dc.contributorMesa Sánchez, Oscar José
dc.contributorHoyos Ortíz, Carlos David
dc.creatorCorrea Sánchez, Nathalia
dc.date.accessioned2020-09-02T14:34:42Z
dc.date.accessioned2022-09-21T17:34:58Z
dc.date.available2020-09-02T14:34:42Z
dc.date.available2022-09-21T17:34:58Z
dc.date.created2020-09-02T14:34:42Z
dc.date.issued2020-07-30
dc.identifierCorrea, N. (2020). Caracterización de la radiación solar para la estimación del potencial de energía fotovoltaica en entornos urbanos, caso de estudio: Valle de Aburra. Master’s thesis, Universidad Nacional de Colombia - Sede Medellín.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78359
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3401790
dc.description.abstractEste trabajo tiene por propósito el estudio de las caracterı́sticas meteorológicas, energéticas, técnicas y morfológicas, relevantes de los municipios del Área Metropolitana del Valle de Aburrá (AMVA), para generar energı́a solar fotovoltaica a pequeña escala en el área urbana de esta región. Lo cual es importante, para promover la diversificación de la matriz energética y mejorar el acceso a la energı́a de los ciudadanos, de manera que la planificación energética de los municipios del AMVA pueda ser más sostenible y resiliente. Para alcanzar este objetivo, se usan herramientas de información geográfica, satelital y meteorológica en tierra, en conjunto con mediciones de potencia de tres paneles solares experimentales, que se ubican en zonas contrastantes del Valle de Aburrá. Los resultados obtenidos involucran el análisis del papel de las nubes sobre radiación solar superficial; también, el comportamiento de diferentes indicadores de rendimiento de sistemas fotovoltaicos bajo las condiciones regionales, que se complementan con una predicción estadı́stica de potencia en el corto plazo y un análisis de prefactibilidad para una instalación fotovoltaica hipotética. Adicional a los anteriores, el fruto más relevante en este trabajo, es la estimación del potencial de generación de energı́a fotovoltaica aprovechando la morfologı́a urbana de zonas urbanas representativas. (Texto tomado de la fuente)
dc.description.abstractThe purpose of this work is to study the relevant meteorological, energetic, technical, and morphological characteristics of the municipalities of the Metropolitan Area of the Aburrá Valley (AMVA), in order to generate photovoltaic solar energy on a small scale in the urban area of this region. This is important, to promote the diversification of the energy matrix and improve the access to energy for citizens so that the energy planning of AMVA municipalities can be more sustainable and resilient. To achieve this objective, geographic, satellite, and meteorological information tools are used on the ground, in conjunction with power measurements from three experimental solar panels, which are located in contrasting areas of the Aburrá Valley. The results obtained involve the analysis of the role of clouds on surface solar radiation; also, the behavior of different performance indicators of photovoltaic systems under regional conditions, which are complemented with a statistical power prediction in the short term and a pre-feasibility analysis for a hypothetical photovoltaic installation. In addition to the above, the most relevant result of this work is the estimation of the photovoltaic energy generation potential by taking advantage of the urban morphology of representative urban areas.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Recursos Hidráulicos
dc.publisherDepartamento de Geociencias y Medo Ambiente
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAdaramola, M. S. & Vågnes, E. E. (2015). Preliminary assessment of a small-scale rooftop pv-grid tied in Norwegian climatic conditions. Energy Conversion and Management, 90, 458–465.
dc.relationAguirre-Mendoza, A. M., Dı́az-Mendoza, C., & Pasqualino, J. (2019). Renewable energy potential analysis in non-interconnected islands. case study: Isla Grande, Corales del Rosario archipelago, Colombia. Ecological Engineering, 130, 252–262.
dc.relationAngel, S., Carmona, M., Villegas, R., et al. (2001). Gestión ambiental en proyectos de desarrollo. Number Doc. 21580) CO-BAC, Bogotá.
dc.relationBarragán-Escandón, E. A., Zalamea-León, E. F., Terrados-Cepeda, J., & Parra-González, A. (2019). Las energı́as renovables a escala urbana. aspectos determinantes y selección tecnológica. Revista Bitácora Urbano Territorial, 29 (2), 39–48.
dc.relationBeyer, H.-G. (1997). An alternative explanation for the manner in which genetic algorithms operate. BioSystems, 41 (1), 1–15.
dc.relationBitar, S., Susana, M., Chamas, B., et al. (2017). Estudio de factibilidad para la implementación de sistemas fotovoltaicos como fuente de energı́a en el sector industrial de Colombia.
dc.relationBorja, T. C. & Moreno, G. R. (2009). Evaluación interdimensional de impactos ambientales sobre la dimensión fı́sica ocasionados por cultivos de palma aceitera y la ganaderı́a extensiva en la selva húmeda tropical del bajo Atrato, chocó, Colombia. Gestión y Ambiente, 12 (3), 37–47.
dc.relationCadena Dı́az, J. D., Becerra Gona, Á. C., et al. (2016). Prefactibilidad de la implementación de sistemas de generación fotovoltaica en empresas de la zona industrial de Puente Aranda en la ciudad de Bogotá.
dc.relationCastaneda, M., Zapata, S., & Aristizabal, A. (2018). Assessing the effect of incentive policies on residential PV investments in Colombia. Energies, 11 (10), 2614.
dc.relationCepeda, J. & Sierra, A. (2017). Aspectos que afectan la eficiencia en los paneles fotovoltaicos y sus potenciales soluciones. Cepedajuan2017. pdf.
dc.relationCollins, K., Powell, B., & Anctil, A. (2015). Life cycle assessment of silicon solar panels manufacturing in the united states. In 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), (pp. 1–4). IEEE.
dc.relationCompagnon, R. (2004). Solar and daylight availability in the urban fabric. Energy and Buildings, 36 (4), 321–328
dc.relationCREG (2018). Resolución no. 030 de 2018. http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191? OpenDocument, Último acceso el 2020-01-09.
dc.relationCruz Carmona, J. (2014). Actualidad de materiales para la captación de energı́a solar térmica y fotovoltaica.
dc.relationCurry, J. A. & Webster, P. J. (1998). Thermodynamics of atmospheres and oceans. Elsevier.
dc.relationDAP (2011). Perfil socio económico-medellı́n total. https://www.medellin.gov.co/irj/go/km/docs/wpccontent/Sites, Último acceso el 2020-02-20.
dc.relationDierauf, T., Growitz, A., Kurtz, S., Cruz, J. L. B., Riley, E., & Hansen, C. (2013). Weather-corrected performance ratio. Technical report, National Renewable Energy Lab.(NREL), Gol- den, CO (United States).
dc.relationDogniaux, R. & Lemoine, M. (1983). Classification of radiation sites in terms of different indices of atmospheric transparency. In Solar Radiation Data (pp. 94–107). Springer.
dc.relationDubey, S., Sarvaiya, J. N., & Seshadri, B. (2013). Temperature dependent photovoltaic (pv) efficiency and its effect on pv production in the world–a review. Energy Procedia, 33, 311–321.
dc.relationDuffie, J. A., Beckman, W. A., & Blair, N. (2020). Solar Engineering of Thermal Processes, Photovoltaics and Wind. John Wiley & Sons.
dc.relationEcheverri, A. & Orsini, F. M. (2011). Informalidad y urbanismo social en medellı́n. Sostenible?, (12), 11–24.
dc.relationEicker, U. & Dalibard, A. (2011). Photovoltaic–thermal collectors for night radiative cooling of buildings. Solar Energy, 85 (7), 1322–1335.
dc.relationEngerer, N. & Mills, F. (2014). Kpv: A clear-sky index for photovoltaics. Solar energy, 105, 679–693.
dc.relationFahrenbruch, A. & Bube, R. (2012). Fundamentals of solar cells: photovoltaic solar energy conversion. Elsevier.
dc.relationFernández, E. F., Pérez-Higueras, P., Garcia Loureiro, A. J., & Vidal, P. G. (2013). Outdoor evaluation of concentrator photovoltaic systems modules from different manufacturers: first results and steps. Progress in Photovoltaics: Research and Applications, 21 (4), 693–701.
dc.relationFlórez, L. (2016). Simulación de diferentes escenarios de cobertura urbana y vegetal en el balance de energı́a superficial del valle de aburrá. Lı́nea de Investigación: Hidrometeorologı́a ? Meteorologı́a urbana.
dc.relationFormación, E. (2007). Energı́a solar fotovoltaica. FC Editorial.
dc.relationFu, P. & Rich, P. M. (1999). Design and implementation of the solar analyst: an ArcView extension for modeling solar radiation at landscape scales. In Proceedings of the nineteenth annual ESRI user conference, volume 1, (pp. 1–31). San Diego USA.
dc.relationFu, P. & Rich, P. M. (2002). A geometric solar radiation model with applications in agriculture and forestry. Computers and electronics in agriculture, 37 (1-3), 25–35.
dc.relationGau, S., Volltrauer, H., Faras, F., Delahoy, A., Eser, E., & Kiss, Z. (1985). Manufacturing process for interconnected submodules of hydrogenated amorphous silicon photovoltaic panels. Applied physics letters, 47 (12), 1317–1319.
dc.relationGhazi, S. & Ip, K. (2014). The effect of weather conditions on the efficiency of pv panels in the southeast of uk. Renewable energy, 69, 50–59.
dc.relationGrätzel, M. (2005). Solar energy conversion by dye-sensitized photovoltaic cells. Inorganic chemistry, 44 (20), 6841–6851.
dc.relationGuzmán, G. (2018). Análisis de la influencia del diseño urbano en la meteorologı́a del valle de aburrá. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n.
dc.relationHerrera, L., Miranda, A., Arango-Zuluaga, E. I., Ramos-Paja, C. A., & González-Montoya, D. (2013). Dimensionamiento de sistemas de generación fotovoltaicos localizados en la ciudad de medellı́n. TecnoLógicas, 289–301.
dc.relationInman, R. H., Pedro, H. T., & Coimbra, C. F. (2013). Solar forecasting methods for renewable energy integration. Progress in energy and combustion science, 39 (6), 535–576.
dc.relationIqbal, M. (1983). Solar radiation.
dc.relationIqbal, M. (2012). An introduction to solar radiation. Elsevier.
dc.relationIzquierdo, S., Rodrigues, M., & Fueyo, N. (2008). A method for estimating the geographical distribution of the available roof surface area for large-scale photovoltaic energy-potential evaluations. Solar Energy, 82 (10), 929–939.
dc.relationJoseph, J. H. & Kagan, V. (1988). The reflection of solar radiation from bar cloud arrays. Journal of Geophysical Research: Atmospheres, 93 (D3), 2405–2416.
dc.relationKafarov, V. V., Rosso Ceron, A. M., Blanco Patino, F. G., & Araque Duarte, J. A. (2017). Potential assessment of renewable energy sources in non-interconnected zones of Colombia using geographic information system-ArcGIS study of cases. Chemical Engineering Transactions.
dc.relationKouhestani, F. M., Byrne, J., Johnson, D., Spencer, L., Hazendonk, P., & Brown, B. (2019). Evaluating solar energy technical and economic potential on rooftops in an urban setting: the city of Lethbridge, Canada. International Journal of Energy and Environmental Engineering, 10 (1), 13–32.
dc.relationKumar, L., Skidmore, A. K., & Knowles, E. (1997). Modelling topographic variation in solar radiation in a gis environment. International Journal of Geographical Information Science, 11 (5), 475–497.
dc.relationKumar, R. & Umanand, L. (2005). Estimation of global radiation using clearness index model for sizing photovoltaic system. Renewable energy, 30 (15), 2221–2233.
dc.relationLau, K. K.-L., Lindberg, F., Johansson, E., Rasmussen, M. I., & Thorsson, S. (2017). Investigating solar energy potential in tropical urban environment: A case study of dar es salaam, Tanzania. Sustainable cities and Society, 30, 118–127.
dc.relationLeduc, W. R. & Van Kann, F. M. (2013). Spatial planning based on urban energy harvesting toward productive urban regions. Journal of Cleaner Production, 39, 180–190.
dc.relationLeón-Vargas, F., Garcı́a-Jaramillo, M., & Krejci, E. (2019). Pre-feasibility of wind and solar systems for residential self-sufficiency in four urban locations of Colombia: implication of new incentives included in law 1715. Renewable energy, 130, 1082–1091.
dc.relationLi, D. H., Cheung, G. H., & Lam, J. C. (2005). Analysis of the operational performance and efficiency characteristic for photovoltaic system in hong kong. Energy conversion and management, 46 (7-8), 1107–1118.
dc.relationLiou, K.-N. (2002). An introduction to atmospheric radiation. Elsevier.
dc.relationMarrugo, N. F., Amaya, D., & Ramos, O. (2017). Analysis of the effects of el niño in photovoltaic systems in Colombia. International Journal of Renewable Energy Research (IJRER), 7 (2), 622-628.
dc.relationMartı́nez, A. (2017). Islas de calor en el área urbana del valle de aburrá. Master’s thesis, Universidad Nacional de Colombia -Sede Medellı́n. Lı́nea de Investigación: Meteorologı́a Urbana.
dc.relationMartinez, R. & Forero, E. (2018). Estimation of energy efficiency in solar photovoltaic panels considering environmental variables. In IOP Conference Series: Materials Science and Engineering, volume 437, (pp. 012008). IOP Publishing.
dc.relationMarty, C. & Philipona, R. (2000). The clear-sky index to separate clear-sky from cloudy-sky situations in climate research. Geophysical Research Letters, 27 (17), 2649–2652.
dc.relationMattei, M., Notton, G., Cristofari, C., Muselli, M., & Poggi, P. (2006). Calculation of the polycrystalline pv module temperature using a simple method of energy balance. Renewable energy, 31 (4), 553–567.
dc.relationMcCorkel, J., Efremova, B., Hair, J., Andrade, M., & Holben, B. (2020). Goes-16 abi solar reflective channel validation for earth science application. Remote Sensing of Environment, 237, 111438.
dc.relationMcQueen, G. & Thorley, S. (1991). Are stock returns predictable? a test using markov chains. The Journal of Finance, 46 (1), 239–263.
dc.relationMellit, A., Benghanem, M., Arab, A. H., & Guessoum, A. (2005). A simplified model for generating sequences of global solar radiation data for isolated sites: Using artificial neural network and a library of markov transition matrices approach. Solar energy, 79 (5), 469–482.
dc.relationMuñoz, E. (2019). Soil moisture dynamics in water- and energy-limited ecosystems. Application to slope stability. PhD thesis, Universidad Nacional de Colombia - Sede Medellı́n.
dc.relationMurcia, H. R. (2008). Desarrollo de la energía solar en Colombia y sus perspectivas. Revista de ingeniería, (28), 83–89.
dc.relationNOAA (2020). National weather service. climate prediction center. cold & warm episodes by season. https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ ensostuff/ONI_v5.php, Último acceso el 2020-01-06.
dc.relationPacheco, R., Ordóñez, J., & Martı́nez, G. (2012). Energy efficient design of building: A review. Renewable and Sustainable Energy Reviews, 16 (6), 3559–3573.
dc.relationPaoli, C., Voyant, C., Muselli, M., & Nivet, M.-L. (2010). Forecasting of preprocessed daily solar radiation time series using neural networks. Solar Energy, 84 (12), 2146–2160.
dc.relationParera, R. G. (2008). Diseño y cálculo de una instalación fotovoltaica de 1, 1 mw. Tarragona: Universitat Rovira i Virgili. Dep. Enginyeria Electrònica i Automàtica.
dc.relationPeterson, J. T. & Flowers, E. C. (1977). Interactions between air pollution and solar radiation. Solar Energy, 19 (1), 23–32.
dc.relationPoveda, G., Jaramillo, A., Gil, M. M., Quiceno, N., & Mantilla, R. I. (2001). Seasonally in enso related precipitation, river discharges, soil moisture, and vegetation index in Colombia. Water resources research, 37 (8), 2169–2178.
dc.relationPoveda, G., Mesa, O. J., Salazar, L. F., Arias, P. A., Moreno, H. A., Vieira, S. C., Agudelo, P. A., Toro, V. G., & Alvarez, J. F. (2005). The diurnal cycle of precipitation in the tropical andes of colombia. Monthly Weather Review, 133 (1), 228–240.
dc.relationRedweik, P., Catita, C., & Brito, M. (2013). Solar energy potential on roofs and facades in an urban landscape. Solar Energy, 97, 332–341.
dc.relationReich, N. H., Mueller, B., Armbruster, A., Van Sark, W. G., Kiefer, K., & Reise, C. (2012). Performance ratio revisited: is pr¿90 % realistic? Progress in Photovoltaics: Research and Applications, 20 (6), 717–726.
dc.relationRodrı́guez-Urrego, D. & Rodrı́guez-Urrego, L. (2018). Photovoltaic energy in Colombia: Current status, inventory, policies and future prospects. Renewable and Sustainable Energy Reviews, 92, 160–170.
dc.relationRosas-Flores, J. A., Zenón-Olvera, E., & Gálvez, D. M. (2019). Potential energy saving in urban and rural households of Mexico with solar photovoltaic systems using geographical information system. Renewable and Sustainable Energy Reviews, 116, 109412.
dc.relationRossow, W. B. & Garder, L. C. (1993). Cloud detection using satellite measurements of infrared and visible radiances for isccp. Journal of climate, 6 (12), 2341–2369.
dc.relationSalamanca-Ávila, S. (2017). Propuesta de diseño de un sistema de energı́a solar fotovoltaica. caso de aplicación en la ciudad de bogotá. Revista cientı́fica, (30), 263–277.
dc.relationSchmit, T. J., Lindstrom, S. S., Gerth, J. J., & Gunshor, M. M. (2018). Applications of the 16 spectral bands on the advanced baseline imager (abi).
dc.relationSIATA (2020). Sistema de alerta temprana de medellı́n y el valle de aburrá. https://siata.gov.co/siata_nuevo/, Último acceso el 2020-02-15.
dc.relationSolargis (2020). Global solar atlas 2.0. https://globalsolaratlas.info/map?c=11.523088, 8.173828,3, Último acceso el 2020-01-15.
dc.relationSpencer, J. (1971). Fourier series reprensentation of the position of the sun. Search, 2 (5), 172.
dc.relationStein, J., Hansen, C., & Reno, M. J. (2012). The variability index: A new and novel metric for quantifying irradiance and pv output variability. Technical report, Sandia National Laboratories.
dc.relationThomas, R. W. (1984). Solar reflection from interacting and shadowing cloud elements. Journal of Geophysical Research: Atmospheres, 89 (D5), 7179–7185.
dc.relationToro, C. A. (2019). Aplicaciones de la visión artificial como herramienta de gestión de riesgo aplicadas al monitoreo hidrometeorológico en el valle de aburrá. Master’s thesis, Universidad Nacional de Colombia - Sede Medellı́n.
dc.relationTzoumanikas, P., Nikitidou, E., Bais, A., & Kazantzidis, A. (2016). The effect of clouds on surface solar irradiance, based on data from an all-sky imaging system. Renewable Energy, 95, 314–322.
dc.relationUPME (2012). Caracterización energética del sector residencial urbano y rural en colombia. https://bdigital.upme.gov.co/bitstream/001/1111/2/v.2.pdf, Último acceso el 2020-02-20.
dc.relationUPME, I. et al. (2018). Atlas de Radiación solar de Colombia.
dc.relationUrrego-Ortiz, J., Martı́nez, J. A., Arias, P. A., & Jaramillo-Duque, Á. (2019). Assessment and day-ahead forecasting of hourly solar radiation in medellı́n, Colombia. Energies, 12 (22), 4402.
dc.relationWallace, J. M. & Hobbs, P. V. (2006). Atmospheric science: an introductory survey, volume 92. Elsevier.
dc.relationWinkler, S., Ramsey, G., Frey, C., Chapel, J., Chu, D., Freesland, D., Krimchansky, A., & Concha, M. (2017). Gps receiver on-orbit performance for the goes-r spacecraft.
dc.relationWulfmeyer, V., Hardesty, R. M., Turner, D. D., Behrendt, A., Cadeddu, M. P., Di Girolamo, P., Schlüssel, P., Van Baelen, J., & Zus, F. (2015). A review of the remote sensing of lower tropospheric thermodynamic profiles and its indispensable role for the understanding and the simulation of water and energy cycles. Reviews of Geophysics, 53 (3), 819–895.
dc.relationXM (2020). Reporte de capacidad efectiva por tipo de generación. http://paratec.xm.com.co/paratec/SitePages/generacion.aspx?q=capacidad, Último acceso el 2020-02-15.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleCaracterización de la radiación solar para la estimación del potencial de energía fotovoltaica en entornos urbanos, caso de estudio: Valle de Aburrá
dc.typeTesis


Este ítem pertenece a la siguiente institución