dc.contributorArenas Salazar, José Robel
dc.creatorPitalua Pantoja, Jorge Luis
dc.date.accessioned2022-03-24T14:35:21Z
dc.date.available2022-03-24T14:35:21Z
dc.date.created2022-03-24T14:35:21Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81357
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn el presente trabajo se determinó la validez de la teoría de dinámica de campos térmicos para el estudio de un proceso de evaporación de un agujero negro de Schwarzschild. De igual forma, se determinó de forma numérica los factores de cuerpo gris para un campo escalar con masa y la manera en que los parámetros propios del sistema intervienen en las probabilidades de transmisión de los modos del campo. El proceso de Evaporación descrito es semiclasico y se planteó en torno al proceso de tunelamiento, que se presenta de forma natural, en torno a la barrera de potencial generada por el agujero negro. (Texto tomado de la fuente)
dc.description.abstractIn the present research work we sought to determine the general characteristics of an evaporation process of a Schwarzschild black hole, in the context of thermo eld dynamics. From a semiclassical point of view, we determined the necessary conditions to study a tunneling process through the potential barrier produced by the hole, and how this intervenes in the evaporation process. Once the conditions were established, characteristic situations that could occur in the evaporation process were established and the gray body factors were determined, using a numerical method based on the discretization of the potential barrier.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Física
dc.publisherDepartamento de Física
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationS. W. Hawking. Particle Creation by Black Holes. Commun. Math. Phys, 43:199 220, 1975
dc.relationW. Israel. Thermo- eld dynamics of black holes. Physics Letters A, 57(2):107 110, 1976.
dc.relationW. G. Unruh. Notes on black-hole evaporation. Physical Review D, 14(4):870 892, 1976
dc.relationStephen A. Fulling. Nonuniqueness of canonical eld quantization in riemannian space-time. Physical Review D, 7(10):2850 2862, 1973.
dc.relationJ. B. Hartle and S. W. Hawking. Path-integral derivation of black-hole radiance. Physical Review D, 13(8):2188 2203, apr 1976.
dc.relationG. W. Gibbons and M. J. Perry. Black Holes and Thermal Green Functions. Proc R Soc London Ser A, 358(1695):467 494, 1978
dc.relationJ. D. Bekenstein. Black holes and the second law. Lettere Al Nuovo Cimento Series 2, 4(15):737 740, 1972.
dc.relationJacob D. Bekenstein. Black holes and entropy. Physical Review D, 7(8):2333 2346, 1973
dc.relationJacob D. Bekenstein. Statistical black-holr thermodynamics. Physical Review D, 12(10):3077 3085, 1975.
dc.relationJacob D. Bekenstein. Black-hole Thermodynamics. Physics Today, 33(1):24 31, 1980.
dc.relationDavid G Boulware. Quantum eld theory in Schwarzschild and Rindler spaces. Physical Review D, 11:1404 1424, 1975.
dc.relationDavid G. Boulware. Hawking Radiation and thin shells. Physical Review D, 13:2169 2187, 1976.
dc.relationS. W. Hawking. Black holes and thermodynamics. Physical Review D, 13(2):191 197, 1976.
dc.relationLeonard Parker. The production of elemetary particles by strong gravitational elds. PhD thesis, 1977
dc.relationDon N Page. Particle emission rates from a black hole.I. Phys. Rev. D13, (2):198 206, 1976
dc.relationDon N. Page. Particle emission rates from a black hole. II. Massless particles from a rotating hole. Physical Review D, 14(12):3260 3273, 1976.
dc.relationBryce S. DeWitt. Quantum eld theory in curved spacetime. Physics Reports, 19(6):295 357, 1975
dc.relationSai Iyer and Cli ord M. Will. Black-hole normal modes: A WKB approach. I. Foundations and application of a higher-order WKB analysis of potential-barrier scattering. Physical Review D, 35(12):3621 3631, 1987
dc.relationD. V. Gal'tsov and A. A. Matiukhin. Matrix WKB method for black hole normal modes and quasibound states. Classical and Quantum Gravity, 9(9):2039 2055, 1992.
dc.relationFinnian Gray and Matt Visser. Greybody factors for Schwarzschild black holes: Path-ordered ex ponentials and product integrals. Universe, 4(9), 2018.
dc.relationDon N Page. Black hole information. arXiv:hep-th/9305040v5, pages 1 41, 1993.
dc.relationCurtis G Callan, Steven B Giddings, Je rey A Harvey, and Andrew Strominger. Evanescent Black Holes arXiv : hep-th / 9111056v1 28 Nov 1991.
dc.relationWilliam A Hiscock. Models of Evaporationg Black Holes I. Physical Review D, 23(12):2813 2822, 1981.
dc.relationWilliam A Hiscock. Models of evaporating black holes II: E ects of the outgoing created radiation. Physical Review D, 23(12):2823 2827, 1981
dc.relationYuhji Kuroda. Model for Evaporating Black Holes. Progress of Theoretical Physics, 71(1):100 108, 1984.
dc.relationValentina Baccetti, Sebastian Murk, and Daniel R Terno. Black hole evaporation and semiclassical thin shell collapse. Physical Review D, 100(6):064054, sep 2019
dc.relationValeri P. Frolov and Andrei Zelnikov. Introduction to Black Hole Physics. Oxford University Press, New York, 2012.
dc.relationAlessandro Fabbri and José Navarro-Salas. Modeling black hole evaporation. 2005.
dc.relationLeonard Susskind and James Lindesay. An Introduction to Black Holes, Information and the String Theory Revolution. The Holographic Universe, volume 91. World Scienti c Publishing Co. Pte. Ltd, Singapore, 2005
dc.relationRobert M. Wald. General Relativity. The University Chicago Press, Chicago, 1984.
dc.relationEduard Alexis Larrañaga. Agujeros negros clasicos. Notas de Clases no Publicadas., 2008
dc.relationInc. Wolfram Research. Mathematica. Wolfram Research, Inc., Champaign, Illinois, 2016
dc.relationL. D. LANDAU and E. M. LIFSHITZ. Mecánica Cuántica no-Relativista, volume III. 1983.
dc.relationJ. P. Vigneron and Ph Lambin. Transmission coe cient for one-dimensional potential barriers using continued fractions. Journal of Physics A: Mathematical and General, 13(4):1135 1144, 1980.
dc.relationG.G. Emch. Algebraic Methods in Statistical and qunatum Field Theory. Jhon Wiley ,New York, 1972.
dc.relationR. Haag. Local Quanrum Physics: Field, Particles, Algebra. Springer-Verlag, New York, 1992
dc.relationYasushi Takahashi and Hiroomi Umezawa. Thermo Field Dynamics. International Journal of Modern Physics B, 10(2):1755 1805, 1996.
dc.relationH. Umezawa. Thermo Field Dynamics and Condensed States. North-Holland Publishing Company, 1982.
dc.relationH. Umezawa. Advanced eld theory: Micro, macro, and thermal Physics, 1995.
dc.relationAdemir E Santana and F.C. Khanna. Lie Groups and the thermal eld theory. Physics Letters A, 203:68 72, 1995.
dc.relationAdemir E. Santana, F. C. Khanna, H. Chu, and Y. C. Chang. Thermal lie groups, classical mechanics, and thermo eld dynamics. Annals of Physics, 249(2):481 498, 1996.
dc.relationA. Kireev, H Umezawa, A. Mann, and M. Revzen. Thermal Squeezed States in Thermo Field Dynamics ad Quabtum and Thermal Fluctuations. Physics Letters A, 142(4):215 221, 1989.
dc.relationN.D Birrel and P.C.W Davies. Quantum Fields in Curved Space. Cambridge University Press, 1994.
dc.relationWalter Greiner. Quantum Mechanics. Springer, 2000
dc.relationJ. Robel Arenas and Juan Manuel Tejeiro-Sarmiento. ENTROPIA DE ENTANGLEMENT ASO CIADA A LA RADIACION UNRUH. Revista Colombiana de Física, 34(1):565 568, 2002
dc.relationH. Majima and A. Suzuki. A generalized time-dependent harmonic oscillator at nite temperature. AIP Conference Proceedings, 832(2006):549 552, 2006.
dc.relationJane H. MacGibbon and B. R. Webber. Quark- and gluon-jet emission from primordial black holes: The instantaneous spectra. Physical Review D, 41(10):3052 3079, 1990
dc.relationM. Dias, Daniel L. Nedel, and C. R. Senise. Time dependent Entanglement Entropy in dissipative conformal theories: TFD approach. pages 1 28, 2019
dc.relationJ. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):90 95, 2007.
dc.relationCharles R. Harris, K. Jarrod Millman, St'efan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fern'andez del R' o, Mark Wiebe, Pearu Peterson, Pierre G'erard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming with NumPy. Nature, 585(7825):357 362, September 2020
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaporación de un agujero negro de Schwarzschild y potenciales efectivos
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución