), 1744–1759. https://doi.org/10.1111/j.1460-9568.2008.06495.x
dc.relationFuruichi, T., Yoshikaw, S., & Mikoshiba, K. (1989). Nucleotide sequence of cDNA encoding P 400 protein in the mouse cerebellum. Nucleic Acids Research, 17(13), 5385–5386. https://doi.org/10.1093/nar/17.13.5385
dc.relationFuruya, S., Makino, A., & Hirabayashi, Y. (1998). An improved method for culturing cerebellar Purkinje cells with differentiated dendrites under a mixed monolayer setting. Brain Research Protocols, 3(2), 192–198. https://doi.org/10.1016/S1385-299X(98)00040-3
dc.relationGao, T., Yatani, A., Dell’Acqua, M. L., Sako, H., Green, S. A., Dascal, N., Scott, J. D., & Hosey, M. M. (1997). CAMP-Dependent Regulation of Cardiac L-Type Ca2+ Channels Requires Membrane Targeting of PKA and Phosphorylation of Channel Subunits. Neuron, 19(1), 185–196. https://doi.org/10.1016/S0896-6273(00)80358-X
dc.relationGiussani, D. A., Salinas, C. E., Villena, M., & Blanco, C. E. (2007). The role of oxygen in prenatal growth: Studies in the chick embryo: Oxygen and fetal growth. The Journal of Physiology, 585(3), 911–917. https://doi.org/10.1113/jphysiol.2007.141572
dc.relationGomez, L. C., Kawaguchi, S.-Y., Collin, T., Jalil, A., Gomez, M. D. P., Nasi, E., Marty, A., & Llano, I. (2020). Influence of spatially segregated IP3-producing pathways on spike generation and transmitter release in Purkinje cell axons. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 11097–11108. https://doi.org/10.1073/pnas.2000148117
dc.relationGould, T. D., Chen, G., & Manji, H. K. (2004). In Vivo Evidence in the Brain for Lithium Inhibition of Glycogen Synthase Kinase-3. Neuropsychopharmacology, 29(1), 32–38. https://doi.org/10.1038/sj.npp.1300283
dc.relationGrabs, D., Escher, L., & Bergmann, M. (2008). Expression of SV2 in the Seveloping Chick Cerebellum: Comparison with Calbindin and AMPA Glutamate Receptors 2/3. The Anatomical Record: Advances in Integrative Anatomy and Evolutionary Biology, 291(5), 538–546. https://doi.org/10.1002/ar.20691
dc.relationGrandes, P., Mateos, J. M., Rüegg, D., Kuhn, R., & Kn pfel, T. (1994). Differential cellular localization of three splice variants of the mGluR1 metabotropic glutamate receptor in rat cerebellum: NeuroReport, 5(17), 2249–2252. https://doi.org/10.1097/00001756-199411000-00011
dc.relationGresset, A., Sondek, J., & Harden, T. K. (2012). The Phospholipase C Isozymes and Their Regulation. In T. Balla, M. Wymann, & J. D. York (Eds.), Phosphoinositides I: Enzymes of Synthesis and Degradation (Vol. 58, pp. 61–94). Springer Netherlands. https://doi.org/10.1007/978-94-007-3012-0_3
dc.relationGrimes, C. A., & Jope, R. S. (2001). The multifaceted roles of glycogen synthase kinase 3β in cellular signaling. Progress in Neurobiology, 65(4), 391–426. https://doi.org/10.1016/S0301-0082(01)00011-9
dc.relationHallahan, B., Newell, J., Soares, J. C., Brambilla, P., Strakowski, S. M., Fleck, D. E., Kiesepp , T., Altshuler, L. L., Fornito, A., Malhi, G. S., McIntosh, A. M., Yurgelun-Todd, D. A., Labar, K. S., Sharma, V., MacQueen, G. M., Murray, R. M., & McDonald, C. (2011). Structural Magnetic Resonance Imaging in Bipolar Disorder: An International Collaborative Mega-Analysis of Individual Adult Patient Data. Biological Psychiatry, 69(4), 326–335. https://doi.org/10.1016/j.biopsych.2010.08.029
dc.relationHamburger, V., & Hamilton, H. L. (1951). A series of normal stages in the development of the chick embryo. Journal of Morphology, 88(1), 49–92. https://doi.org/10.1002/jmor.1050880104
dc.relationHannan, A. J., Blakemore, C., Katsnelson, A., Vitalis, T., Huber, K. M., Bear, M., Roder, J., Kim, D., Shin, H.-S., & Kind, P. C. (2001). PLC-β1, activated via mGluRs, mediates activity-dependent differentiation in cerebral cortex. Nature Neuroscience, 4(3), 282–288. https://doi.org/10.1038/85132
dc.relationHannan, A. J., Kind, P. C., & Blakemore, C. (1998). Phospholipase C-β1 expression correlates with neuronal differentiation and synaptic plasticity in rat somatosensory cortex. Neuropharmacology, 37(4–5), 593–605. https://doi.org/10.1016/S0028-3908(98)00056-2
dc.relationHartmann, J., Dragicevic, E., Adelsberger, H., Henning, H. A., Sumser, M., Abramowitz, J., Blum, R., Dietrich, A., Freichel, M., Flockerzi, V., Birnbaumer, L., & Konnerth, A. (2008). TRPC3 Channels Are Required for Synaptic Transmission and Motor Coordination. Neuron, 59(3), 392–398. https://doi.org/10.1016/j.neuron.2008.06.009
dc.relationHashimoto, K., Kano, M., Miyata, M., & Watanabe, M. (2001). Roles of Phospholipase Cβ4 in Synapse Elimination and Plasticity in Developing and Mature Cerebellum. Molecular Neurobiology, 23(1), 69–82. https://doi.org/10.1385/MN:23:1:69
dc.relationHawkes, R., & Leclerc, N. (1989). Purkinje cell axon collateral distribution reflect the chemical compartmentation of the rat cerebellar cortex. Brain Research, 476(2), 279–290. https://doi.org/10.1016/0006-8993(89)91248-1
dc.relationHeidemann, S. R., Reynolds, M., Ngo, K., & Lamoureux, P. (2003). The Culture of Chick Forebrain Neurons. In Methods in Cell Biology (Vol. 71, pp. 51–65). Elsevier. https://doi.org/10.1016/S0091-679X(03)01004-5
dc.relationHillert, M., Zimmermann, M., & Klein, J. (2012). Uptake of lithium into rat brain after acute and chronic administration. Neuroscience Letters, 521(1), 62–66. https://doi.org/10.1016/j.neulet.2012.05.060
dc.relationHirono, M., Ogawa, Y., Misono, K., Zollinger, D. R., Trimmer, J. S., Rasband, M. N., & Misonou, H. (2015). BK Channels Localize to the Paranodal Junction and Regulate Action Potentials in Myelinated Axons of Cerebellar Purkinje Cells. Journal of Neuroscience, 35(18), 7082–7094. https://doi.org/10.1523/JNEUROSCI.3778-14.2015
dc.relationHofmann, T., Obukhov, A. G., Schaefer, M., Harteneck, C., Gudermann, T., & Schultz, G. (1999). Direct activation of human TRPC6 and TRPC3 channels by diacylglycerol. Nature, 397(6716), 259–263. https://doi.org/10.1038/16711
dc.relationHomma, Y., Takenawa, T., Emori, Y., Sorimachi, H., & Suzuki, K. (1989). Tissue- and cell type-specific expression of mRNAS for four types of inositol phospholipid-specific phospholipase C. Biochemical and Biophysical Research Communications, 164(1), 406–412. https://doi.org/10.1016/0006-291X(89)91734-8
dc.relationHonore, T., Davies, S., Drejer, J., Fletcher, E., Jacobsen, P., Lodge, D., & Nielsen, F. (1988). Quinoxalinediones: Potent competitive non-NMDA glutamate receptor antagonists. Science, 241(4866), 701–703. https://doi.org/10.1126/science.2899909
dc.relationHoxha, E., Lippiello, P., Zurlo, F., Balbo, I., Santamaria, R., Tempia, F., & Miniaci, M. C. (2018). The Emerging Role of Altered Cerebellar Synaptic Processing in Alzheimer’s Disease. Frontiers in Aging Neuroscience, 10, 396. https://doi.org/10.3389/fnagi.2018.00396
dc.relationHui, J., Zhang, J., Pu, M., Zhou, X., Dong, L., Mao, X., Shi, G., Zou, J., Wu, J., Jiang, D., & Xi, G. (2018). Modulation of GSK-3β/β-Catenin Signaling Contributes to Learning and Memory Impairment in a Rat Model of Depression. International Journal of Neuropsychopharmacology, 21(9), 858–870. https://doi.org/10.1093/ijnp/pyy040
dc.relationHussain, S., Gardner, C. R., Bagust, J., & Walker, R. J. (1991). Receptor sub-types involved in responses of purkinje cell to exogenous excitatory amino acids and local electrical stimulation in cerebellar slices in the rat. Neuropharmacology, 30(10), 1029–1037. https://doi.org/10.1016/0028-3908(91)90130-4
dc.relationIndriati, D. W., Kamasawa, N., Matsui, K., Meredith, A. L., Watanabe, M., & Shigemoto, R. (2013). Quantitative Localization of Cav2.1 (P/Q-Type) Voltage-Dependent Calcium Channels in Purkinje Cells: Somatodendritic Gradient and Distinct Somatic Coclustering with Calcium-Activated Potassium Channels. Journal of Neuroscience, 33(8), 3668–3678. https://doi.org/10.1523/JNEUROSCI.2921-12.2013
dc.relationIreland, D. R., & Abraham, W. C. (2002). Group I mGluRs Increase Excitability of Hippocampal CA1 Pyramidal Neurons by a PLC-Independent Mechanism. Journal of Neurophysiology, 88(1), 107–116. https://doi.org/10.1152/jn.2002.88.1.107
dc.relationItsuki, K., Imai, Y., Hase, H., Okamura, Y., Inoue, R., & Mori, M. X. (2014). PLC-mediated PI(4,5)P2 hydrolysis regulates activation and inactivation of TRPC6/7 channels. The Journal of General Physiology, 143(2), 183–201. https://doi.org/10.1085/jgp.201311033
dc.relationJacobs, H. I. L., Hopkins, D. A., Mayrhofer, H. C., Bruner, E., van Leeuwen, F. W., Raaijmakers, W., & Schmahmann, J. D. (2018). The cerebellum in Alzheimer’s disease: Evaluating its role in cognitive decline. Brain, 141(1), 37–47. https://doi.org/10.1093/brain/awx194
dc.relationJeffrey, P. L., Meaney, J., Tolhurst, O., & Weinberger, R. P. (1996). Epigenetic factors controlling the development of avian Purkinje neurons. Journal of Neuroscience Methods, 67(2), 163–175. https://doi.org/10.1016/0165-0270(96)00044-1
dc.relationJiang, H., Wu, D., & Simon, M. I. (1994). Activation of phospholipase C beta 4 by heterotrimeric GTP-binding proteins. The Journal of Biological Chemistry, 269(10), 7593–7596.
dc.relationJin, R., Horning, M., Mayer, M. L., & Gouaux, E. (2002). Mechanism of Activation and Selectivity in a Ligand-Gated Ion Channel: Structural and Functional Studies of GluR2 and Quisqualate. Biochemistry, 41(52), 15635–15643. https://doi.org/10.1021/bi020583k
dc.relationJope, R. S. (1999). Anti-bipolar therapy: Mechanism of action of lithium. Molecular Psychiatry, 4(2), 117–128. https://doi.org/10.1038/sj.mp.4000494
dc.relationKamato, D., Mitra, P., Davis, F., Osman, N., Chaplin, R., Cabot, P. J., Afroz, R., Thomas, W., Zheng, W., Kaur, H., Brimble, M., & Little, P. J. (2017). Gaq proteins: Molecular pharmacology and therapeutic potential. Cellular and Molecular Life Sciences, 74(8), 1379–1390. https://doi.org/10.1007/s00018-016-2405-9
dc.relationKamp, T. J., & Hell, J. W. (2000). Regulation of Cardiac L-Type Calcium Channels by Protein Kinase A and Protein Kinase C. Circulation Research, 87(12), 1095–1102. https://doi.org/10.1161/01.RES.87.12.1095
dc.relationKan, W., Adjobo-Hermans, M., Burroughs, M., Faibis, G., Malik, S., Tall, G. G., & Smrcka, A. V. (2014). M3 Muscarinic Receptor Interaction with Phospholipase C β3 Determines Its Signaling Efficiency. Journal of Biological Chemistry, 289(16), 11206–11218. https://doi.org/10.1074/jbc.M113.538546
dc.relationKano, M., & Watanabe, T. (2017). Type-1 metabotropic glutamate receptor signaling in cerebellar Purkinje cells in health and disease. F1000Research, 6, 416. https://doi.org/10.12688/f1000research.10485.1
dc.relationKaplan, D. R., & Miller, F. D. (2000). Neurotrophin signal transduction in the nervous system. Current Opinion in Neurobiology, 10(3), 381–391. https://doi.org/10.1016/S0959-4388(00)00092-1
dc.relationKaupp, U. B., & Seifert, R. (2002). Cyclic Nucleotide-Gated Ion Channels. Physiological Reviews, 82(3), 769–824. https://doi.org/10.1152/physrev.00008.2002
dc.relationKim, H.-H., Lee, K.-H., Lee, D., Han, Y.-E., Lee, S.-H., Sohn, J.-W., & Ho, W.-K. (2015). Costimulation of AMPA and Metabotropic Glutamate Receptors Underlies Phospholipase C Activation by Glutamate in Hippocampus. Journal of Neuroscience, 35(16), 6401–6412. https://doi.org/10.1523/JNEUROSCI.4208-14.2015
dc.relationKitamura, K., & Kano, M. (2013). Dendritic calcium signaling in cerebellar Purkinje cell. Neural Networks, 47, 11–17. https://doi.org/10.1016/j.neunet.2012.08.001
dc.relationKlein, P. S., & Melton, D. A. (1996). A molecular mechanism for the effect of lithium on development. Proceedings of the National Academy of Sciences, 93(16), 8455–8459. https://doi.org/10.1073/pnas.93.16.8455
dc.relationKnōpfel, T., Anchisi, D., Alojado, M. E., Tempia, F., & Strata, P. (2000). Elevation of intradendritic sodium concentration mediated by synaptic activation of metabotropic glutamate receptors in cerebellar Purkinje cells: Sodium signalling mediated by mGluR1 EPSC. European Journal of Neuroscience, 12(6), 2199–2204. https://doi.org/10.1046/j.1460-9568.2000.00122.x
dc.relationKnōpfel, T., & Grandes, P. (2002). Metabotropic glutamate receptors in the cerebellum with a focus on their function in Purkinje cells. The Cerebellum, 1(1), 19–26. https://doi.org/10.1007/BF02941886
dc.relationKovacsics, C. E., & Gould, T. D. (2010). Shock-induced aggression in mice is modified by lithium. Pharmacology Biochemistry and Behavior, 94(3), 380–386. https://doi.org/10.1016/j.pbb.2009.09.020
dc.relationKrug, J. T., Klein, A. K., Purvis, E. M., Ayala, K., Mayes, M. S., Collins, L., Fisher, M. P. A., & Ettenberg, A. (2019). Effects of chronic lithium exposure in a modified rodent ketamine-induced hyperactivity model of mania. Pharmacology Biochemistry and Behavior, 179, 150–155. https://doi.org/10.1016/j.pbb.2019.01.003
dc.relationLandinez, M. P. (2016). Evaluación fisiológica de los efectos del litio sobre la movilización de calcio intracelular en la línea celular HEK 293. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá. Recuperado de https://repositorio.unal.edu.co/handle/unal/56608
dc.relationLauritsen, B. J., Mellerup, E. T., Plenge, P., Rasmussen, S., Vestergaard, P., & Schou, M. (1981). Serum lithium concentrations around the clock with different treatment regimens and the diurnal variation of the renal lithium clearance. Acta Psychiatrica Scandinavica, 64(4), 314–319. https://doi.org/10.1111/j.1600-0447.1981.tb00788.x
dc.relationLeal, G., Bramham, C. R., & Duarte, C. B. (2017). BDNF and Hippocampal Synaptic Plasticity. In Vitamins and Hormones (Vol. 104, pp. 153–195). Elsevier. https://doi.org/10.1016/bs.vh.2016.10.004
dc.relationLee, S. P., So, C. H., Rashid, A. J., Varghese, G., Cheng, R., Lan a, A. J., O’Dowd, B. F., & George, S. R. (2004). Dopamine D1 and D2 Receptor Co-activation Generates a Novel Phospholipase C-mediated Calcium Signal. Journal of Biological Chemistry, 279(34), 35671–35678. https://doi.org/10.1074/jbc.M401923200
dc.relationLi, P. P., Young, L. T., Tam, Y. K., Sibony, D., & Warsh, J. J. (1993). Effects of chronic lithium and carbamazepine treatment on G-protein subunit expression in rat cerebral cortex. Biological Psychiatry, 34(3), 162–170. https://doi.org/10.1016/0006-3223(93)90387-S
dc.relationLichtenegger, M., Tiapko, O., Svobodova, B., Stockner, T., Glasnov, T. N., Schreibmayer, W., Platzer, D., de la Cruz, G. G., Krenn, S., Schober, R., Shrestha, N., Schindl, R., Romanin, C., & Groschner, K. (2018). An optically controlled probe identifies lipid-gating fenestrations within the TRPC3 channel. Nature Chemical Biology, 14(4), 396–404. https://doi.org/10.1038/s41589-018-0015-6
dc.relationLinden, D., Dickinson, M. H., Smeyne, M., & Connor, J. A. (1991). A long-term depression of AMPA currents in cultured cerebellar purkinje neurons. Neuron, 7(1), 81–89. https://doi.org/10.1016/0896-6273(91)90076-C
dc.relationLinden, D. J., Smeyne, M., & Connor, J. A. (1994a). Trans-ACPD, a metabotropic receptor agonist, produces calcium mobilization and an inward current in cultured cerebellar Purkinje neurons. Journal of Neurophysiology, 71(5), 1992–1998. https://doi.org/10.1152/jn.1994.71.5.1992
dc.relationLinden, D. J. (1994b). Input-specific induction of cerebellar long-term depression does not require presynaptic alteration. Learning & Memory (Cold Spring Harbor, N.Y.), 1(2), 121–128.
dc.relationLlano, I., Dreessen, J., Kano, M., & Konnerth, A. (1991). Intradendritic release of calcium induced by glutamate in cerebellar purkinje cells. Neuron, 7(4), 577–583. https://doi.org/10.1016/0896-6273(91)90370-F
dc.relationLlinás, R., & Sugimori, M. (1980). Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. The Journal of Physiology, 305(1), 197–213. https://doi.org/10.1113/jphysiol.1980.sp013358
dc.relationLo Vasco, V. R. (2012). Phosphoinositide pathway and the signal transduction network in neural development. Neuroscience Bulletin, 28(6), 789–800. https://doi.org/10.1007/s12264-012-1283-x
dc.relationLongone, P., Impagnatiello, F., Mienville, J.-M., Costa, E., & Guidotti, A. (1998). Changes in AMPA Receptor-Spliced Variant Expression and Shift in AMPA Receptor Spontaneous Desensitization Pharmacology During Cerebellar Granule Cell Maturation In Vitro. Journal of Molecular Neuroscience, 11(1), 23–42. https://doi.org/10.1385/JMN:11:1:23
dc.relationLouiset, E., Duparc, C., Lenglet, S., Gomez-Sanchez, C. E., & Lefebvre, H. (2017). Role of cAMP/PKA pathway and T-type calcium channels in the mechanism of action of serotonin in human adrenocortical cells. Molecular and Cellular Endocrinology, 441, 99–107. https://doi.org/10.1016/j.mce.2016.10.008
dc.relationLupo, M., Olivito, G., Gragnani, A., Saettoni, M., Siciliano, L., Pancheri, C., Panfili, M., Bozzali, M., Delle Chiaie, R., & Leggio, M. (2021). Comparison of Cerebellar Grey Matter Alterations in Bipolar and Cerebellar Patients: Evidence from Voxel-Based Analysis. International Journal of Molecular Sciences, 22(7), 3511. https://doi.org/10.3390/ijms22073511
dc.relationMachado-Vieira, R., Manji, H. K., & Zarate Jr, C. A. (2009). The role of lithium in the treatment of bipolar disorder: Convergent evidence for neurotrophic effects as a unifying hypothesis. Bipolar Disorders, 11, 92–109. https://doi.org/10.1111/j.1399-5618.2009.00714.x
dc.relationMaguschak, K. A., & Ressler, K. J. (2008). β-catenin is required for memory consolidation. Nature Neuroscience, 11(11), 1319–1326. https://doi.org/10.1038/nn.2198
dc.relationMakoff, A. J., Phillips, T., Pilling, C., & Emson, P. (1997). Expression of a novel splice variant of human mGluR1 in the cerebellum: NeuroReport, 8(13), 2943–2947. https://doi.org/10.1097/00001756-199709080-00027
dc.relationMantilla, F. A. (2021). Implementación de un cultivo neuronal primario como modelo para el estudio de mecanismos de modulación sobre la vía de señalización de los fosfoinositoles. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá.
dc.relationMan, H.-Y., Sekine-Aizawa, Y., & Huganir, R. L. (2007). Regulation of -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor trafficking through PKA phosphorylation of the Glu receptor 1 subunit. Proceedings of the National Academy of Sciences, 104(9), 3579–3584. https://doi.org/10.1073/pnas.0611698104
dc.relationManto, M., Bower, J. M., Conforto, A. B., Delgado-Garc a, J. M., da Guarda, S. N. F., Gerwig, M., Habas, C., Hagura, N., Ivry, R. B., Mari n, P., Molinari, M., Naito, E., Nowak, D. A., Oulad Ben Taib, N., Pelisson, D., Tesche, C. D., Tilikete, C., & Timmann, D. (2012). Consensus Paper: Roles of the Cerebellum in Motor Control—The Diversity of Ideas on Cerebellar Involvement in Movement. The Cerebellum, 11(2), 457–487. https://doi.org/10.1007/s12311-011-0331-9
dc.relationMarzban, H., Chung, S.-H., Pezhouh, M. K., Feirabend, H., Watanabe, M., Voogd, J., & Hawkes, R. (2010). Antigenic compartmentation of the cerebellar cortex in the chicken (Gallus domesticus). The Journal of Comparative Neurology, 518(12), 2221–2239. https://doi.org/10.1002/cne.22328
dc.relationMateos, J. M., Ben tez, R., Elezgarai, I., Azkue, J. J., L zaro, E., Osorio, A., Bilbao, A., Do ate, F., Sarr a, R., Conquet, F., Ferraguti, F., Kuhn, R., Kn pfel, T., & Grandes, P. (2000). Immunolocalization of the mGluR1b Splice Variant of the Metabotropic Glutamate Receptor 1 at Parallel Fiber-Purkinje Cell Synapses in the Rat Cerebellar Cortex. Journal of Neurochemistry, 74(3), 1301–1309. https://doi.org/10.1046/j.1471-4159.2000.741301.x
dc.relationMcDonald, A. J. (1982). Neurons of the lateral and basolateral amygdaloid nuclei: A golgi study in the rat. The Journal of Comparative Neurology, 212(3), 293–312. https://doi.org/10.1002/cne.902120307
dc.relationMizuno, N., & Itoh, H. (2009). Functions and Regulatory Mechanisms of Gq-Signaling Pathways. Neurosignals, 17(1), 42–54. https://doi.org/10.1159/000186689
dc.relationMori-Okamoto, J., Okamoto, K., & Tatsuno, J. (1993). Intracellular Mechanisms Underlying the Suppression of AMPA Responses by trans-ACPD in Cultured Chick Purkinje Neurons. Molecular and Cellular Neuroscience, 4(4), 375–386. https://doi.org/10.1006/mcne.1993.1047
dc.relationNakamura, T., Nakamura, K., Lasser-Ross, N., Barbara, J.-G., Sandler, V. M., & Ross, W. N. (2000). Inositol 1,4,5-Trisphosphate (IP3)-Mediated Ca2+ Release Evoked by Metabotropic Agonists and Backpropagating Action Potentials in Hippocampal CA1 Pyramidal Neurons. The Journal of Neuroscience, 20(22), 8365–8376. https://doi.org/10.1523/JNEUROSCI.20-22-08365.2000
dc.relationNetzeband, J. G., Parsons, K. L., Sweeney, D. D., & Gruol, D. L. (1997). Metabotropic Glutamate Receptor Agonists Alter Neuronal Excitability and Ca 2+ Levels via the Phospholipase C Transduction Pathway in Cultured Purkinje Neurons. Journal of Neurophysiology, 78(1), 63–75. https://doi.org/10.1152/jn.1997.78.1.63
dc.relationNewman, M. E., Lichtenberg, P., & Belmaker, R. H. (1985). Effects of lithium in vitro on noradrenaline-induced cyclic AMP accumulation in rat cortical slices after reserpine-induced supersensitivity. Neuropharmacology, 24(4), 353–355. https://doi.org/10.1016/0028-3908(85)90144-3
dc.relationNolen, W. A., Licht, R. W., Young, A. H., Malhi, G. S., Tohen, M., Vieta, E., Kupka, R. W., Zarate, C., Nielsen, R. E., Baldessarini, R. J., Severus, E., & the ISBD/IGSLI Task Force on the treatment with lithium. (2019). What is the optimal serum level for lithium in the maintenance treatment of bipolar disorder? A systematic review and recommendations from the ISBD/IGSLI Task Force on treatment with lithium. Bipolar Disorders, 21(5), 394–409. https://doi.org/10.1111/bdi.12805
dc.relationOrlandi, C., La Via, L., Bonini, D., Mora, C., Russo, I., Barbon, A., & Barlati, S. (2011). AMPA Receptor Regulation at the mRNA and Protein Level in Rat Primary Cortical Cultures. PLoS ONE, 6(9), e25350. https://doi.org/10.1371/journal.pone.0025350
dc.relationPerkins, E. M., Clarkson, Y. L., Suminaite, D., Lyndon, A. R., Tanaka, K., Rothstein, J. D., Skehel, P. A., Wyllie, D. J. A., & Jackson, M. (2018). Loss of cerebellar glutamate transporters EAAT4 and GLAST differentially affects the spontaneous firing pattern and survival of Purkinje cells. Human Molecular Genetics, 27(15), 2614–2627. https://doi.org/10.1093/hmg/ddy169
dc.relationPires, R. S., Real, C. C., Hayashi, M. A. F., & Britto, L. R. G. (2006). Ontogeny of subunits 2 and 3 of the AMPA-type glutamate receptors in Purkinje cells of the developing chick cerebellum. Brain Research, 1096(1), 11–19. https://doi.org/10.1016/j.brainres.2006.04.040
dc.relationPlatman, S. R. (1968). Biochemical Aspects of Lithium in Affective Disorders. Archives of General Psychiatry, 19(6), 659. https://doi.org/10.1001/archpsyc.1968.01740120019003
dc.relationPreskorn, S. H., Burke, M. J., & Fast, G. A. (1993). Therapeutic Drug Monitoring: Principles and Practice. Psychiatric Clinics of North America, 16(3), 611–645. https://doi.org/10.1016/S0193-953X(18)30167-9
dc.relationPrestori, F., Mapelli, L., & D’Angelo, E. (2019). Diverse Neuron Properties and Complex Network Dynamics in the Cerebellar Cortical Inhibitory Circuit. Frontiers in Molecular Neuroscience, 12, 267. https://doi.org/10.3389/fnmol.2019.00267
dc.relationRaghu, P., Joseph, A., Krishnan, H., Singh, P., & Saha, S. (2019). Phosphoinositides: Regulators of Nervous System Function in Health and Disease. Frontiers in Molecular Neuroscience, 12, 208. https://doi.org/10.3389/fnmol.2019.00208
dc.relationRamikie, T. S., Nyilas, R., Bluett, R. J., Gamble-George, J. C., Hartley, N. D., Mackie, K., Watanabe, M., Katona, I., & Patel, S. (2014). Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization at Central Amygdala Glutamatergic Synapses. Neuron, 81(5), 1111–1125. https://doi.org/10.1016/j.neuron.2014.01.012
dc.relationRhee, S. G., & Choi, K. D. (1992). Regulation of inositol phospholipid-specific phospholipase C isozymes. The Journal of Biological Chemistry, 267(18), 12393–12396.
dc.relationRogers, T. D., McKimm, E., Dickson, P. E., Goldowitz, D., Blaha, C. D., & Mittleman, G. (2013). Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Frontiers in Systems Neuroscience, 7. https://doi.org/10.3389/fnsys.2013.00015
dc.relationRoss, C. A., MacCumber, M. W., Glatt, C. E., & Snyder, S. H. (1989a). Brain phospholipase C isozymes: Differential mRNA localizations by in situ hybridization. Proceedings of the National Academy of Sciences, 86(8), 2923–2927. https://doi.org/10.1073/pnas.86.8.2923
dc.relationRoss, C. A., Meldolesi, J., Milner, T. A., Satoh, T., Supattapone, S., & H. Snyder, S. (1989b). Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature, 339(6224), 468–470. https://doi.org/10.1038/339468a0
dc.relationSacchetto, R., Cliffer, K. D., Podini, P., Villa, A., Christensen, B. N., & Volpe, P. (1995). Intracellular Ca2+ stores in chick cerebellum Purkinje neurons: Ontogenetic and functional studies. American Journal of Physiology-Cell Physiology, 269(5), C1219–C1227. https://doi.org/10.1152/ajpcell.1995.269.5.C1219
dc.relationSade, Y., Toker, L., Kara, N. Z., Einat, H., Rapoport, S., Moechars, D., Berry, G. T., Bersudsky, Y., & Agam, G. (2016). IP3 accumulation and/or inositol depletion: Two downstream lithium’s effects that may mediate its behavioral and cellular changes. Translational Psychiatry, 6(12), e968–e968. https://doi.org/10.1038/tp.2016.217
dc.relationSaiardi, A., & Mudge, A. W. (2018). Lithium and fluoxetine regulate the rate of phosphoinositide synthesis in neurons: A new view of their mechanisms of action in bipolar disorder. Translational Psychiatry, 8(1), 175. https://doi.org/10.1038/s41398-018-0235-2
dc.relationSánchez, C. A. (2019). Estudio fisiológico de los efectos del litio sobre la cascada de señalización mediada por la fosfolipasa C en modelos neuronales. (Tesis de Maestría). Universidad Nacional de Colombia. Sede Bogotá. Recuperado de https://repositorio.unal.edu.co/handle/unal/76779
dc.relationSarna, J. R., Marzban, H., Watanabe, M., & Hawkes, R. (2006). Complementary stripes of phospholipase Cβ3 and Cβ4 expression by Purkinje cell subsets in the mouse cerebellum. The Journal of Comparative Neurology, 496(3), 303–313. https://doi.org/10.1002/cne.20912
dc.relationSassone-Corsi, P. (2012). The Cyclic AMP Pathway. Cold Spring Harbor Perspectives in Biology, 4(12), a011148–a011148. https://doi.org/10.1101/cshperspect.a011148
dc.relationSchilling, K., Dickinson, M. H., Connor, J. A., & Morgan, J. I. (1991). Electrical activity in cerebellar cultures determines Purkinje cell dendritic growth patterns. Neuron, 7(6), 891–902. https://doi.org/10.1016/0896-6273(91)90335-W
dc.relationSchoepp, D. D., Jane, D. E., & Monn, J. A. (1999). Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology, 38(10), 1431–1476. https://doi.org/10.1016/S0028-3908(99)00092-1
dc.relationShinn, A. K., Roh, Y. S., Ravichandran, C. T., Baker, J. T.,  ngür, D., & Cohen, B. M. (2017). Aberrant Cerebellar Connectivity in Bipolar Disorder With Psychosis. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2(5), 438–448. https://doi.org/10.1016/j.bpsc.2016.07.002
dc.relationShorter, E. (2009). The history of lithium therapy. Bipolar Disorders, 11, 4–9. https://doi.org/10.1111/j.1399-5618.2009.00706.x
dc.relationSid, H., & Schusser, B. (2018). Applications of Gene Editing in Chickens: A New Era Is on the Horizon. Frontiers in Genetics, 9, 456. https://doi.org/10.3389/fgene.2018.00456
dc.relationSillitoe, R. V., Marzban, H., Larouche, M., Zahedi, S., Affanni, J., & Hawkes, R. (2005). Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. In Progress in Brain Research (Vol. 148, pp. 283–297). Elsevier. https://doi.org/10.1016/S0079-6123(04)48022-4
dc.relationSmrcka, A. V., & Sternweis, P. C. (1993). Regulation of purified subtypes of phosphatidylinositol-specific phospholipase C beta by G protein alpha and beta gamma subunits. The Journal of Biological Chemistry, 268(13), 9667–9674.
dc.relationSong, J., Sj lander, A., Joas, E., Bergen, S. E., Runeson, B., Larsson, H., Land n, M., & Lichtenstein, P. (2017). Suicidal Behavior During Lithium and Valproate Treatment: A Within-Individual 8-Year Prospective Study of 50,000 Patients With Bipolar Disorder. American Journal of Psychiatry, 174(8), 795–802. https://doi.org/10.1176/appi.ajp.2017.16050542
dc.relationStambolic, V., Ruel, L., & Woodgett, J. R. (1996). Lithium inhibits glycogen synthase kinase-3 activity and mimics Wingless signalling in intact cells. Current Biology, 6(12), 1664–1669. https://doi.org/10.1016/S0960-9822(02)70790-2
dc.relationStaub, C., Vranesic, I., & Kn pfel, T. (1992). Responses to Metabotropic Glutamate Receptor Activation in Cerebellar Purkinje Cells: Induction of an Inward Current. European Journal of Neuroscience, 4(9), 832–839. https://doi.org/10.1111/j.1460-9568.1992.tb00193.x
dc.relationStoodley, C. J., & Limperopoulos, C. (2016). Structure–function relationships in the developing cerebellum: Evidence from early-life cerebellar injury and neurodevelopmental disorders. Seminars in Fetal and Neonatal Medicine, 21(5), 356–364. https://doi.org/10.1016/j.siny.2016.04.010
dc.relationStoodley, C., & Schmahmann, J. (2009). Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies. NeuroImage, 44(2), 489–501. https://doi.org/10.1016/j.neuroimage.2008.08.039
dc.relationStreb, H., Irvine, R. F., Berridge, M. J., & Schulz, I. (1983). Release of Ca2+ from a nonmitochondrial intracellular store in pancreatic acinar cells by inositol-1,4,5-trisphosphate. Nature, 306(5938), 67–69. https://doi.org/10.1038/306067a0
dc.relationSugiyama, T., Hirono, M., Suzuki, K., Nakamura, Y., Aiba, A., Nakamura, K., Nakao, K., Katsuki, M., & Yoshioka, T. (1999). Localization of Phospholipase Cβ Isozymes in the Mouse Cerebellum. Biochemical and Biophysical Research Communications, 265(2), 6
dc.relationSupattapone, S., Worley, P. F., Baraban, J. M., & Snyder, S. H. (1988). Solubilization, purification, and characterization of an inositol trisphosphate receptor. The Journal of Biological Chemistry, 263(3), 1530–1534.
dc.relationSzczepankiewicz, D., Celichowski, P., Kołodziejski, P. A., Pruszyńska-Oszmałek, E., Sassek, M., Zakowicz, P., Banach, E., Langwiński, W., Sakrajda, K., Nowakowska, J., Socha, M., Bukowska-Olech, E., Pawlak, J., Twarowska-Hauser, J., Nogowski, L., Rybakowski, J. K., & Szczepankiewicz, A. (2021). Transcriptome Changes in Three Brain Regions during Chronic Lithium Administration in the Rat Models of Mania and Depression. International Journal of Molecular Sciences, 22(3), 1148. https://doi.org/10.3390/ijms22031148
dc.relationTabata, T., Sawada, S., Araki, K., Bono, Y., Furuya, S., & Kano, M. (2000). A reliable method for culture of dissociated mouse cerebellar cells enriched for Purkinje neurons. Journal of Neuroscience Methods, 104(1), 45–53. https://doi.org/10.1016/S0165-0270(00)00323-X
dc.relationTaguchi, K., Ueda, M., & Kubo, T. (1997). Effects of cAMP and cGMP on L-Type Calcium Channel Currents in Rat Mesenteric Artery Cells. Japanese Journal of Pharmacology, 74(2), 179–186. https://doi.org/10.1016/S0021-5198(19)31407-6
dc.relationTakagi, H., Takimizu, H., de Barry, J., Kudo, Y., & Yoshioka, T. (1992). The expression of presynaptic t-ACPD receptor in rat cerebellum. Biochemical and Biophysical Research Communications, 189(3), 1287–1295. https://doi.org/10.1016/0006-291X(92)90213-5
dc.relationTanaka, O., & Kondo, H. (1994). Localization of mRNAs for three novel members (β3, β4 and γ2) of phospholipase C family in mature rat brain. Neuroscience Letters, 182(1), 17–20. https://doi.org/10.1016/0304-3940(94)90194-5
dc.relationTang, T., Xiao, J., Suh, C. Y., Burroughs, A., Cerminara, N. L., Jia, L., Marshall, S. P., Wise, A. K., Apps, R., Sugihara, I., & Lang, E. J. (2017). Heterogeneity of Purkinje cell simple spike-complex spike interactions: Zebrin- and non-zebrin-related variations: Simple spike-complex spike interactions. The Journal of Physiology, 595(15), 5341–5357. https://doi.org/10.1113/JP274252
dc.relationThul, P. J.,  Äkesson, L., Wiking, M., Mahdessian, D., Geladaki, A., Ait Blal, H., Alm, T., Asplund, A., Björk, L., Breckels, L. M., Bäckström, A., Danielsson, F., Fagerberg, L., Fall, J., Gatto, L., Gnann, C., Hober, S., Hjelmare, M., Johansson, F., Lundberg, E. (2017). A subcellular map of the human proteome. Science, 356(6340), eaal3321. https://doi.org/10.1126/science.aal332
dc.relationTjaden, J., Pieczora, L., Wach, F., Theiss, C., & Theis, V. (2018). Cultivation of Purified Primary Purkinje Cells from Rat Cerebella. Cellular and Molecular Neurobiology, 38(7), 1399–1412. https://doi.org/10.1007/s10571-018-0606-5
dc.relationTömböl, T., Davies, D. C., Németh, A., Sebestény, T., & Alpár, A. (2000). A comparative Golgi study of chicken (Gallus domesticus) and homing pigeon (Columba livia) hippocampus. Anatomy and Embryology, 201(2), 85–101. https://doi.org/10.1007/PL00008235
dc.relationTomlinson, S. P., Davis, N. J., Morgan, H. M., & Bracewell, R. M. (2014). Cerebellar Contributions to Verbal Working Memory. The Cerebellum, 13(3), 354–361. https://doi.org/10.1007/s12311-013-0542-3
dc.relationTosevski, J., Malikovic, A., Mojsilovic-Petrovic, J., Lackovic, V., Peulic, M., Sazdanovic, P., & Alexopulos, C. (2002). Types of neurons and some dendritic patterns of basolateral amygdala in humans—A Golgi study. Annals of Anatomy - Anatomischer Anzeiger, 184(1), 93–103. https://doi.org/10.1016/S0940-9602(02)80042-5
dc.relationTringham, E. W., Payne, C. E., Dupere, J. R. B., & Usowicz, M. M. (2007). Maturation of rat cerebellar Purkinje cells reveals an atypical Ca 2+ channel current that is inhibited by ω-agatoxin IVA and the dihydropyridine (−)-( S )-Bay K8644: Ca 2+ channels in mature and immature cerebellar Purkinje neurons. The Journal of Physiology, 578(3), 693–714. https://doi.org/10.1113/jphysiol.2006.121905
dc.relationTsien, R. Y. (1981). A non-disruptive technique for loading calcium buffers and indicators into cells. Nature, 290(5806), 527–528. https://doi.org/10.1038/290527a0
dc.relationTsutsumi, S., Yamazaki, M., Miyazaki, T., Watanabe, M., Sakimura, K., Kano, M., & Kitamura, K. (2015). Structure–Function Relationships between Aldolase C/Zebrin II Expression and Complex Spike Synchrony in the Cerebellum. The Journal of Neuroscience, 35(2), 843–852. https://doi.org/10.1523/JNEUROSCI.2170-14.2015
dc.relationVaca, L., & Kunze, D. L. (1995). IP3-activated Ca2+ channels in the plasma membrane of cultured vascular endothelial cells. American Journal of Physiology-Cell Physiology, 269(3), C733–C738. https://doi.org/10.1152/ajpcell.1995.269.3.C733
dc.relationVenkatachalam, K., Ma, H.-T., Ford, D. L., & Gill, D. L. (2001). Expression of Functional Receptor-coupled TRPC3 Channels in DT40 Triple Receptor InsP3 knockout Cells. Journal of Biological Chemistry, 276(36), 33980–33985. https://doi.org/10.1074/jbc.C100321200
dc.relationVranesic, I., Batchelor, A., G hwiler, B. H., Garthwaite, J., Staub, C., & Kn pfel, T. (1991). Trans-ACPD-induced Ca2+ signals in cerebellar Purkinje cells: NeuroReport, 2(12), 759–762. https://doi.org/10.1097/00001756-199112000-00007
dc.relationWalloe, S., Pakkenberg, B., & Fabricius, K. (2014). Stereological estimation of total cell numbers in the human cerebral and cerebellar cortex. Frontiers in Human Neuroscience, 8. https://doi.org/10.3389/fnhum.2014.00508
dc.relationWalton, P. D., Airey, J. A., Sutko, J. L., Beck, C. F., Mignery, G. A., Südhof, T. C., Deerinck, T. J., & Ellisman, M. H. (1991). Ryanodine and inositol trisphosphate receptors coexist in avian cerebellar Purkinje neurons. The Journal of Cell Biology, 113(5), 1145–1157. https://doi.org/10.1083/jcb.113.5.1145
dc.relationWang, J., Liu, P., Zhang, A., Yang, C., Liu, S., Wang, J., Xu, Y., & Sun, N. (2021). Specific Gray Matter Volume Changes of the Brain in Unipolar and Bipolar Depression. Frontiers in Human Neuroscience, 14, 592419. https://doi.org/10.3389/fnhum.2020.592419
dc.relationWatanabe, M., Nakamura, M., Sato, K., Kano, M., Simon, M. I., & Inoue, Y. (1998). Patterns of expression for the mRNA corresponding to the four isoforms of phospholipase Cβ in mouse brain: PLCβ1-4 mRNAs in developing and adult mouse brain. European Journal of Neuroscience, 10(6), 2016–2025. https://doi.org/10.1046/j.1460-9568.1998.00213.x
dc.relationWilkie, T. M., Scherle, P. A., Strathmann, M. P., Slepak, V. Z., & Simon, M. I. (1991). Characterization of G-protein alpha subunits in the Gq class: Expression in murine tissues and in stromal and hematopoietic cell lines. Proceedings of the National Academy of Sciences, 88(22), 10049–10053. https://doi.org/10.1073/pnas.88.22.10049
dc.relationWomack, M. D., Walker, J. W., & Khodakhah, K. (2000). Impaired Calcium Release in Cerebellar Purkinje Neurons Maintained in Culture. The Journal of General Physiology, 115(3), 339–346. https://doi.org/10.1085/jgp.115.3.339
dc.relationWon, E., & Kim, Y.-K. (2017). An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. International Journal of Molecular Sciences, 18(12), 2679. https://doi.org/10.3390/ijms18122679
dc.relationWu, B., Blot, F. G., Wong, A. B., Os rio, C., Adolfs, Y., Pasterkamp, R. J., Hartmann, J., Becker, E. B., Boele, H.-J., De Zeeuw, C. I., & Schonewille, M. (2019). TRPC3 is a major contributor to functional heterogeneity of cerebellar Purkinje cells. ELife, 8, e45590. https://doi.org/10.7554/eLife.45590
dc.relationWu, D., Jiang, H., Katz, A., & Simon, M. I. (1993). Identification of critical regions on phospholipase C-beta 1 required for activation by G-proteins. The Journal of Biological Chemistry, 268(5), 3704–3709.
dc.relationWu, D., Katz, A., Lee, C. H., & Simon, M. I. (1992). Activation of phospholipase C by alpha 1-adrenergic receptors is mediated by the alpha subunits of Gq family. The Journal of Biological Chemistry, 267(36), 25798–25802.
dc.relationXiao, J., Cerminara, N. L., Kotsurovskyy, Y., Aoki, H., Burroughs, A., Wise, A. K., Luo, Y., Marshall, S. P., Sugihara, I., Apps, R., & Lang, E. J. (2014). Systematic Regional Variations in Purkinje Cell Spiking Patterns. PLoS ONE, 9(8), e105633. https://doi.org/10.1371/journal.pone.0105633
dc.relationYasuda, S., Liang, M.-H., Marinova, Z., Yahyavi, A., & Chuang, D.-M. (2009). The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Molecular Psychiatry, 14(1), 51–59. https://doi.org/10.1038/sj.mp.4002099
dc.relationYuzaki, M., & Mikoshiba, K. (1992). Pharmacological and immunocytochemical characterization of metabotropic glutamate receptors in cultured Purkinje cells. The Journal of Neuroscience, 12(11), 4253–4263. https://doi.org/10.1523/JNEUROSCI.12-11-04253.1992
dc.relationZhang, Y.-N., Li, H., Shen, Z.-W., Xu, C., Huang, Y.-J., & Wu, R.-H. (2021). Healthy individuals vs patients with bipolar or unipolar depression in gray matter volume. World Journal of Clinical Cases, 9(6), 1304–1317. https://doi.org/10.12998/wjcc.v9.i6.1304
dc.relationZhao, G., Neeb, Z. P., Leo, M. D., Pachuau, J., Adebiyi, A., Ouyang, K., Chen, J., & Jaggar, J. H. (2010). Type 1 IP3 receptors activate BKCa channels via local molecular coupling in arterial smooth muscle cells. Journal of General Physiology, 136(3), 283–291. https://doi.org/10.1085/jgp.201010453
dc.relationZhou, H., Lin, Z., Voges, K., Ju, C., Gao, Z., Bosman, L. W., Ruigrok, T. J., Hoebeek, F. E., De Zeeuw, C. I., & Schonewille, M. (2014). Cerebellar modules operate at different frequencies. ELife, 3, e02536. https://doi.org/10.7554/eLife.02536
dc.relationZhou, Z., Wang, Y., Tan, H., Bharti, V., Che, Y., & Wang, J.-F. (2015). Chronic treatment with mood stabilizer lithium inhibits amphetamine-induced risk-taking manic-like behaviors. Neuroscience Letters, 603, 84–88. https://doi.org/10.1016/j.neulet.2015.07.027
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfectos modulatorios del litio sobre la cascada de señalización mediada por fosfoinositoles en cultivo neuronal primario
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución