dc.contributorDueñas Gómez, Zulma Janeth
dc.contributorCárdenas Parra, Luis Fernando
dc.contributorNeurofisiologia Celular
dc.creatorMoreno Avendaño, Johana Andrea
dc.date.accessioned2022-09-05T13:47:27Z
dc.date.available2022-09-05T13:47:27Z
dc.date.created2022-09-05T13:47:27Z
dc.date.issued2022-05
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82248
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl trastorno del espectro autista (TEA) es considerado un desorden en el neurodesarrollo caracterizado por déficit en la interacción social, la comunicación y presencia de comportamientos repetitivos y estereotipados. Se estima que aproximadamente un 16 % de la población menor de 15 años en Colombia padece algún tipo de trastorno del desarrollo, entre ellos los TEA. Colombia no cuenta con cifras oficiales que establezcan la prevalencia en el país de este trastorno. Estudios post-mortem y de imagenología diagnóstica se han aproximado a la neurobiología subyacente del TEA, sin embargo, los modelos animales permiten la exploración en detalle y en un entorno controlado de los mediadores neuroanatómicos, neurofisiológicos y moleculares, relacionados con el fenotipo del trastorno. La evidencia sugiere que los factores ambientales y las interacciones genético-ambientales contribuyen a la etiología del autismo, por ejemplo, la exposición prenatal a ácido Valpróico (por sus siglas en inglés: VPA), se asocia con una alta incidencia de autismo en los nacidos; de hecho, la embriogénesis temprana como periodo crítico para el desarrollo de trastornos del neurodesarrollo sustenta el desarrollo de biomodelos que emulan la complejidad fenotípica de la enfermedad. Teniendo en cuenta el potencial uso del modelo inducido por exposición prenatal al VPA para dilucidar aspectos biológicos y conductuales de la enfermedad en humanos, esta investigación pretendió describir los patrones morfológicos, comportamentales y moleculares de las crías de ratas hembra Wistar tratadas con una única dosis de 500 mg/Kg de VPA en el día 12.5 de gestación en comparación con controles expuestos a solución salina. Nuestros resultados evidencian una alta tasa de reabsorción fetal de las hembras tratadas, sin embargo, los embriones expuestos a VPA que sobrevivieron mostraron cambios neuroanatómicos, morfológicos y alteraciones comportamentales significativas respecto al grupo control. Se halló aumento en el número de nacidos con malformaciones físicas, defectos en la formación falanges, longitud y forma de la cola y casos esporádicos de cromodacriorrea, mientras que las pruebas comportamentales revelan alteraciones en la sociabilidad y repetitividad, comportamientos típicos del fenotipo autista humano. Los resultados de esta investigación sustentan el uso experimental del biomodelo de autismo por exposición prenatal al VPA, demuestran la validez aparente y de constructo del modelo y su potencial utilidad para el desarrollo de futuras líneas de investigación que profundicen aspectos clave en la compresión de la neurobiología del TEA y el hallazgo de blancos terapéuticos para el tratamiento de la enfermedad. (Texto tomado de la fuente)
dc.description.abstractAutism Spectrum Disorder (ASD) is considered a neurodevelopmental disorder characterized by deficits in social interaction, communication, and the presence of repetitive and stereotyped behaviors. It is estimated that approximately 16% of the population under 15 years of age in Colombia will suffer from some type of developmental disorder, including ASD. Colombia does not have official figures that established the prevalence of this disorder in the country. On the other hand, post-mortem and diagnostic imaging studies have come closer to the underlying neurobiology of ASD, however, animal models allow the exploration in detail and in a controlled environment of the neuroanatomical, neurophysiological, and molecular mediators related to the phenotype of the disorder. Evidence suggests that environmental factors and gene-environment interactions contribute to the etiology of autism, for example, prenatal exposure to valproic acid (VPA) is associated with a high incidence of autism in newborns; in fact, early embryogenesis as a critical period for the development of neurodevelopmental disorders supports the development of biomodels that emulate the phenotypic complexity of the disease. Considering the potential use of the model induced by prenatal exposure to VPA to elucidate biological and behavioral factors of the disease in humans, this research aimed to describe the morphological, behavioral and molecular patterns of the offspring of female Wistar rats treated with a single dose of 500 mg/Kg VPA on day 12.5 of gestation compared to controls exposed to saline. Our results show a high rate of fetal resorption of the treated females, however, the embryos exposed to VPA that survived showed significant neuroanatomical, morphological, and behavioral changes compared to the control group. An increase in the number of babies born with physical malformations, defects in phalangeal formation, tail length and shape, and sporadic cases of chromodacryorrhea were found, while behavioral tests revealed alterations in sociability and repetitiveness, typical behaviors of the human autistic phenotype. The results of this research support the experimental use of the biomodel of autism due to prenatal exposure to VPA, demonstrate the apparent and construct validity of the model and its potential usefulness for the development of future lines of research that deepen key aspects in the understanding of neurobiology of ASD and the finding of therapeutic targets for the treatment of the disease.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Medicina - Maestría en Neurociencias
dc.publisherFacultad de Medicina
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationArndt, T. L., Stodgell, C. J., & Rodier, P. M. (2005). The teratology of autism. International Journal of Developmental Neuroscience, 23(2–3), 189–199. https://doi.org/10.1016/j.ijdevneu.2004.11.001
dc.relationBaronio, D., Castro, K., Gonchoroski, T., de Melo, G., Nunes. GD, Bambini-Junior, V., Gottfried, C., & Riesgo, R. (2015). Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid. PloS One, 10(1). https://doi.org/10.1371/JOURNAL.PONE.0116363
dc.relationBennett, G., Wlodarczyk, B., Calvin, J., Craig, J., & Finnell, R. (2000). Valproic acid induced alterations in growth and neurotrophic factor. Reprod Toxicol, 14, 1–11.
dc.relationCheaha, D., Bumrungsri, S., Chatpun, S., & Kumarnsit, E. (2015). Characterization of in utero valproic acid mouse model of autism by local field potential in the hippocampus and the olfactory bulb. Neuroscience Research, 98, 28–34. https://doi.org/10.1016/j.neures.2015.04.006
dc.relationFujiki, R., Sato, A., Fujitani, M., & Yamashita, T. (2013). A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons. Cell Death and Disease, 4. https://doi.org/10.1038/cddis.2013.205
dc.relationGandhi, T., & Lee, C. C. (2020). Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.592710
dc.relationJensen, V., Rinholm, J. E., Johansen, T. J., Medin, T., Storm-Mathisen, J., Sagvolden, T., Hvalby, & Bergersen, L. H. (2009). N-methyl-d-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience, 158(1), 353–364. https://doi.org/10.1016/j.neuroscience.2008.05.016
dc.relationMcFarlane, H., Kusek. GK, Yang, M., Phoenix, J., Bolivar, V., & Crawley, J. (2008). Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain, and Behavior, 7(2), 152–163. https://doi.org/10.1111/J.1601-183X.2007.00330.X
dc.relationRuhela, R., Sarma, P., Soni, S., Prakash, A., & Medhi, B. (2017). Congenital malformation and autism spectrum disorder: Insight from a rat model of autism spectrum disorder. Indian Journal of Pharmacology, 49(3). https://doi.org/10.4103/ijp.IJP_183_17
dc.relationRinaldi, T., Kulangara, K., Antoniello, K., & Markram, H. (2007). Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proceedings of the National Academy of Sciences, 104(33), 13501–13506. https://doi.org/10.1073/pnas.0704391104
dc.relationArndt, T. L., Stodgell, C. J., & Rodier, P. M. (2005). The teratology of autism. International Journal of Developmental Neuroscience, 23(2–3), 189–199. https://doi.org/10.1016/j.ijdevneu.2004.11.001
dc.relationArtigas-Pallares, J., & Paula, I. (2012). El autismo 70 años después de Leo Kanner y Hans Asperger. Revista de La Asociación Española de Neuropsiquiatría, 32(115), 567–587. https://doi.org/10.4321/S021157352012000300008
dc.relationBanerjee, A., Garcia-Oscos, F., Roychowdhury, S., Galindo, L., Hall, S., & Kilgard, M. (2013a). Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int J Neuropsychopharmacol, 16, 1309–18.
dc.relationBanerjee, A., Garcia-Oscos, F., Roychowdhury, S., Galindo, L., Hall, S., & Kilgard, M. (2013b). Impairment of cortical GABAergic synaptic transmission in an environmental rat model of autism. Int J Neuropsychopharmacol, 16, 1309–18.
dc.relationBaronio, D., Castro, K., Gonchoroski, T., de Melo, G. M., Nunes, G. D. F., Bambini-Junior, V., Gottfried, C., & Riesgo, R. (2015). Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid. PLOS ONE, 10(1), e0116363. https://doi.org/10.1371/journal.pone.0116363
dc.relationBaronio, D., Castro, K., Gonchoroski, T., de Melo, G., Nunes. GD, Bambini-Junior, V., Gottfried, C., & Riesgo, R. (2015). Effects of an H3R antagonist on the animal model of autism induced by prenatal exposure to valproic acid. PloS One, 10(1). https://doi.org/10.1371/JOURNAL.PONE.0116363
dc.relationBelzung, C., Leman, S., Vourc’h, P., & Andres, C. (2005). Rodent models for autism: A critical review. Drug Discovery Today: Disease Models, 2(2), 93–101. https://doi.org/10.1016/j.ddmod.2005.05.004
dc.relationBennett, G., Wlodarczyk, B., Calvin, J., Craig, J., & Finnell, R. (2000). Valproic acid induced alterations in growth and neurotrophic factor. Reprod Toxicol, 14, 1–11.
dc.relationBurrows, E. L., Laskaris, L., Koyama, L., Churilov, L., Bornstein, J. C., Hill-yardin, E. L., & Hannan, A. J. (2015). A neuroligin-3 mutation implicated in autism causes abnormal aggression and increases repetitive behavior in mice. Molecular Autism, 6, 1–11. https://doi.org/10.1186/s13229-015-0055-7
dc.relationCheaha, D., Bumrungsri, S., Chatpun, S., & Kumarnsit, E. (2015). Characterization of in utero valproic acid mouse model of autism by local field potential in the hippocampus and the olfactory bulb. Neuroscience Research, 98, 28–34. https://doi.org/10.1016/j.neures.2015.04.006
dc.relationChoudhury, P. R., Lahiri, S., & Rajamma, U. (2012). Glutamate mediated signaling in the pathophysiology of autism spectrum disorders. Pharmacology Biochemistry and Behavior, 100(4), 841–849. https://doi.org/10.1016/j.pbb.2011.06.023
dc.relationDufour-Rainfray, D., Vourc’h, P., Le Guisquet, A.-M., Garreau, L., Ternant, D., Bodard, S., Jaumain, E., Gulhan, Z., Belzung, C., Andres, C. R., Chalon, S., & Guilloteau, D. (2010). Behavior and serotonergic disorders in rats exposed prenatally to valproate: A model for autism. Neuroscience Letters, 470(1), 55–59. https://doi.org/10.1016/j.neulet.2009.12.054
dc.relationFamitafreshi, H., & Karimian, M. (2018). Overview of the Recent Advances in Pathophysiology and Treatment for Autism. CNS & Neurological Disorders Drug Targets, 17(8), 590–594. https://doi.org/10.2174/1871527317666180706141654
dc.relationFatemi, S. H., Reutiman, T. J., Folsom, T. D., Rooney, R. J., Patel, D. H., & Thuras, P. D. (2010). mRNA and Protein levels for GABAA alpha 4, Alpha 5, Beta 1 and GABABR 1 receptors are altered in brains from subjects with autism. J. Autism Dev.Disord, 40, 743–750. https://doi.org/doi: 10.1007/s10803-0090924-z
dc.relationFavre, M. R., Barkat, T. R., Lamendola, D., Khazen, G., Markram, H., & Markram, K. (2013). General developmental health in the VPA-rat model of autism. Frontiers in Behavioral Neuroscience, 7, 88. https://doi.org/10.3389/fnbeh.2013.00088
dc.relationFujiki, R., Sato, A., Fujitani, M., & Yamashita, T. (2013). A proapoptotic effect of valproic acid on progenitors of embryonic stem cell-derived glutamatergic neurons. Cell Death and Disease, 4. https://doi.org/10.1038/cddis.2013.205
dc.relationFuller, L. C., Cornelius, S. K., Murphy, C. W., & Wiens, D. J. (2002). Neural crest cell motility in valproic acid. Reproductive Toxicology, 16(May), 825–839.
dc.relationGandal, M. J., Edgar, J. C., Ehrlichman, R. S., Mehta, M., Roberts, T. P. L., & Siegel, S. J. (2010). Validating γ Oscillations and Delayed Auditory Responses as Translational Biomarkers of Autism. Biological Psychiatry, 68(12), 1100–1106. https://doi.org/10.1016/j.biopsych.2010.09.031
dc.relationGandhi, T., & Lee, C. C. (2020). Neural Mechanisms Underlying Repetitive Behaviors in Rodent Models of Autism Spectrum Disorders. Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/FNCEL.2020.592710
dc.relationGo, H. S., Seo, J. E., Kim, K. C., Han, S. M., Kim, P., Kang, Y. S., Han, S. H., Shin, C. Y., & Ko, K. H. (2011). Valproic acid inhibits neural progenitor cell death by activation of NF-κB signaling pathway and upregulation of Bcl-XL. J Biomed Sci, 18(1), 48. https://doi.org/1423-0127-18-48 [pii] 10.1186/14230127-18-48
dc.relationGreer, P., Hanayama, R., Bloodgood, B., Mardinly, A., Lipton, D., Flavell, S., Kim, T., Griffith, E., Waldon, Z., & Maehr R, et al. (2010). The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell, 140, 704–716.
dc.relationGrzadzinski, R., Huerta, M., & Lord, C. (2013). DSM-5 and autism spectrum disorders (ASDs): an opportunity for identifying ASD subtypes. Mol. Autism, 4.
dc.relationHarkness, J., & Ridgway, M. (1980). Chromodacryorrhea in laboratory rats (Rattus norvegicus): etiologic considerations. . Lab Anim Sci., 30(5), 841–844.
dc.relationIngram, J. L., Peckham, S. M., Tisdale, B., & Rodier, P. M. (2000). Prenatal exposure of rats to valproic acid reproduces the cerebellar anomalies associated with autism. Neurotoxicology and Teratology, 22(3), 319–324. https://doi.org/10.1016/S0892-0362(99)00083-5
dc.relationJensen, V., Rinholm, J. E., Johansen, T. J., Medin, T., Storm-Mathisen, J., Sagvolden, T., Hvalby, & Bergersen, L. H. (2009). N-methyl-d-aspartate receptor subunit dysfunction at hippocampal glutamatergic synapses in an animal model of attention-deficit/hyperactivity disorder. Neuroscience, 158(1), 353–364. https://doi.org/10.1016/j.neuroscience.2008.05.016
dc.relationKim, D. G., Gonzales, E. L., Kim, S., Kim, Y., Adil, K. J., Jeon, S. J., Cho, K. S., Kwon, K. J., & Shin, and C. Y. (2019). Social Interaction Test in Home Cage as a Novel and Ethological Measure of Social Behavior in Mice. Experimental Neurobiology, 28(2), 247–260. https://doi.org/10.5607/EN.2019.28.2.247
dc.relationKim, J.-W., Seung, H., Kwon, K. J., Ko, M. J., Lee, E. J., Oh, H. A., Choi, C. S., Kim, K. C., Gonzales, E. L., You, J. S., Choi, D.-H., Lee, J., Han, S.-H., Yang, S. M., Cheong, J. H., Shin, C. Y., & Bahn, G. H. (2014). Subchronic Treatment of Donepezil Rescues Impaired Social, Hyperactive, and Stereotypic Behavior in Valproic Acid-Induced Animal Model of Autism. PLOS ONE, 9(8), e104927. https://doi.org/10.1371/JOURNAL.PONE.0104927
dc.relationKim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., Jeon, S. J., Dela Pena, I. C., Han, S. H., Cheong, J. H., Ryu, J. H., & Shin, C. Y. (2013). Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. Journal of Neurochemistry, 124(6), 832–843. https://doi.org/10.1111/jnc.12147
dc.relationKim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., Jeon, S. J., dela Pena, I. C., Han, S. H., Cheong, J. H., Ryu, J. H., & Shin, C. Y. (2013). Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. Journal of Neurochemistry, 124(6), 832–843. https://doi.org/10.1111/jnc.12147
dc.relationKim, K. C., Kim, P., Go, H. S., Choi, C. S., Park, J. H., Kim, H. J., Jeon, S. J., Pena, I. C. dela, Han, S.-H., Cheong, J. H., Ryu, J. H., & Shin, C. Y. (2013). Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder. Journal of Neurochemistry, 124(6), 832–843. https://doi.org/10.1111/JNC.12147
dc.relationKumar, H., & Sharma, B. (2016). Memantine ameliorates autistic behavior, biochemistry & blood brain barrier impairments in rats. Brain Research Bulletin, 124, 27–39. https://doi.org/10.1016/J.BRAINRESBULL.2016.03.013
dc.relationLee, E.-J., Choi, S. Y., & Kim, E. (2015). NMDA receptor dysfunction in autism spectrum disorders. Current Opinion in Pharmacology, 20(JANUARY 2015), 8–13. https://doi.org/10.1016/j.coph.2014.10.007
dc.relationLöscher, W. (1999). Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action. Progress in Neurobiology, 58(1), 31–59. https://doi.org/10.1016/S0301-0082(98)00075-6
dc.relationMarkram, K., & Foster, J. A. (2013). General developmental health in the VPA-rat model of autism. 7(July), 1–11. https://doi.org/10.3389/fnbeh.2013.00088
dc.relationMarkram, K., Rinaldi, T., Mendola, D. La, Sandi, C., & Markram, H. (2008). Abnormal Fear Conditioning and Amygdala Processing in an Animal Model of Autism. Neuropsychopharmacology, 33(4), 901–912. https://doi.org/10.1038/sj.npp.1301453
dc.relationMcFarlane, H., Kusek. GK, Yang, M., Phoenix, J., Bolivar, V., & Crawley, J. (2008). Autism-like behavioral phenotypes in BTBR T+tf/J mice. Genes, Brain, and Behavior, 7(2), 152–163. https://doi.org/10.1111/J.1601-183X.2007.00330.X
dc.relationMehta, M. V., Gandal, M. J., & Siegel, S. J. (2011). mGluR5-Antagonist Mediated Reversal of Elevated Stereotyped, Repetitive Behaviors in the VPA Model of Autism. PLoS ONE, 6(10), e26077. https://doi.org/10.1371/journal.pone.0026077
dc.relationMin de salud de Colombia. (2015). PROTOCOLO CLÍNICO PARA EL DIAGNÓSTICO, TRATAMIENTO Y RUTA DE ATENCIÓN INTEGRAL DE NIÑOS Y NIÑAS CON TRASTORNOS DEL ESPECTRO AUTISTA.
dc.relationModi, M. E., & Young, L. J. (2012). The oxytocin system in drug discovery for autism: animal models and novel therapeutic strategies. Horm. Behav, 61, 340–350. https://doi.org/10.1016/j.yhbeh. 2011.12.010
dc.relationMoore, S. J. (2000). A clinical study of 57 children with fetal anticonvulsant syndromes. Journal of Medical Genetics, 37(7), 489–497. https://doi.org/10.1136/jmg.37.7.489
dc.relationNazeer, A., & Ghaziuddin, M. (2012). Autism spectrum disorders: clinical features and diagnosis. Pediatr. Clin. North Am., 59(1), 19–25.
dc.relationNimmo-Smith, V., Heuvelman, H., Dalman, C., Lundberg, M., Idring, S., Carpenter. P, Magnusson. C, & Rai. D. (2020). Anxiety Disorders in Adults with Autism Spectrum Disorder: A Population-Based Study.
dc.relationPalermo, M. T., & Curatolo, P. (2004). Pharmacologic treatment of autism. J. Child Neurol, 19, 155–164.
dc.relationParadis, F.-H., & Hales, B. F. (2012). Exposure to Valproic Acid Inhibits Chondrogenesis and Osteogenesis in Mid-Organogenesis Mouse Limbs. https://doi.org/10.1093/toxsci/kfs292
dc.relationRichler, J., Bishop, S., Kleinke. JR, & Lord, C. (2007). Restricted and repetitive behaviors in young children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(1), 73–85. https://doi.org/10.1007/S10803-006-0332-6
dc.relationRinaldi. (2008). Hyper-connectivity and hyper-plasticity in the medial prefrontal cortex in the valproic acid animal model of autism. Frontiers in Neural Circuits, 2. https://doi.org/10.3389/neuro.04.004.2008
dc.relationRinaldi, T., Kulangara, K., Antoniello, K., & Markram, H. (2007). Elevated NMDA receptor levels and enhanced postsynaptic long-term potentiation induced by prenatal exposure to valproic acid. Proceedings of the National Academy of Sciences, 104(33), 13501–13506. https://doi.org/10.1073/pnas.0704391104
dc.relationRodier, P. M. (2002). Converging evidence for brain stem injury in autism. Development and Psychopathology, 14(03). https://doi.org/10.1017/S0954579402003085
dc.relationRodier, P. M., Ingram, J. L., Tisdale, B., Nelson, S., & Romano, J. (1996). Embryological Origin for Autism : Developmental Anomalies of the Cranial Nerve Motor Nuclei. The Journal of Comparative Neurology, 370, 2447–261.
dc.relationRonesi, J., Collins, K., Hays, S., Tsai, N., Guo, W., & Birnbaum, S. (2012). Disrupted Homer scaffolds mediate abnormal mGluR5 function in a mouse model of fragile X syndrome. Nat Neurosci, 15, 431–40.
dc.relationRoullet, F. I., Lai, J. K. Y., & Foster, J. A. (2013). In utero exposure to valproic acid and autism — A current review of clinical and animal studies. Neurotoxicology and Teratology, 36, 47–56. https://doi.org/10.1016/j.ntt.2013.01.004
dc.relationRuhela, R., Sarma, P., Soni, S., Prakash, A., & Medhi, B. (2017). Congenital malformation and autism spectrum disorder: Insight from a rat model of autism spectrum disorder. Indian Journal of Pharmacology, 49(3). https://doi.org/10.4103/ijp.IJP_183_17
dc.relationSailer, L., Duclot, F., Wang, Z., & Kabbaj, M. (2019). Consequences of prenatal exposure to valproic acid in the socially monogamous prairie voles. Scientific Reports, 9(1). https://doi.org/10.1038/S41598-01939014-7
dc.relationSchneider, T., & Przewłocki, R. (2005). Behavioral Alterations in Rats Prenatally Exposed to Valproic Acid: Animal Model of Autism. Neuropsychopharmacology, 30(1), 80–89. https://doi.org/10.1038/sj.npp.1300518
dc.relationSchneider, T., Roman, A., Basta-Kaim, A., Kubera, M., Budziszewska, B., Schneider, K., & Przewłocki, R. (2008). Gender-specific behavioral and immunological alterations in an animal model of autism induced by prenatal exposure to valproic acid. Psychoneuroendocrinology, 33(6), 728–740. https://doi.org/10.1016/J.PSYNEUEN.2008.02.011
dc.relationSchneider, T., Ziòłkowska, B., Gieryk, A., Tyminska, A., & Przewłocki, R. (2007). Prenatal exposure to valproic acid disturbs the enkephalinergic system functioning, basal hedonic tone, and emotional responses in an animal model of autism. Psychopharmacology, 193(4), 547–555. https://doi.org/10.1007/s00213-007-0795-y
dc.relationSheng, M. & Kim, E. (2011). The postsynaptic organization of synapses. Cold Spring Harb. Perspect., 3(a005678).
dc.relationSilverman, J. L., Tolu, S. S., Barkan, C. L., & Crawley, J. N. (2010). Repetitive Self-Grooming Behavior in the BTBR Mouse Model of Autism is Blocked by the mGluR5 Antagonist MPEP. Neuropsychopharmacology, 35(4), 976. https://doi.org/10.1038/NPP.2009.201
dc.relationSpooren, W., Lindemann, L., Ghosh, A., & Santarelli, L. (2012). Synapse dysfunction in autism : a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends in Pharmacological Sciences, 33(12), 669–684. https://doi.org/10.1016/j.tips.2012.09.004
dc.relationStromland, K., Nordin, V., Miller, M., Akerstrom, B., & Gillberg, C. (1994). Autism in thalidomide embryopathy: a population study. Developmental Medicine & Child Neurology, 36, 351–356.
dc.relationTang, S., Terzic, B., Wang, I.-T. J., Sarmiento, N., Sizov, K., Cui, Y., Takano, H., Marsh, E. D., Zhou, Z., & Coulter, D. A. (2019). Altered NMDAR signaling underlies autistic-like features in mouse models of CDKL5 deficiency disorder. Nature Communications, 10(1). https://doi.org/10.1038/S41467-01910689-W
dc.relationTashiro, Y., Oyabu, A., Imura, Y., Uchida, A., Narita, N., & Narita, M. (2011). Morphological abnormalities of embryonic cranial nerves after in utero exposure to valproic acid: implications for the pathogenesis of autism with multiple developmental anomalies. International Journal of Developmental Neuroscience, 29(4), 359–364. https://doi.org/10.1016/j.ijdevneu.2011.03.008
dc.relationVanderschuren, L. J. M. J., Achterberg, E. J. M., & Trezza, V. (2016). The neurobiology of social play and its rewarding value in rats. Neuroscience & Biobehavioral Reviews, 70. https://doi.org/10.1016/j.neubiorev.2016.07.025
dc.relationVasa, R., & Mazurek, M. (2015). An update on anxiety in youth with autism spectrum disorders. Current Opinion in Psychiatry, 28(2), 83–90. https://doi.org/10.1097/YCO.0000000000000133
dc.relationVorstman, J. A. S., Parr, J. R., Moreno-De-Luca, D., Anney, R. J. L., Nurnberger, J. I., & Hallmayer, J. F. (2017). Autism genetics: opportunities and challenges for clinical translation. Nature Reviews. Genetics, 18(6), 362–376. https://doi.org/10.1038/NRG.2017.4
dc.relationWhitehouse, C. M., & Lewis, M. H. (2015). Repetitive Behavior in Neurodevelopmental Disorders: Clinical and Translational Findings. The Behavior Analyst, 38(2), 163. https://doi.org/10.1007/S40614-0150029-2
dc.relationWilliams, P., & Hersh, J. (1997). A male with fetal valproate syndrome and autism. Developmental Medicine & Child Neurology, 39, 632–634.
dc.relationWu, L. J., Toyoda, H., Zhao, M. G., Lee, Y. S., Tang, J., Ko, S. W., Yong, H. J., Shum, F. W. F., Zerbinatti, C. v., Bu, G., Wei, F., Xu, T. le, Muglia, L. J., Chen, Z. F., Auberson, Y. P., Kaang, B. K., & Zhuo, M. (2005). Upregulation of forebrain NMDA NR2B receptors contributes to behavioral sensitization after inflammation. Journal of Neuroscience, 25(48), 11107–11116. https://doi.org/10.1523/JNEUROSCI.1678-05.2005
dc.relationXu, J. Y., Xia, Q. Q., & Xia, J. (2012). A review on the current neuroligin mouse models. Sheng Li Xue Bao, 64, 550–562.
dc.relationYang, E. J., Ahn, S., Lee, K., Mahmood, U., & Kim, H. S. (2016). Early behavioral abnormalities and perinatal alterations of PTEN/AKT pathway in valproic acid autism model mice. PLoS ONE, 11(4). https://doi.org/10.1371/journal.pone.0153298
dc.relationYang, M., Silverman, J. L., & Crawley, J. N. (2011). Automated three-chambered social approach task for mice. Current Protocols in Neuroscience, SUPPL. 56. https://doi.org/10.1002/0471142301.NS0826S56
dc.relationYu, Y., Chaulagain, A., Pedersen, S., Lydersen, S., Leventhal, B., Szatmari, P., Aleksic, B., Ozaki, N., & Skokauskas, N. (2020). Pharmacotherapy of restricted/repetitive behavior in autism spectrum disorder:a systematic review and meta-analysis. BMC Psychiatry, 20(1). https://doi.org/10.1186/S12888-020-2477-9
dc.relationZoghbi, H., & Bear, M. (2012). Synaptic Dysfunction in Neurodevelopmental Intellectual Disabilities. Cold Spring Harb. Perspect. Biol., 4(3), 1–22. https://doi.org/10.1101/cshperspect.a009886
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAproximación comportamental y glutamatérgica de un modelo de roedor del trastorno del espectro autista por exposición prenatal a ácido valproico
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución