dc.contributorComba Gonzalez, Natalia
dc.contributorMontoya Castaño, Dolly
dc.contributorFundación Alejandro Ángel Escobar
dc.contributorBioprocesos y Bioprospección
dc.creatorNiño Corredor, Albert Nicolás
dc.date.accessioned2022-08-11T14:03:33Z
dc.date.available2022-08-11T14:03:33Z
dc.date.created2022-08-11T14:03:33Z
dc.date.issued2021-11-20
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81844
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLas enzimas de origen marino presentan características de interés en diversos procesos biotecnológicos, debido a que muchas son activas bajo condiciones fisicoquímicas excepcionales. En este sentido, las comunidades bacterianas epífitas de macroalgas de la especie U. lactuca son una fuente prometedora de enzimas novedosas producidas por las bacterias para metabolizar diferentes sustratos provistos por la superficie macroalgal. En este estudio se realizó el tamizaje funcional de dos enzimas (ulvano-liasas y lacasas) en 90 bacterias epífitas aisladas de la superficie de U. lactuca, recolectadas en La punta de la loma, Santa Marta (Caribe-colombiano). Se obtuvieron un total de 24 aislamientos positivos para actividad lacasa evaluada en tres sustratos (guayacol, 2,6-DMP y ácido tánico), los cuales pertenecieron a los géneros Bacillus, Brevibacterium, Lysinibacillus, Pseudomonas, Shewanella, Vibrio, Alcaligenes y Achromobacter. La evaluación realizada para liasas no arrojó resultados concluyentes respecto a la producción de este tipo de enzimas en los aislamientos de interés. Con el fin de corroborar la presencia de genes codificantes para lacasas en los aislamientos obtenidos, se seleccionó la cepa Achromobacter denitrificans EPI-24, debido a su potencial biorremediador. La confirmación in silico de la presencia de lacasas se verificó mediante el ensamblaje y anotación de su genoma. Los resultados identificaron dos productos génicos (Multicobre Oxidasa y Multicobre Polifenol Oxidasa), los cuales podrían ser responsables de la actividad lacasa detectada en placa, demostrando el potencial de bacterias epífitas de U. lactuca en la producción de enzimas, que podrían presentar propiedades funcionales únicas bajo condiciones más versátiles y eficientes, en comparación con las lacasas convencionales producidas por hongos terrestres. (Texto tomado de la fuente)
dc.description.abstractMarine enzymes have characteristics of interest in various biotechnological processes, because of, many are active under exceptional physicochemical conditions. In this sense, the epiphytic bacterial communities of macroalgae of the species U. lactuca are a promising source of novel enzymes produced by the bacteria to metabolize different substrates provided by the macroalgal surface. In this study, functional screening of two enzymes (ulvane-lyases and lacases) was performed on 90 epiphytic bacteria isolated from the surface of U. lactuca, collected in La punta de la loma, Santa Marta (Colombian Caribbean). A total of 24 isolates were screened positive to laccase activity tested in three substrates (guaiacol, 2,6-DMP and tannic acid), belonging to the genera Bacillus, Brevibacterium, Lysinibacillus, Pseudomonas, Shewanella, Vibrio, Alcaligenes and Achromobacter. The assess for lyases did not show conclusive results regarding the production of this type of enzymes in the isolates of interest. In order to corroborate the presence of laccase-coding genes in the isolates obtained, the Achromobacter denitrificans EPI-24 strain was selected due to its bioremediation potential. The in silico confirmation of the presence of laccase was verified by the assembly and annotation of its genome. The results identified two gene products (Multicopper Oxidase and Multicopper Polyphenol Oxidase), which could be responsible for the laccase activity detected in plate, demonstrating the potential of epiphytic bacteria of U. lactuca in the production of enzymes, which could present unique functional properties under more versatile and efficient conditions, compared to conventional lacases produced by terrestrial fungi. (Text taken from the source)
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Microbiología
dc.publisherInstituto de Biotecnología (IBUN)
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbdel-Rahman, M. A., Tashiro, Y., & Sonomoto, K. (2013). Recent advances in lactic acid production by microbial fermentation processes. Biotechnology Advances, 31(6), 877–902. https://doi.org/10.1016/j.biotechadv.2013.04.002
dc.relationAbdelgalil, S. A., Attia, A. R., Reyed, R. M., & Soliman, N. A. (2020). Partial purification and biochemical characterization of a new highly acidic NYSO laccase from Alcaligenes faecalis. Journal of Genetic Engineering and Biotechnology, 18(1). https://doi.org/10.1186/s43141-020-00088-w
dc.relationAbyar, H., Safahieh, A., Zolgharnein, H., & Zamani, I. (2012). Isolation and identification of achromobacter denitrificans and evaluation of its capacity in cadmium removal. Polish Journal of Environmental Studies, 21(6), 1523–1527.
dc.relationAdelakun, O. E., Kudanga, T., Green, I. R., Le Roes-Hill, M., & Burton, S. G. (2012). Enzymatic modification of 2,6-dimethoxyphenol for the synthesis of dimers with high antioxidant capacity. Process Biochemistry, 47(12), 1926–1932. https://doi.org/10.1016/j.procbio.2012.06.027
dc.relationAires, T., Moalic, Y., Serrao, E. A., & Arnaud-Haond, S. (2015). Hologenome theory supported by cooccurrence networks of Species-specific bacterial communities in siphonous algae (Caulerpa). FEMS Microbiology Ecology, 91(7), 1–14. https://doi.org/10.1093/femsec/fiv067
dc.relationAlvarado, P., Huang, Y., Wang, J., Garrido, I., & Wang, Y. H. Á. J. (2018). Phylogeny and bioactivity of epiphytic Gram-positive bacteria isolated from three co-occurring antarctic macroalgae. Antonie van Leeuwenhoek. https://doi.org/10.1007/s10482-018-1044-6
dc.relationArmstrong, E., Yan, L., Boyd, K. G., Wright, P. C., & Burgess, J. G. (2001). The symbiotic role of marine microbes on living surfaces. Hydrobiologia, 461, 37–40. https://doi.org/10.1023/A:1012756913566
dc.relationArregui, L., Ayala, M., Gómez-Gil, X., Gutiérrez-Soto, G., Hernández-Luna, C. E., Herrera De Los Santos, M., Levin, L., Rojo-Domínguez, A., Romero-Martínez, D., Saparrat, M. C. N., Trujillo-Roldán, M. A., & Valdez-Cruz, N. A. (2019). Laccases: structure, function, and potential application in water bioremediation. Microbial Cell Factories, 18(1), 1–33. https://doi.org/10.1186/s12934-019-1248-0
dc.relationAsina, F., Brzonova, I., Voeller, K., Kozliak, E., Kubátová, A., Yao, B., & Ji, Y. (2016). Biodegradation of lignin by fungi, bacteria and laccases. Bioresource Technology, 220, 414–424. https://doi.org/10.1016/j.biortech.2016.08.016
dc.relationAsina, F. N. U., Brzonova, I., Kozliak, E., Kubátová, A., & Ji, Y. (2017). Microbial treatment of industrial lignin: Successes, problems and challenges. Renewable and Sustainable Energy Reviews, 77(January 2016), 1179–1205. https://doi.org/10.1016/j.rser.2017.03.098
dc.relationAziz, R. K., Bartels, D., Best, A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., … Zagnitko, O. (2008). The RAST Server: Rapid annotations using subsystems technology. BMC Genomics, 9, 1–15. https://doi.org/10.1186/1471-2164-9-75
dc.relationBadel, S., Laroche, C., Gardarin, C., Petit, E., Bernardi, T., & Michaud, P. (2011). A new method to screen polysaccharide cleavage enzymes. Enzyme and Microbial Technology, 48(3), 248–252. https://doi.org/10.1016/j.enzmictec.2010.11.003
dc.relationBankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V., Sirotkin, A. V., Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: A New Genome Assembly Algorithm and Its Applications to Single-Cell Sequencing. Journal of Computational Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021
dc.relationBarbeyron, T., Lerat, Y., Sassi, J. F., le Panse, S., Helbert, W., & Collén, P. N. (2011). Persicivirga ulvanivorans sp. nov., a marine member of the family flavobacteriaceae that degrades ulvan from green algae. International Journal of Systematic and Evolutionary Microbiology, 61(8), 1899–1905. https://doi.org/10.1099/ijs.0.024489-0
dc.relationBeloqui, A., Pita, M., Polaina, J., Martínez-Arias, A., Golyshina, O. V., Zumárraga, M., Yakimov, M. M., García-Arellano, H., Alcalde, M., Fernández, V. M., Elborough, K., Andreu, J. M., Ballesteros, A., Plou, F. J., Timmis, K. N., Ferrer, M., & Golyshin, P. N. (2006). Novel polyphenol oxidase mined from a metagenome expression library of bovine rumen: Biochemical properties, structural analysis, and phylogenetic relationships. Journal of Biological Chemistry, 281(32), 22933–22942. https://doi.org/10.1074/jbc.M600577200
dc.relationBertani, G. (1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli. Journal of Bacteriology, 62(3), 293–300. https://doi.org/10.1128/JB.62.3.293-300.1951
dc.relationBeygmoradi, A., & Homaei, A. (2017). Marine microbes as a valuable resource for brand new industrial biocatalysts. Biocatalysis and Agricultural Biotechnology, 11(June), 131–152. https://doi.org/10.1016/j.bcab.2017.06.013
dc.relationBlum, M., Chang, H. Y., Chuguransky, S., Grego, T., Kandasaamy, S., Mitchell, A., Nuka, G., Paysan-Lafosse, T., Qureshi, M., Raj, S., Richardson, L., Salazar, G. A., Williams, L., Bork, P., Bridge, A., Gough, J., Haft, D. H., Letunic, I., Marchler-Bauer, A., … Finn, R. D. (2021). The InterPro protein families and domains database: 20 years on. Nucleic Acids Research, 49(D1), D344–D354. https://doi.org/10.1093/nar/gkaa977
dc.relationBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
dc.relationBosi, E., Donati, B., Galardini, M., Brunetti, S., Sagot, M. F., Lió, P., Crescenzi, P., Fani, R., & Fondi, M. (2015). MeDuSa: A multi-draft based scaffolder. Bioinformatics, 31(15), 2443–2451. https://doi.org/10.1093/bioinformatics/btv171
dc.relationBožič, M., Gorgieva, S., & Kokol, V. (2012). Homogeneous and heterogeneous methods for laccase-mediated functionalization of chitosan by tannic acid and quercetin. Carbohydrate Polymers, 89(3), 854–864. https://doi.org/10.1016/j.carbpol.2012.04.021
dc.relationBrander, S., Mikkelsen, J. D., & Kepp, K. P. (2014). Characterization of an alkali- and halide-resistant laccase expressed in E. coli: CotA from Bacillus clausii. PLoS ONE, 9(6). https://doi.org/10.1371/journal.pone.0099402
dc.relationBrander, S., Mikkelsen, J. D., & Kepp, K. P. (2015). TtMCO: A highly thermostable laccase-like multicopper oxidase from the thermophilic Thermobaculum terrenum. Journal of Molecular Catalysis B: Enzymatic, 112, 59–65. https://doi.org/10.1016/j.molcatb.2014.12.002
dc.relationBurke, C., Thomas, T., Lewis, M., Steinberg, P., & Kjelleberg, S. (2011). Composition, uniqueness and variability of the epiphytic bacterial community of the green alga Ulva australis. ISME Journal, 5(4), 590–600. https://doi.org/10.1038/ismej.2010.164
dc.relationCabanettes, F., & Klopp, C. (2018). D-GENIES: Dot plot large genomes in an interactive, efficient and simple way. PeerJ, 2018(6), 0–8. https://doi.org/10.7717/peerj.4958
dc.relationCappuccino, J. G., & Sherman, N. (2014). MICROBIOLOGY: A L A B O R A T O R Y M A N U A L. In Pearson Education, Inc. (13th ed., Vol. 21). https://doi.org/10.1016/j.fm.2004.01.008
dc.relationCastelar, B., Reis, R. P., & dos Santos Calheiros, A. C. (2014). Ulva lactuca and U. flexuosa (Chlorophyta, Ulvophyceae) cultivation in Brazilian tropical waters: Recruitment, growth, and ulvan yield. Journal of Applied Phycology, 26(5), 1989–1999. https://doi.org/10.1007/s10811-014-0329-z
dc.relationChandan Jain, S., Sivakumar, A. J., & Malaiyarasa Pandian, P. (2013). Surface associated bacteria of marine algae in Kovalam beach, Chennai, had screened for its antifouling activity. Indian Journal of Marine Sciences, 42(4), 498–502.
dc.relationChandra, R., & Chowdhary, P. (2015). Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environmental Sciences: Processes and Impacts, 17(2), 326–342. https://doi.org/10.1039/c4em00627e
dc.relationChaturvedi, S., Chandra, R., & Rai, V. (2006). Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecological Engineering, 27(3), 202–207. https://doi.org/10.1016/j.ecoleng.2006.02.008
dc.relationChauhan, P. S., & Jha, B. (2018). Pilot scale production of extracellular thermo-alkali stable laccase from Pseudomonas sp. S2 using agro waste and its application in organophosphorous pesticides degradation. Journal of Chemical Technology & Biotechnology, 93(4), 1022–1030. https://doi.org/10.1002/jctb.5454
dc.relationChi, Y., Li, H., Wang, P., Du, C., Ye, H., Zuo, S., Guan, H., & Wang, P. (2020). Structural characterization of ulvan extracted from Ulva clathrata assisted by an ulvan lyase. Carbohydrate Polymers, 229(October), 115497. https://doi.org/10.1016/j.carbpol.2019.115497
dc.relationChikhi, R., & Medvedev, P. (2014). Informed and automated k-mer size selection for genome assembly. Bioinformatics, 30(1), 31–37. https://doi.org/10.1093/bioinformatics/btt310
dc.relationCollén, P. N., Jeudy, A., Sassi, J. F., Groisillier, A., Czjzek, M., Coutinho, P. M., & Helbert, W. (2014). A novel unsaturated β-glucuronyl hydrolase involved in ulvan degradation unveils the versatility of stereochemistry requirements in family GH105. Journal of Biological Chemistry, 289(9), 6199–6211. https://doi.org/10.1074/jbc.M113.537480
dc.relationCollen, P. N., Sassi, J. F., Rogniaux, H., Marfaing, H., & Helbert, W. (2011). Ulvan lyases isolated from the flavobacteria Persicivirga ulvanivorans Are the first members of a new polysaccharide lyase family. Journal of Biological Chemistry, 286(49), 42063–42071. https://doi.org/10.1074/jbc.M111.271825
dc.relationComba González, N. B., Montoya Castaño, D., & Montaña Lara, J. S. (2021). Genome sequence of the epiphytic bacteria Bacillus altitudinis strain 19_A, isolated from the marine macroalga Ulva lactuca. Biotechnology Reports, 30, 17–21. https://doi.org/10.1016/j.btre.2021.e00634
dc.relationComba González, N. B., Niño Corredor, A. N., López Kleine, L., & Montoya Castaño, D. (2021). Temporal Changes of the Epiphytic Bacteria Community From the Marine Macroalga Ulva lactuca (Santa Marta, Colombian-Caribbean). Current Microbiology, 78(2), 534–543. https://doi.org/10.1007/s00284-020-02302-x
dc.relationComba González, N., Ramírez Hoyos, M., López Kleine, L., & Montoya Castaño, D. (2018). Production of enzymes and siderophores by epiphytic bacteria isolated from the marine macroalga Ulva lactuca. Aquatic Biology, 27, 107–118. https://doi.org/10.3354/ab00700
dc.relationCutright, T. J., & Lee, S. (1994). Remediation of PAH-contaminated soil using achromobacter sp. Energy Sources, 16(2), 279–287. https://doi.org/10.1080/00908319408909078
dc.relationde Oliveira Veras, A. A., da Silva, M. L., Gomes, J. C. M., Dias, L. M., de Sá, P. C. G., Alves, J. T. C., Castro, W., Miranda, F., Kazuo, E., Marinho, D., Rodrigues, M., Freire, M., Zahlouth, R., Renan, W., Lopes, T. S., Matté, M. H., da Silva Mayer, C. C., de Almeida Vasconcelos Barboni, S., Matté, G. R., … Ramos, R. T. J. (2015). Draft Genome Sequences of Vibrio fluvialis Strains 560 and 539, Isolated from Environmental Samples. Genome Announcements, 3(1), 3–4. https://doi.org/10.1128/genomeA.01344-14
dc.relationDe Poulpiquet, A., Ciaccafava, A., Gadiou, R., Gounel, S., Giudici-Orticoni, M. T., Mano, N., & Lojou, E. (2014). Design of a H2/O2 biofuel cell based on thermostable enzymes. Electrochemistry Communications, 42, 72–74. https://doi.org/10.1016/j.elecom.2014.02.012
dc.relationDe Vrind, J. P. M., Brouwers, G. J., Corstjens, P. L. A. M., Den Dulk, J., & De Vrind-De Jong, E. W. (1998). The cytochrome c maturation operon is involved in manganese oxidation in Pseudomonas putida GB-1. Applied and Environmental Microbiology, 64(10), 3556–3562. https://doi.org/10.1128/aem.64.10.3556-3562.1998
dc.relationDebnath, R., & Saha, T. (2020). An insight into the production strategies and applications of the ligninolytic enzyme laccase from bacteria and fungi. Biocatalysis and Agricultural Biotechnology, 26(May), 101645. https://doi.org/10.1016/j.bcab.2020.101645
dc.relationDemina, N., & Lysenko, S. (1996). Collagenolytic enzymes synthesized by microorganisms. Mikrobiologiia, 65, 293–304.
dc.relationDepartamento de Magdalena. (2015). PLAN Y ACUERDO ESTRATÉGICO DEPARTAMENTAL DE CIENCIA, TECNOLOGÍA E INNOVACIÓN. https://www.colciencias.gov.co/sites/default/files/upload/paginas/paed-magdalena.pdf
dc.relationDEPARTAMENTO NACIONAL DE PLANEACIÓN. (2011). Documento Conpes 3697 Dnp De 2011. Gobierno Nacional de Colombia. http://icbf.gov.co/cargues/avance/docs/conpes_dnp_3697_2011.htm
dc.relationDhiman, K., & Shirkot, P. (2018). Bioprospecting and characterization of laccase producing bacteria from paddy fields of Himachal Pradesh. 56(May), 334–341. http://nopr.niscair.res.in/handle/123456789/44280
dc.relationDohm, J. C., Lottaz, C., Borodina, T., & Himmelbauer, H. (2008). Substantial biases in ultra-short read data sets from high-throughput DNA sequencing. Nucleic Acids Research, 36(16). https://doi.org/10.1093/nar/gkn425
dc.relationDominguez, H., & Loret, E. P. (2019). Ulva lactuca, A Source of Troubles and Potential Riches. Marine Drugs, 17(6), 357. https://doi.org/10.3390/md17060357
dc.relationEgan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., & Thomas, T. (2012). The seaweed holobiont: Understanding seaweed-bacteria interactions. FEMS Microbiology Reviews, 37(3), 462–476. https://doi.org/10.1111/1574-6976.12011
dc.relationEgan, S., Harder, T., Burke, C., Steinberg, P., Kjelleberg, S., & Thomas, T. (2013). The seaweed holobiont: Understanding seaweed-bacteria interactions. In FEMS Microbiology Reviews (pp. 462–476). Blackwell Publishing Ltd. https://doi.org/10.1111/1574-6976.12011
dc.relationErmakova, I. T., Kiseleva, N. I., Shushkova, T., Zharikov, M., Zharikov, G. A., & Leontievsky, A. A. (2010). Bioremediation of glyphosate-contaminated soils. Applied Microbiology and Biotechnology, 88(2), 585–594. https://doi.org/10.1007/s00253-010-2775-0
dc.relationFletcher, R. L., & Callow, M. E. (1992). The settlement, attachment and establishment of marine algal spores. British Phycological Journal, 27(3), 303–329. https://doi.org/10.1080/00071619200650281
dc.relationForan, E., Buravenkov, V., Kopel, M., Mizrahi, N., Shoshani, S., Helbert, W., & Banin, E. (2017). Functional characterization of a novel “ulvan utilization loci” found in Alteromonas sp. LOR genome. Algal Research, 25(April), 39–46. https://doi.org/10.1016/j.algal.2017.04.036
dc.relationGalperin, M. Y., Wolf, Y. I., Makarova, K. S., Alvarez, R. V., Landsman, D., & Koonin, E. V. (2021). COG database update: Focus on microbial diversity, model organisms, and widespread pathogens. Nucleic Acids Research, 49(D1), D274–D281. https://doi.org/10.1093/nar/gkaa1018
dc.relationGarcía-Bayona, L., & Comstock, L. E. (2018). Bacterial antagonism in host-associated microbial communities. Science, 361(6408). https://doi.org/10.1126/science.aat2456
dc.relationGobierno de Colombia. (2019). Misión internacional de sabios para el avance de la Ciencia, la Tecnología y la Innovación. Pacto por la Ciencia, la Tecnología y la Innovación: Un sistema para construir el conocimiento del futuro. Mision de Sabios - Colombia 2019, 33. https://minciencias.gov.co/sites/default/files/libro_mision_de_sabios_digital_1_2_0.pdf
dc.relationGong, S., Park, C., Choi, H., Ko, J., Jang, I., Lee, J., Bolser, D. M., Oh, D., Kim, D.-S., & Bhak, J. (2005). A protein domain interaction interface database: InterPare. BMC Bioinformatics, 6(1), 207. https://doi.org/10.1186/1471-2105-6-207
dc.relationGruskiene, R., Kavleiskaja, T., Staneviciene, R., Kikionis, S., & Ioannou, E. (2021). Nisin-Loaded Ulvan Particles: Preparation and Characterization. 1–13.
dc.relationGunne, M. (2014). Identification and optimization of novel bacterial laccases. Thesis.
dc.relationGurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086
dc.relationGurpilhares, D. de B., Moreira, T. R., Bueno, J. da L., Cinelli, L. P., Mazzola, P. G., Pessoa, A., & Sette, L. D. (2016). “Algae’s sulfated polysaccharides modifications: Potential use of microbial enzymes.” Process Biochemistry, 51(8), 989–998. https://doi.org/10.1016/j.procbio.2016.04.020
dc.relationHarris, A. (2017). Laccase: Applications, Investigations and Insights. Nova Science Publishers, Incorporated. https://books.google.com.co/books?id=oQ2FvgAACAAJ
dc.relationHe, C., Muramatsu, H., Kato, S. I., & Ohnishi, K. (2017). Characterization of an Alteromonas long-type ulvan lyase involved in the degradation of ulvan extracted from Ulva ohnoi. Bioscience, Biotechnology and Bioche
dc.relationHengst, M. B., Andrade, S., González, B., & Correa, J. A. (2010). Changes in Epiphytic Bacterial Communities of Intertidal Seaweeds Modulated by Host, Temporality, and Copper Enrichment. Microbial Ecology, 60(2), 282–290. https://doi.org/10.1007/s00248-010-9647-0
dc.relationHong, Y. H., Ye, C. C., Zhou, Q. Z., Wu, X. Y., Yuan, J. P., Peng, J., Deng, H., & Wang, J. H. (2017). Genome sequencing reveals the potential of Achromobacter sp. HZ01 for bioremediation. Frontiers in Microbiology, 8(AUG), 1–14. https://doi.org/10.3389/fmicb.2017.01507
dc.relationHoward, D. H. (1956). The preservation of bacteria by freezing in glycerol broth. Journal of Bacteriology, 71(5), 625. https://doi.org/10.1128/jb.71.5.625-625.1956
dc.relationHuerta-Cepas, J., Forslund, K., Coelho, L. P., Szklarczyk, D., Jensen, L. J., von Mering, C., & Bork, P. (2017). Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper. Molecular Biology and Evolution, 34(8), 2115–2122. https://doi.org/10.1093/molbev/msx148
dc.relationJakobsen, T. H., Hansen, M. A., Jensen, P. Ø., Hansen, L., Riber, L., Cockburn, A., Kolpen, M., Rønne Hansen, C., Ridderberg, W., Eickhardt, S., Hansen, M., Kerpedjiev, P., Alhede, M., Qvortrup, K., Burmølle, M., Moser, C., Kühl, M., Ciofu, O., Givskov, M., … Bjarnsholt, T. (2013). Complete Genome Sequence of the Cystic Fibrosis Pathogen Achromobacter xylosoxidans NH44784-1996 Complies with Important Pathogenic Phenotypes. PLoS ONE, 8(7), 8–11. https://doi.org/10.1371/journal.pone.0068484
dc.relationJanusz, G., Pawlik, A., Świderska-Burek, U., Polak, J., Sulej, J., Jarosz-Wilkołazka, A., & Paszczyński, A. (2020). Laccase properties, physiological functions, and evolution. International Journal of Molecular Sciences, 21(3). https://doi.org/10.3390/ijms21030966
dc.relationJi, Y., & Gao, K. (2021). Effects of climate change factors on marine macroalgae: A review. In Advances in Marine Biology (1st ed., Vol. 88). Elsevier Ltd. https://doi.org/10.1016/bs.amb.2020.11.001
dc.relationJiao, X., Li, G., Wang, Y., Nie, F., Cheng, X., Abdullah, M., Lin, Y., & Cai, Y. (2018). Systematic analysis of the pleurotus ostreatus laccase gene (PoLac) Family and functional characterization of PoLac2 involved in the degradation of cotton-straw lignin. Molecules, 23(4). https://doi.org/10.3390/molecules23040880
dc.relationJoint, I., Mühling, M., & Querellou, J. (2010). Culturing marine bacteria - An essential prerequisite for biodiscovery: Minireview. Microbial Biotechnology, 3(5), 564–575. https://doi.org/10.1111/j.1751-7915.2010.00188.x
dc.relationKennedy, J., Marchesi, J. R., & Dobson, A. D. W. (2008). Marine metagenomics: Strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microbial Cell Factories, 7, 1–8. https://doi.org/10.1186/1475-2859-7-27
dc.relationKidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. K. (2019). Ulvan: A systematic review of extraction, composition and function. Algal Research, 39(September 2018), 101422. https://doi.org/10.1016/j.algal.2019.101422
dc.relationKiiskinen, L. L., Rättö, M., & Kruus, K. (2004). Screening for novel laccase-producing microbes. Journal of Applied Microbiology, 97(3), 640–646. https://doi.org/10.1111/j.1365-2672.2004.02348.x
dc.relationKim, H. W., Lee, S. Y., Park, H., & Jeon, S. J. (2015). Expression, refolding, and characterization of a small laccase from Thermus thermophilus HJ6. Protein Expression and Purification, 114(June), 37–43. https://doi.org/10.1016/j.pep.2015.06.004
dc.relationKishimoto, K. (2008). European Patent Application. EP Patent 0879946A2, 1(19), 1–14. http://info.sipcc.net/files/patent/fulltext/EP/200605/EP2099194A1/EP2099194A1.PDF
dc.relationKonasani, V. R., Jin, C., Karlsson, N. G., & Albers, E. (2018). A novel ulvan lyase family with broad-spectrum activity from the ulvan utilisation loci of Formosa agariphila KMM 3901. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-018-32922-0
dc.relationKopel, M., Helbert, W., Belnik, Y., Buravenkov, V., Herman, A., & Banin, E. (2016). New family of ulvan lyases identified in three isolates from the alteromonadales order. Journal of Biological Chemistry, 291(11), 5871–5878. https://doi.org/10.1074/jbc.M115.673947
dc.relationKudanga, T., Nemadziva, B., & Le Roes-Hill, M. (2017). Laccase catalysis for the synthesis of bioactive compounds. Applied Microbiology and Biotechnology, 101(1), 13–33. https://doi.org/10.1007/s00253-016-7987-5
dc.relationLee, I., Ouk Kim, Y., Park, S.-C., & Chun, J. (2016). OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology, 66(2), 1100–1103. https://doi.org/10.1099/ijsem.0.000760
dc.relationLi, Q., Hu, F., Zhu, B., Ni, F., & Yao, Z. (2020). Insights into ulvan lyase: review of source, biochemical characteristics, structure and catalytic mechanism. Critical Reviews in Biotechnology, 40(3), 432–441. https://doi.org/10.1080/07388551.2020.1723486
dc.relationLionetti, V. (2015). PECTOPLATE: The simultaneous phenotyping of pectin methylesterases, pectinases, and oligogalacturonides in plants during biotic stresses. Frontiers in Plant Science, 6(MAY), 1–8. https://doi.org/10.3389/fpls.2015.00331
dc.relationLončar, N., Božić, N., & Vujčić, Z. (2016). Expression and characterization of a thermostable organic solvent-tolerant laccase from Bacillus licheniformis ATCC 9945a. Journal of Molecular Catalysis B: Enzymatic, 134, 390–395. https://doi.org/10.1016/j.molcatb.2016.06.005
dc.relationLončar, N., Gligorijević, N., Božić, N., & Vujčić, Z. (2014). Congo red degrading laccases from Bacillus amyloliquefaciens strains isolated from salt spring in Serbia. International Biodeterioration and Biodegradation, 91, 18–23. https://doi.org/10.1016/j.ibiod.2014.03.008
dc.relationLucas-Elío, P., Solano, F., & Sanchez-Amat, A. (2002). Regulation of polyphenol oxidase activities and melanin synthesis in Marinomonas mediterranea: Identification of ppoS, a gene encoding a sensor histidine kinase. Microbiology, 148(8), 2457–2466. https://doi.org/10.1099/00221287-148-8-2457
dc.relationLynch, M., & Marinov, G. K. (2015). The bioenergetic costs of a gene. Proceedings of the National Academy of Sciences of the United States of America, 112(51), 15690–15695. https://doi.org/10.1073/pnas.1514974112
dc.relationMacwilliams, M. P., & Liao, M. (2006). Luria Broth ( LB ) and Luria Agar ( LA ) Media and Their Uses Protocol Resource Type : Publication Date : Authors. American Society for Microbiology, October 2006, 7–9.
dc.relationMaharsiwi, W., Astuti, R. I., Meryandini, A., & Wahyudi, A. T. (2020). Screening and characterization of sponge-associated bacteria from Seribu Island, Indonesia producing cellulase and laccase enzymes. Biodiversitas, 21(3), 975–981. https://doi.org/10.13057/biodiv/d210317
dc.relationMann, A. J., Hahnke, R. L., Huang, S., Werner, J., Xing, P., Barbeyron, T., Huettel, B., Stüber, K., Reinhardt, R., Harder, J., Glöckner, F. O., Amann, R. I., & Teeling, H. (2013). The genome of the alga-associated marine flavobacterium Formosa agariphila KMM 3901T reveals a broad potential for degradation of algal polysaccharides. Applied and Environmental Microbiology, 79(21), 6813–6822. https://doi.org/10.1128/AEM.01937-13
dc.relationMarchler-Bauer, A., Derbyshire, M. K., Gonzales, N. R., Lu, S., Chitsaz, F., Geer, L. Y., Geer, R. C., He, J., Gwadz, M., Hurwitz, D. I., Lanczycki, C. J., Lu, F., Marchler, G. H., Song, J. S., Thanki, N., Wang, Z., Yamashita, R. A., Zhang, D., Zheng, C., & Bryant, S. H. (2015). CDD: NCBI’s conserved domain database. Nucleic Acids Research, 43(D1), D222–D226. https://doi.org/10.1093/nar/gku1221
dc.relationMartin, M., Portetelle, D., Michel, G., & Vandenbol, M. (2014). Microorganisms living on macroalgae: Diversity, interactions, and biotechnological applications. Applied Microbiology and Biotechnology, 98(7), 2917–2935. https://doi.org/10.1007/s00253-014-5557-2
dc.relationMoghadam, M. S., Albersmeier, A., Winkler, A., Cimmino, L., Rise, K., Hohmann-Marriott, M. F., Kalinowski, J., Rückert, C., Wentzel, A., & Lale, R. (2016). Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics, 17(1), 1–14. https://doi.org/10.1186/s12864-016-2445-4
dc.relationMoral, A., Aguado, R., Castelló, R., Tijero, A., & Ballesteros, M. (2019). Potential Use of green alga Ulva sp. for papermaking. BioResources, 14(3), 6851–6862.
dc.relationMoreno, A. D., Ibarra, D., Eugenio, M. E., & Tomás-Pejó, E. (2020). Laccases as versatile enzymes: from industrial uses to novel applications. Journal of Chemical Technology and Biotechnology, 95(3), 481–494. https://doi.org/10.1002/jctb.6224
dc.relationNeal-McKinney, J. M., Liu, K. C., Lock, C. M., Wu, W.-H., & Hu, J. (2021). Comparison of MiSeq, MinION, and hybrid genome sequencing for analysis of Campylobacter jejuni. Scientific Reports, 11(1), 5676. https://doi.org/10.1038/s41598-021-84956-6
dc.relationNeifar, M., Chouchane, H., Mahjoubi, M., Jaouani, A., & Cherif, A. (2016a). Pseudomonas extremorientalis BU118: a new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech, 6(1), 1–9. https://doi.org/10.1007/s13205-016-0425-7
dc.relationNeifar, M., Chouchane, H., Mahjoubi, M., Jaouani, A., & Cherif, A. (2016b). Pseudomonas extremorientalis BU118: a new salt-tolerant laccase-secreting bacterium with biotechnological potential in textile azo dye decolourization. 3 Biotech, 6(1). https://doi.org/10.1007/s13205-016-0425-7
dc.relationNg, S. P. (2012). The Heavy Metal Tolerant Soil Bacterium Achromobacter sp. AO22 Contains a Unique Copper Homeostasis Locus and Two mer Operons. Journal of Microbiology and Biotechnology, 22(6), 742–753. https://doi.org/10.4014/jmb.1111.11042
dc.relationOkino, L. K., Machado, K. M. G., Fabris, C., & Bononi, V. L. R. (2000). Ligninolytic activity of tropical rainforest basidiomycetes. World Journal of Microbiology and Biotechnology, 16(8–9), 889–893. https://doi.org/10.1023/A:1008983616033
dc.relationOróstica, M., Calderon, M. S., Boo, S. M., Sandoval, C., & Edding, M. (2017). A new record of Ulva australis (Ulvaceae, Chlorophyta) from northern Chile. Revista de Biologia Marina y Oceanografia, 52(3), 621–630. https://doi.org/10.4067/s0718-19572017000300018
dc.relationPangestuti, R., & Kim, S.-K. (2015). Seaweed proteins, peptides, and amino acids. In Seaweed Sustainability. https://doi.org/10.1016/B978-0-12-418697-2.00007-6
dc.relationPilalis, E., Ladoukakis, E., Kolisis, F. N., & Chatziioannou, A. (2012). A Galaxy workflow for the functional annotation of metagenomic samples. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7297 LNCS, 247–253. https://doi.org/10.1007/978-3-642-30448-4_31
dc.relationPostma, P. R., Cerezo-Chinarro, O., Akkerman, R. J., Olivieri, G., Wijffels, R. H., Brandenburg, W. A., & Eppink, M. H. M. (2018). Biorefinery of the macroalgae Ulva lactuca: extraction of proteins and carbohydrates by mild disintegration. Journal of Applied Phycology, 30(2), 1281–1293. https://doi.org/10.1007/s10811-017-1319-8
dc.relationQin, H. M., Xu, P., Guo, Q., Cheng, X., Gao, D., Sun, D., Zhu, Z., & Lu, F. (2018). Biochemical characterization of a novel ulvan lyase from: Pseudoalteromonas sp. strain PLSV. RSC Advances, 8(5), 2610–2615. https://doi.org/10.1039/c7ra12294b
dc.relationRahimi, F., Tabarsa, M., & Rezaei, M. (2016). Ulvan from green algae Ulva intestinalis: optimization of ultrasound-assisted extraction and antioxidant activity. Journal of Applied Phycology, 28(5), 2979–2990. https://doi.org/10.1007/s10811-016-0824-5
dc.relationReis, A. C., Kroll, K., Gomila, M., Kolvenbach, B. A., Corvini, P. F. X., & Nunes, O. C. (2017). Complete Genome Sequence of Achromobacter denitrificans PR1. Genome Announcements, 5(31), 4–5. https://doi.org/10.1128/genomeA.00762-17
dc.relationReisky, L., Stanetty, C., Mihovilovic, M. D., Schweder, T., Hehemann, J. H., & Bornscheuer, U. T. (2018). Biochemical characterization of an ulvan lyase from the marine flavobacterium Formosa agariphila KMM 3901T. Applied Microbiology and Biotechnology, 102(16), 6987–6996. https://doi.org/10.1007/s00253-018-9142-y
dc.relationRichter, M., Rosselló-Móra, R., Oliver Glöckner, F., & Peplies, J. (2016). JSpeciesWS: a web server for prokaryotic species circumscription based on pairwise genome comparison. Bioinformatics, 32(6), 929–931. https://doi.org/10.1093/bioinformatics/btv681
dc.relationRodrigues, V., Onime, L., Huws, S., Odaneth, A., & Lali, A. (2017). Diversity of Ulvan and Cellulose Depolymerizing Bacteria Associated With the Green Macroalgae Ulva Spp. Journal of Applied Biotechnology & Bioengineering, 2(4), 136–142. https://doi.org/10.15406/jabb.2017.02.00037
dc.relationRuiz-Toquica, J. S., Comba-González, N. B., & Montoya-Castaño, D. (2020). Two possible candidate enzymes from Ulva lactuca-associated epiphytic bacteria obtained through PCR and functional evaluation. Universitas Scientiarum, 25(2), 247–275. https://doi.org/10.11144/Javeriana.SC25-2.tpce
dc.relationSanz-Sáez, I., Salazar, G., Sánchez, P., Lara, E., Royo-Llonch, M., Sà, E. L., Lucena, T., Pujalte, M. J., Vaqué, D., Duarte, C. M., Gasol, J. M., Pedrós-Alió, C., Sánchez, O., & Acinas, S. G. (2020). Diversity and distribution of marine heterotrophic bacteria from a large culture collection. BMC Microbiology, 20(1), 1–16. https://doi.org/10.1186/s12866-020-01884-7
dc.relationSchultz, M. P., Bendick, J. a, Holm, E. R., & Hertel, W. M. (2011). Economic impact of biofouling on a naval surface ship. Biofouling, 27(1), 87–98. https://doi.org/10.1080/08927014.2010.542809
dc.relationSegerman, B. (2020). The Most Frequently Used Sequencing Technologies and Assembly Methods in Different Time Segments of the Bacterial Surveillance and RefSeq Genome Databases. Frontiers in Cellular and Infection Microbiology, 10(October), 1–7. https://doi.org/10.3389/fcimb.2020.527102
dc.relationSims, D., Sudbery, I., Ilott, N. E., Heger, A., & Ponting, C. P. (2014). Sequencing depth and coverage: Key considerations in genomic analyses. Nature Reviews Genetics, 15(2), 121–132. https://doi.org/10.1038/nrg3642
dc.relationSingh, P., Bindi, C., & Arunika, G. (2017). Bacterial laccase : recent update on production , properties and industrial applications. 3 Biotech, 7(5), 1–20. https://doi.org/10.1007/s13205-017-0955-7
dc.relationStrnad, H., Ridl, J., Paces, J., Kolar, M., Vlcek, C., & Paces, V. (2011). Complete genome sequence of the haloaromatic acid-degrading bacterium achromobacter xylosoxidans A8. Journal of Bacteriology, 193(3), 791–792. https://doi.org/10.1128/JB.01299-10
dc.relationSudhakar, K., Mamat, R., Samykano, M., Azmi, W. H., Ishak, W. F. W., & Yusaf, T. (2018). An overview of marine macroalgae as bioresource. Renewable and Sustainable Energy Reviews, 91(May 2017), 165–179. https://doi.org/10.1016/j.rser.2018.03.100
dc.relationSýs, M., Metelka, R., Frangu, A., Vytřas, K., & Arbneshi, T. (2017). Electrochemical study of Trametes versicolor laccase compatibility to different polyphenolic substrates. Chemosensors, 5(1), 1–11. https://doi.org/10.3390/chemosensors5010009
dc.relationTheerachat, M., & Guieysse, D. (2018). Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-018-2829-9
dc.relationTran, T. T. Van, Truong, H. B., Tran, N. H. V., Quach, T. M. T., Nguyen, T. N., Bui, M. L., Yuguchi, Y., & Thanh, T. T. T. (2018). Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Natural Product Research, 32(19), 2291–2296. https://doi.org/10.1080/14786419.2017.1408098
dc.relationTrias, R., García-Lledó, A., Sánchez, N., López-Jurado, J. L., Hallin, S., & Bañeras, L. (2012). Abundance and composition of epiphytic bacterial and archaeal ammonia oxidizers of marine red and brown macroalgae. Applied and Environmental Microbiology, 78(2), 318–325. https://doi.org/10.1128/AEM.05904-11
dc.relationTrimble, W. L., Phung, L. T., Meyer, F., Silver, S., & Gilbert, J. A. (2012). Draft genome sequence of achromobacter piechaudii strain HLE. Journal of Bacteriology, 194(22), 6355. https://doi.org/10.1128/JB.01660-12
dc.relationTrivedi, N., Baghel, R. S., Bothwell, J., Gupta, V., Reddy, C. R. K., Lali, A. M., & Jha, B. (2016). An integrated process for the extraction of fuel and chemicals from marine macroalgal biomass. Scientific Reports, 6, 1–8. https://doi.org/10.1038/srep30728
dc.relationTsubaki, S., Oono, K., Hiraoka, M., Onda, A., & Mitani, T. (2016). Microwave-assisted hydrothermal extraction of sulfated polysaccharides from Ulva spp. and Monostroma latissimum. Food Chemistry, 210, 311–316. https://doi.org/10.1016/j.foodchem.2016.04.121
dc.relationTujula, N. A., Crocetti, G. R., Burke, C., Thomas, T., Holmström, C., & Kjelleberg, S. (2010). Variability and abundance of the epiphytic bacterial community associated with a green marine Ulvacean alga. ISME Journal, 4(2), 301–311. https://doi.org/10.1038/ismej.2009.107
dc.relationUlaganathan, T., Helbert, W., Kopel, M., Banin, E., & Cygler, M. (2018). Structure-function analyses of a PL24 family ulvan lyase reveal key features and suggest its catalytic mechanism. Journal of Biological Chemistry, 293(11), 4026–4036. https://doi.org/10.1074/jbc.RA117.001642
dc.relationUnuofin, J. O., Moubasher, H. A., Okoh, A. I., & Nwodo, U. U. (2019). Production of polyextremotolerant laccase by Achromobacter xylosoxidans HWN16 and Citrobacter freundii LLJ16. Biotechnology Reports, 22. https://doi.org/10.1016/j.btre.2019.e00337
dc.relationUnuofin, John O., Okoh, A. I., & Nwodo, U. U. (2019). Utilization of agroindustrial wastes for the production of laccase by Achromobacter xylosoxidans HWN16 and Bordetella bronchiseptica HSO16. Journal of Environmental Management, 231(October 2018), 222–231. https://doi.org/10.1016/j.jenvman.2018.10.016
dc.relationValdés, F. A., Gabriela Lobos, M., Díaz, P., & Sáez, C. A. (2018). Metal assessment and cellular accumulation dynamics in the green macroalga Ulva lactuca. Journal of Applied Phycology, 30(1), 663–671. https://doi.org/10.1007/s10811-017-1244-x
dc.relationvan der Loos, L. M., Eriksson, B. K., & Falcão Salles, J. (2019). The Macroalgal Holobiont in a Changing Sea. Trends in Microbiology, 27(7), 635–650. https://doi.org/10.1016/j.tim.2019.03.002
dc.relationVenkatesan, J., Lowe, B., Anil, S., Manivasagan, P., Kheraif, A. A. A., Kang, K. H., & Kim, S. K. (2017). Seaweed Polysaccharides Isolation, Biological and Biomedical Applications. Starch/Staerke, 67(5–6), 381–390. https://doi.org/10.1002/star.201400127
dc.relationWattam, A. R., Abraham, D., Dalay, O., Disz, T. L., Driscoll, T., Gabbard, J. L., Gillespie, J. J., Gough, R., Hix, D., Kenyon, R., MacHi, D., Mao, C., Nordberg, E. K., Olson, R., Overbeek, R., Pusch, G. D., Shukla, M., Schulman, J., Stevens, R. L., … Sobral, B. W. (2014). PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Research, 42(D1), 581–591. https://doi.org/10.1093/nar/gkt1099
dc.relationWichard, T., Charrier, B., Mineur, F., Bothwell, J. H., Clerck, O. De, & Coates, J. C. (2015). The green seaweed Ulva: a model system to study morphogenesis. Frontiers in Plant Science, 6(February), 1–9. https://doi.org/10.3389/fpls.2015.00072
dc.relationYaich, H., Amira, A. Ben, Abbes, F., Bouaziz, M., Besbes, S., Richel, A., Blecker, C., Attia, H., & Garna, H. (2017). Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast. International Journal of Biological Macromolecules, 105, 1430–1439. https://doi.org/10.1016/j.ijbiomac.2017.07.141
dc.relationYaich, H., Garna, H., Besbes, S., Barthélemy, J. P., Paquot, M., Blecker, C., & Attia, H. (2014). Impact of extraction procedures on the chemical, rheological and textural properties of ulvan from Ulva lactuca of Tunisia coast. Food Hydrocolloids, 40, 53–63. https://doi.org/10.1016/j.foodhyd.2014.02.002
dc.relationYi, H., & Chun, J. (2012). Unification of the genera Nonlabens, Persicivirga, Sandarakinotalea and Stenothermobacter into a single emended genus, Nonlabens, and description of Nonlabens agnitus sp. nov. Systematic and Applied Microbiology, 35(3), 150–155. https://doi.org/10.1016/j.syapm.2011.12.002
dc.relationZhang, Z., Sun, J., Guo, H., Wang, C., Fang, T., Rogers, M. J., He, J., & Wang, H. (2021). Anaerobic biodegradation of phenanthrene by a newly isolated nitrate-dependent Achromobacter denitrificans strain PheN1 and exploration of the biotransformation processes by metabolite and genome analyses. Environmental Microbiology, 23(2), 908–923. https://doi.org/10.1111/1462-2920.15201
dc.relationZhao, X., Qiao, L., & Wu, A. M. (2017). Effective extraction of Arabidopsis adherent seed mucilage by ultrasonic treatment. Scientific Reports, 7(January). https://doi.org/10.1038/srep40672
dc.relationZhong, C., Nelson, M., Cao, G., Sadowsky, M. J., & Yan, T. (2018). Complete Genome Sequence of the Hydrocarbon-Degrading Strain Achromobacter sp. B7, Isolated during Petroleum Hydrocarbon Bioremediation in the Valparaiso Region, Chile Valentina. 4–5.
dc.relationZinger, L., Amaral-Zettler, L. A., Fuhrman, J. A., Horner-Devine, M. C., Huse, S. M., Welch, D. B. M., Martiny, J. B. H., Sogin, M., Boetius, A., & Ramette, A. (2011). Global patterns of bacterial beta-diversity in seafloor and seawater ecosystems. PLoS ONE, 6(9), 1–11. https://doi.org/10.1371/journal.pone.0024570
dc.relationZobell, C. E. (1941). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. Journal of Marine Research, 203.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de la actividad enzimática (ulvano-liasa y lacasa) en bacterias epífitas de macroalgas de la especie Ulva lactuca, presentes en el litoral rocoso “La punta de la loma” (Santa Marta - Colombia)
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución