dc.contributorChanchí Golondrino, José Christian
dc.creatorDuque Sierra, José Luis
dc.date.accessioned2021-01-18T21:53:36Z
dc.date.accessioned2022-09-21T17:32:12Z
dc.date.available2021-01-18T21:53:36Z
dc.date.available2022-09-21T17:32:12Z
dc.date.created2021-01-18T21:53:36Z
dc.date.issued2020
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78808
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3401429
dc.description.abstractEn esta tesis un disipador sísmico aplicable a uniones viga columna metálicas resistentes a momento y denominado disipador de fricción rotacional es propuesto. Un modelo simple para predecir el comportamiento histerético del disipador también es propuesto. El disipador de fricción rotacional está conformado por dos platinas fijas, tres platinas con ranuras circulares denominadas platinas ranuradas y dos discos circulares. El disipador es ensamblado colocando cada platina fija como cara exterior del disipador, el grupo de las tres platinas ranuradas entre las platinas fijas y cada disco en cada interfaz entre platinas fija y ranurada. Este arreglo de platinas es unido con un pasador central y pernos de alta resistencia. Un total de 24 disipadores fueron ensamblados con pernos de alta resistencia A325 de diámetro 16mm – 22mm, platinas fijas, platinas ranuradas y pasadores centrales de Acero A36 y con discos de Aluminio, Acero A36, Cobre, y Fleje templado. Los disipadores fueron ensayados cuasi-estáticamente entre dos y cuatro veces, sin re-tensionamiento o cambio de pernos, sin cambio de discos o platina ranuradas y con un tiempo entre ensayos de 40 minutos. Los resultados muestran que el ciclo de histéresis del disipador es aproximadamente rectangular. La fuerza definida por la meseta del ciclo de histéresis denominada fuerza de rotación del disipador es desarrollada cuando las platinas ranuradas son forzadas a rotar alrededor del pasador central y de los pernos de alta resistencia superando la fricción inducida por los pernos de alta resistencia en las interfaces entre las platinas ranuradas y los discos. La repetibilidad de la fuerza de rotación es baja para discos de dureza similar a la dureza de la las platinas ranuradas y se incrementa con el aumento de la dureza de los discos respecto a la dureza de las platinas ranuradas. Incrementos en la dureza de los discos también generaron reducciones en la fuerza de rotación. Los resultados también muestran que la fuerza de rotación se incrementa con la fuerza de ensamblaje de los pernos y se reduce entre corridas debido a la pérdida de tensión en los pernos como consecuencia de la degradación de las interfaces entre las platinas ranuradas y los discos. Esta reducción en resistencia entre corridas disminuye con el aumento de la dureza de los discos respecto a la dureza de las platinas ranuradas. El modelo propuesto muestra que los ángulos asociados a las rigideces de carga y descarga del ciclo de histéresis pueden ser asumidos de 90° logrando aproximaciones sobre los resultados experimentales del 78% - 94%. El modelo también muestra que la fuerza de rotación del disipador puede ser calculada asumiendo que el disipador se comporta como una conexión tipo embrague y usando coeficientes de fricción definidos experimentalmente para las interfaces de rotación entre las platinas ranuradas y los discos. Aproximaciones entre la fuerza de rotación promedio experimental y la calculada con el modelo propuesto de 89% – 115% fueron obtenidas. El modelo propuesto también permite estimar la fuerza máxima y mínima de rotación del disipador usando coeficientes de sub-resistencia y sobre-resistencia definidos experimentalmente y que tienen en cuenta la variación de la fuerza de ensamblaje de los pernos, la variación del coeficiente de fricción y la degradación de las interfaces de rotación entre las platinas ranuradas y los discos.
dc.description.abstractIn this thesis, a seismic dissipator applicable to moment-resistant metallic column beam joints and called a rotational friction dissipator is proposed. A simple model to predict the hysterical behavior of the dissipator is also proposed. The rotational friction dissipator is made up of two fixed plates, three plates with circular slotted called slotted plates and two circular discs. The dissipator is assembled by placing each fixed plate as the outer face of the dissipator, the group of the three slotted plates between the fixed plates and each disc at each interface between the fixed and slotted plates. This set of plates is attached with a center pin and high-strength bolts. A total of 24 dissipator were assembled with 16mm - 22mm diameter A325 high-strength bolts, Fixed plates, slotted plates and central pin in Steel A36 and with discs in Aluminum, Steel A36, Copper, and Bisalloy. The dissipators were tested quasi-statically between two and four times, without re-tensioning or change of bolts, without change of discs or slotted plate and with a time between tests of 40 minutes. The results show that the hysteresis cyclic of dissipator is approximately rectangular. The force defined by the plateau of the hysteresis cycle called the dissipator rotational force is developed when the slotted plates are forced to rotate around the center pin and the high-strength bolts overcoming the friction induced by the high-strength bolts at the interfaces between slotted plates and discs. The repeatability of the rotational force is low for discs of similar hardness to the hardness of the slotted plates and increases with the increase of the hardness of the discs in retation to the hardness of the slotted plates. Increases in the hardness of the discs also generated reductions in the rotational force. The results also show that the rotational force increases with the bolt assembly force and decreases between runs due to the loss of tension in the bolts as This reduction in resistance between runs decreases as the hardness of the discs increases relative to the hardness of the slotted plates. The proposed model shows that the angles associated with the loading and unloading stiffnesses of the hysteresis cycle can be assumed to be 90 °achieving approximations on the experimental results of 78% - 94%. The model also shows that the dissipator rotational force can be calculated assuming that the dissipator behaves like a clutch-type connection and using experimentally defined friction coefficients for the rotational interfaces between the slotted plates and the discs. Approximations between the experimental average rotational force and that calculated with the proposed model of 89% - 115% were obtained. The proposed model also allows estimating the maximum and minimum rotational force of the dissipator using coefficients of under-resistance and over-resistance defined experimentally and that take into account the variation of the bolt assembly force, the variation of the friction coefficient and degradation of the rotational interfaces between slotted plates and discs.
dc.languagespa
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Estructuras
dc.publisherDepartamento de Ingeniería Civil
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relation[1] Bruneau, M., Uang, C., and Whittaker, A. (1998). “Ductile design of steel structures” Mcgraw – Hill Companies. Unite States of American. [2] Clifton, C.G., Bruneau, M., MacRae, G., Leon, R., and Fussell, A. (2010). “Steel Structures Damage From The Christchurch Earthquake Series of 2010 and 2011” Bulletin of The New Zealand Society For Earthquake Engineering, Vol. 44, No. 4, December 2011. [3] Buchanan, A.H., Bull, D., Dhakal, R., MacRae, G., Palermo, A., and Pampanin, S. (2011). “Base Isolation and Damage-Resistant Technologies for Improved Seismic Performance of Buildings” A report written for the Royal Commission of Inquiry into Building Failure Caused by the Canterbury Earthquakes. [4] Salmon, C., Johnson, J., and Malhas, F. (2008). “Steel Structures: Design and Behavior” Addison-Wesley Educational Publishers, Incorporated. [5] Chanchí, J.C., MacRae, G.A., Chase, J.G., Rodgers, G.W., and Clifton, G.C. (2012). “Quantifying the seismic sustainability of steel framed structures”. STESSA 2012, Chile.2 [6] Constantinou, M.C., Soong, T.T., and Dargush, G. F. (1998) “Passive Energy Dissipation Systems for Structural Design and Retrofit” MCEER monograph. [7] Clifton, G.C. (2005). “Semi-Rigid Joints for Moments Resisting Steel Framed Seismic Resisting Systems”. Published PhD Thesis, Department of Civil and Environmental Engineering. University of Auckland – New Zealand. [8] MacRae, G.A., Clifton, C.G., MacKinven, H., Mago, N., Butterworth, J., and Pampanin, S. (2010). “The Sliding Hinge Joint Moment Connection”. Bulletin of the New Zealand Society for Earthquake Engineering. Vol.43, No 3, September. [9] Rodgers, G., Denmead, C S., Leach, N.C., Chase, J. G., and Mander, J. (2006). “Experimental development and analysis of a high force/volume extrusion damper”. 2006 NZSEE Conference. [10] Mander, T, J., Rodgers, G.W., Chase, J.G., Mander, J, B., and MacRae, G.A., (2009). “Damage Avoidance Design Steel Beam-Column Moment Connection Using High-Force-To-Volume Dissipators”. Journal of Structural Engineering. [11] MacRae, G., Chanchí, J.C., and Trevor, Y. (2014). “What Structural system is Best?”. Auckland, New Zealand: Australasian Structural Engineering Conference (ASEC), 9-11 Jul 2014. PN:177. [12] Grigorian, C.E., and Popov, E.P. (1994). “Experimental and Analytical Studies of Steel Connections and Energy Dissipaters”. Report UCB/EERC-95/13, Engineering Research Center. San Francisco – United States. [13] Xie, R., Chanchí, J.C., MacRae, G.A., and Clifton, C.G. (2018) “Braced Frame Symmetrical and Asymmetrical Friction Connection Performance”. Key Engineering Materials- Behaviour of Steel Structures in Seismic Areas – STESSA 2018 New Zeland [14] Khoo, H.H., Seal, C., Clifton, C.G., Butterworth, J., and MacRae, G. A. (2013). “Behaviour of the Bottom and Top Flange Plates in the Sliding Hinge Joint”. Bulletin of the New Zealand Society for Earthquake Engineering. Vol.46, No 1, March. [15] Tremblay, R. (1993). “Seismic Behaviour and Design of Friction Concentrically Braced Frames for Steel Buildings”. Unpublished PhD Thesis, Department of Civil Engineering. The University of British Columbia. Vancouver – Canada. [16] FitzGerald, T. F., Anagnos, T., Goodson, M., and Zsutty, T. (1989). “Slotted Bolted Connections in Aseismic Design for Concentrically Braced Connections”. Earthquake Spectra: May 1989, Vol. 5, No. 2, pp. 383-391. https://doi.org/10.1193/1.1585528 [17] Specifications and approved by the Research Council on Structural Connections. (2004). “Specification for structural joints using ASTM A325 or A490 bolt”. American Institute of Steel Construction, Inc. [18] Popov V. (2010). “Contact mechanics and friction”. Springer-Verlag Berlin Heidelberg – Germany [19] Chanchí, J,C., Moreno, B., y Restrepo, M. (2019). “Efectos de la superficie en obra y corrosión sobre el coeficiente de fricción estático en materiales para disipadores”. Reporte experimental no publicado – Departamento de Ingeniería Civil Universidad Nacional de Colombia – Manizales. [20] Wessling L. (2011). “Physical modeling of a clutch for heavy vehicles”. Unpublished Master thesis-Department of Signals and Systems – Chalmers University of Technology. Göteborg - Sweden. [21] Shigley J. (1963). “Mechanical engineering design”. Mcgraw Hill Series, USA. [22] Dimetales. “Fleje templado: Acero laminado en frio SAE 1070/1075, revenido y lijado” Bogotá – Colombia – Sur américa. https://dimetales.com/home/productos/aceros-y-fleje [23] Bisalloy Steels Pty Ltd (2006). “Bisalloy Technical Manual, Bisalloy Steels Pty Ltd”. Unanderra – Australia. [24] Priestley, N., Michele, G., and Kowalsky, M. (2018). “Displacement-based seismic design of structures” Eucentre. [25] MacRae G.A., and Clifton, C.G. (2015). “Research on Seismic Performance of Steel Structures”. Steel Innovation Conference 2015. September 3-4, 2015, Auckland, New Zealand. [26] Pall, A., and Marsh, C. (1982). “Response of friction Damped Braced Frames”. Journal of the Structural Division. Vol.108 (6), pp. 1313 – 1323. [27] SOM San Francisco. (2011) “Nature Structure”. Skidmore, Owigs & Merril LLP [28] Rabinowicz, E. (2008). “Friction and Wear of Materials” Wiley-Interscience; 2nd Edición (Mayo 2008). [29] Chanchí, J.C., (2019). “Hysteretic behaviour of Asymmetric Friction Connections (AFCs)”. Unpublished PhD Thesis, Department of Natural and Civil Engineering Resources. University of Canterbury - New Zealand [30] Popov, P., and Gregorian, C. (1994). “Energy Dissipation with Slotted Bolted Connections” California Univ., Richmond. Earthquake Engineering Research Center. [31] Chanchí, J.C., MacRae, G., and Rogers, G. (2020). “Effects of prying forces on the hysteretic behaviour of asymmetric friction connection (AFCs)” Earthquake Engineering & Structural Dynamics [32] Khoo, H.H., MacRae, G., Shahab, R., Zhou, H., Clifton, C.G., and Clifton, C. (2014). “Proposed design models for the asymmetric friction connection” Earthquake Engineering & Structural Dynamics [33] Chanchí, J.C., MacRae, G.A., Chase, J.G., Rodgers, G.W., and Clifton, G.C. (2015). “Is the Asymmetrical Friction Connection (AFC) a low damage dissipater?”. 2015 NZSEE Conference. [34] MacRae, G.A. (2008). “A New Look at Some Earthquake Engineering Concepts”. M. J. Nigel Priestley Symposium Proceedings, IUSS Press. [35] Chanchí, J.C., MacRae, G.A., Chase, J.G., Rodgers, G.W., and Clifton, G.C. (2012). “Behaviour of Asymmetrical Friction Connections using different shim materials”. 2012 NZSEE [36] Grigorian, C.E., and Popov, E.P. (1994). “Experimental and Analytical Studies of Steel Connections and Energy Dissipaters”. Report UCB/EERC-95/13, Engineering Research Center. San Francisco – United States. [37] Khoo, H.H., Clifton, C., Butterworth, J., MacRae, G. and Ferguson, G. (2011). “Influence of steel shim hardness on the Sliding Hinge Joint. Journal of Constructional Steel Research”. Vol 72, May 2012, p 119 – 129. [38] Cardona Jimenez, A & Chanchí, J.C (2020). “Comportamiento Cíclico a Fuerza Lateral de Uniones Viga Columna Metálicas Equipadas con Disipadores de Fricción Rotacional”. Propuesta de Tesis de Maestría en Estructuras. Universidad Nacional de Colombia – Departamento de Ingeniería Civil
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleComportamiento Experimental y Modelaje de un Disipador Sísmico de Bajo Daño y de Alta Dureza Aplicable a Uniones Viga - Columna de Marcos de Resistencia a Momento
dc.typeOtros


Este ítem pertenece a la siguiente institución