dc.contributor | Velásquez Lozano, Mario Enrique | |
dc.contributor | Zea Ramírez, Hugo Ricardo | |
dc.contributor | Procesos químicos y bioquímicos | |
dc.creator | Agudelo Amaya, Iván Felipe | |
dc.date.accessioned | 2020-08-06T20:33:05Z | |
dc.date.available | 2020-08-06T20:33:05Z | |
dc.date.created | 2020-08-06T20:33:05Z | |
dc.date.issued | 2020-08-03 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77970 | |
dc.description.abstract | This work is focused on the synthesis of a biocatalyst consisting of immobilized β-glucosidase onto a superparamagnetic nanomaterial for its application in the production of fermentable sugars. β-glucosidase acquired from Novozymes ® was immobilized on functionalized magnetite nanoparticles by covalent binding. The nanoparticles were synthesized through the co-precipitation technique and were characterized using X-ray diffraction (XRD) and atomic force microscopy (AFM). Magnetite superparamagnetic nanoparticles were obtained lower than 50 nm. The immobilization of β-glucosidase was confirmed using FT-IR spectrophotometry. The activity of the composite was determined, obtaining that approximately 122 units of the enzyme was immobilized per 100 milligrams of nanoparticle used (at pH 4,00 and 60,0 °C). In addition, the immobilized enzyme showed greater activity at pH 5.0 and at a temperature of 60 ° C. The activity retention capacity was measured from studying the composite under five cycles of enzymatic hydrolysis of cellobiose. It was observed that after the fifth cycle of hydrolysis, the immobilized enzyme showed a relative activity of approximately 80% with respect to the first cycle. | |
dc.description.abstract | Este trabajo se centra en la síntesis de un biocatalizador que consiste en la inmovilización de la β-glucosidasa en un nanomaterial superparamagnético para su aplicación en la producción de azúcares fermentables. La β-glucosidasa adquirida de Novozymes® se inmovilizó en nanopartículas de magnetita funcionalizadas mediante el método de unión covalente. Las nanopartículas se sintetizaron a través de la técnica de co-precipitación y se caracterizaron utilizando difracción de rayos X (DRX) y microscopía de fuerza atómica (AFM). Se obtuvieron nanopartículas superparamagnéticas de magnetita menores a 50 nm. La inmovilización de la β-glucosidasa se confirmó mediante espectrofotometría FT-IR. Se determinó la actividad del compuesto, obteniendo que aproximadamente 122 unidades de la enzima se inmovilizaron en 100 miligramos de nanopartículas utilizadas (a pH 4,00 y 60,0 ° C). Adicionalmente, la enzima inmovilizada mostró mayor actividad a pH 5.0 y a una temperatura de 60 ° C. La capacidad de retención de la actividad se midió a partir del estudio del compuesto en cinco ciclos de hidrólisis enzimática de celobiosa. Se pudo observar que después del quinto ciclo de hidrólisis, la enzima inmovilizada presentó una actividad relativa de aproximadamente un 80% respecto al primer ciclo. | |
dc.language | spa | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | Abraham, R. E., Verma, M. L., Barrow, C. J., & Puri, M. (2014). Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnology for Biofuels, 7(90), 1-12. https://doi.org/10.1186/1754-6834-7-90 | |
dc.relation | Agrawal, R., Verma, A. K., & Satlewal, A. (2016). Application of nanoparticle-immobilized thermostable β-glucosidase for improving the sugarcane juice properties. Innovative Food Science and Emerging Technologies, 33, 471–482. https://doi.org/10.1016/j.ifset.2015.11.024 | |
dc.relation | Alftrén, J., & Hobley, T. J. (2014). Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling. Biomass and Bioenergy, 65, 72–78. https://doi.org/10.1016/j.biombioe.2014.03.009 | |
dc.relation | Alternative Fuels Data Center. (2017). Alternative Fuels Data Center: Maps and Data - Global Ethanol Production. Retrieved February 19, 2017, from http://www.afdc.energy.gov/data/10331 | |
dc.relation | Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093 | |
dc.relation | Amirbandeh, M., & Taheri-Kafrani, A. (2016). Immobilization of glucoamylase on triazine-functionalized Fe3O4/graphene oxide nanocomposite: Improved stability and reusability. International Journal of Biological Macromolecules, 93, 1183–1191. https://doi.org/10.1016/j.ijbiomac.2016.09.092 | |
dc.relation | Andrić, P., Meyer, A. S., Jensen, P. A., & Dam-Johansen, K. (2010). Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnology Advances, 28(3), 308–324. https://doi.org/10.1016/j.biotechadv.2010.01.003 | |
dc.relation | ASTM. (2012). Standard Terminology for Industrial Biotechnology. In Standard Terminology for Industrial Biotechnology , 60, 524–526 . https://doi.org/10.1520/E3072 | |
dc.relation | Babes, L., Jacques, J., Jeune, L., & Jallet, P. (1999). Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents : A Parametric Study, 482, 474–482. | |
dc.relation | Bai, H., Wang, H., Sun, J., Irfan, M., Han, M., Huang, Y., … Yang, Q. (2013). Production , Purification and Characterization of Novel Beta Glucosidase From Newly Isolated Penicil-. EXCLI Journal, 12, 528–540. | |
dc.relation | Bailey, J. E., & F. Ollis, D. (1986). Biochemical Engineering Fundamentals (Second Edition). McGraw-Hill Book Company. | |
dc.relation | Cao, Y., Wen, L., Svec, F., Tan, T., & Lv, Y. (2016). Magnetic AuNP@Fe3O4 nanoparticles as reusable carriers for reversible enzyme immobilization. Chemical Engineering Journal, 286, 272–281. https://doi.org/10.1016/j.cej.2015.10.075 | |
dc.relation | Carli, S., Carneiro, L. A. B. de C., Ward, R. J., & Meleiro, L. P. (2019). Immobilization of a β-glucosidase and an endoglucanase in ferromagnetic nanoparticles: A study of synergistic effects. Protein Expression and Purification, 160, 28–35. https://doi.org/10.1016/j.pep.2019.03.016 | |
dc.relation | Castelló, J., Antònia, M., & Estelrich, J. (2015). Colloids and Surfaces A : Physicochemical and Engineering Aspects Chitosan ( or alginate ) -coated iron oxide nanoparticles : A comparative study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468, 151–158. https://doi.org/10.1016/j.colsurfa.2014.12.031 | |
dc.relation | Chandel, A. K., Chandrasekhar, G., Silva, M. B., & Silvério Da Silva, S. (2012). The realm of cellulases in biorefinery development. Critical Reviews in Biotechnology, 32(3), 187–202. https://doi.org/10.3109/07388551.2011.595385 | |
dc.relation | Chen, H. (2014). Biotechnology of lignocellulose: Theory and practice. Chemical Industry Press/Springer. https://doi.org/10.1007/978-94-007-6898-7 | |
dc.relation | Chen, H., & Fu, X. (2016). Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 57, 468–478. https://doi.org/10.1016/j.rser.2015.12.069 | |
dc.relation | Chen, T., Yang, W., Guo, Y., Yuan, R., Xu, L., & Yan, Y. (2014). Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme and Microbial Technology, 63, 50–57. https://doi.org/10.1016/j.enzmictec.2014.05.008 | |
dc.relation | Cheng, G., Xing, J., Pi, Z., Liu, S., Liu, Z., & Song, F. (2019). α-Glucosidase immobilization on functionalized Fe3O4 magnetic nanoparticles for screening of enzyme inhibitors. Chinese Chemical Letters, 30(3), 656–659. https://doi.org/10.1016/j.cclet.2018.12.003 | |
dc.relation | Cherian, E., Dharmendirakumar, M., & Baskar, G. (2015). Immobilization of cellulase onto MnO<inf>2</inf> nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Cuihua Xuebao/Chinese Journal of Catalysis, 36(8), 1223–1229. https://doi.org/10.1016/S1872-2067(15)60906-8 | |
dc.relation | Chovau, S., Degrauwe, D., & Van Der Bruggen, B. (2013). Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renewable and Sustainable Energy Reviews, 26, 307–321. https://doi.org/10.1016/j.rser.2013.05.064 | |
dc.relation | Cipolatti, E. P., Silva, M. J. A., Klein, M., Feddern, V., Feltes, M. M. C., Oliveira, J. V., … De Oliveira, D. (2014). Current status and trends in enzymatic nanoimmobilization. Journal of Molecular Catalysis B: Enzymatic, 99, 56–67. https://doi.org/10.1016/j.molcatb.2013.10.019 | |
dc.relation | Cooper Bribiesca, B. L. (2013). Enzimas xilanolíticas bacterianas y sus aplicaciones industriales, VERTIENTES Revista especializada en ciencias de la salud, 16(1), 19–22. Libre acceso | |
dc.relation | Coutinho, T. C., Rojas, M. J., Tardioli, P. W., Paris, E. C., & Farinas, C. S. (2018). Nanoimmobilization of β-glucosidase onto hydroxyapatite. International Journal of Biological Macromolecules, 119, 1042–1051.
https://doi.org/10.1016/j.ijbiomac.2018.08.042 | |
dc.relation | Cristallography Open Database. (2019). COD 1011032. Retrieved March 25, 2019, from http://www.crystallography.net/cod/result.php | |
dc.relation | Daraei, P., Madaeni, S. S., Ghaemi, N., Salehi, E., Khadivi, M. A., Moradian, R., & Astinchap, B. (2012). Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe 3O 4 nanoparticles with enhanced performance for Cu(II) removal from water. Journal of Membrane Science, 415–416, 250–259. https://doi.org/10.1016/j.memsci.2012.05.007 | |
dc.relation | Fedebiocombustibles. (2017). Federación Nacional de Biocombustibles de Colombia. Retrieved February 19, 2017, from http://www.fedebiocombustibles.com/v3/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htm | |
dc.relation | Fengel, D., & Wegener, G. (1989). Wood—chemistry, ultrastructure, reactions. Berlin: Walter de Gruyter. https://doi.org/10.1002/pol.1985.130231112 | |
dc.relation | Friák, M., Schindlmayr, A., & Scheffler, M. (2007). Ab initio study of the half-metal to metal transition in strained magnetite. New Journal of Physics, 9, 1-12. https://doi.org/10.1088/1367-2630/9/1/001 | |
dc.relation | Garcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353(16), 2885–2904. https://doi.org/10.1002/adsc.201100534 | |
dc.relation | German Salazar-Álvarez. (2004). Doctoral Thesis - Synthesis , Characterisation and Applications of Iron Oxide Nanoparticles. Journal of Materials (Vol. 1). Stockholm, Sweden. https://doi.org/10.1111/j.1469-8986.2009.00852.x | |
dc.relation | Gruno, M., Väljamäe, P., Pettersson, G., & Johansson, G. (2004). Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnology and Bioengineering, 86(5), 503–511. https://doi.org/10.1002/bit.10838 | |
dc.relation | Haghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033 | |
dc.relation | Harris, D. C. (1990). Análisis químico cuantitativo (Tercera edición), Reverté. | |
dc.relation | He, Y. T., & Traina, S. J. (2007). Transformation of magnetite to goethite under alkaline pH conditions. Clay Minerals, 42(01), 13–19. https://doi.org/10.1180/claymin.2007.042.1.02 | |
dc.relation | Hola, K., Markova, Z., Zoppellaro, G., Tucek, J., & Zboril, R. (2015). Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnology Advances, 33(6), 1162–1176. https://doi.org/10.1016/j.biotechadv.2015.02.003 | |
dc.relation | Huber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, 1(5), 482–501. https://doi.org/10.1002/smll.200500006 | |
dc.relation | Ingham, B., & Toney, M. F. (2013). X-ray diffraction for characterizing metallic films. Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties. https://doi.org/10.1533/9780857096296.1.3 | |
dc.relation | Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochemistry, 43(10), 1019–1032. https://doi.org/10.1016/j.procbio.2008.06.004 | |
dc.relation | Jonker, J. G. G., van der Hilst, F., Junginger, H. M., Cavalett, O., Chagas, M. F., & Faaij, A. P. C. (2015). Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies. Applied Energy, 147, 593–610. https://doi.org/10.1016/j.apenergy.2015.01.090 | |
dc.relation | Jung, Y. R., Shin, H. Y., Song, Y. S., Kim, S. B., & Kim, S. W. (2012). Enhancement of immobilized enzyme activity by pretreatment of β-glucosidase with cellobiose and glucose. Journal of Industrial and Engineering Chemistry, 18(2), 702–706. https://doi.org/10.1016/j.jiec.2011.11.133 | |
dc.relation | Lai, H.-Y., Chiang, R.-K., Wang, J.-S., Lin, C.-C., & Chen, C.-J. (2009). Preparation of Monodisperse Iron Oxide Nanoparticles via the Synthesis and Decomposition of Iron Fatty Acid Complexes. Nanoscale Research Letters, 4(11), 1343–1350. https://doi.org/10.1007/s11671-009-9403-x | |
dc.relation | Laurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chemical Reviews, 108(6), 2064–2110. https://doi.org/10.1021/cr068445e | |
dc.relation | Liu, Z. H., & Chen, H. Z. (2016). Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresource Technology, 201, 15–26. https://doi.org/10.1016/j.biortech.2015.11.023 | |
dc.relation | Maitan-Alfenas, G. P., Visser, E. M., & Guimarães, V. ria M. (2015). Enzymatic hydrolysis of lignocellulosic biomass: Converting food waste in valuable products. Current Opinion in Food Science, 1(1), 44–49. https://doi.org/10.1016/j.cofs.2014.10.001 | |
dc.relation | Massart, R. (1981). Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Transactions on Magnetics, 17(2), 1247–1248. | |
dc.relation | Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018 | |
dc.relation | Mehta, J., Bhardwaj, N., Bhardwaj, S. K., Kim, K. H., & Deep, A. (2016). Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coordination Chemistry Reviews, 322, 30–40. https://doi.org/10.1016/j.ccr.2016.05.007 | |
dc.relation | Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 37(5), 790–802. https://doi.org/10.2144/3705A0790 | |
dc.relation | Ministerio de minas y energía. (2010). Atlas del potencial energético de la biomasa residual en Colombia. | |
dc.relation | Morel, M., Martínez, F., & Mosquera, E. (2013). Synthesis and characterization of magnetite nanoparticles from mineral magnetite. Journal of Magnetism and Magnetic Materials, 343, 76–81. https://doi.org/10.1016/j.jmmm.2013.04.075 | |
dc.relation | Netto, C. G. C. M., Toma, H. E., & Andrade, L. H. (2013). Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. Journal of Molecular Catalysis B: Enzymatic, 85–86, 71–92. https://doi.org/10.1016/j.molcatb.2012.08.010 | |
dc.relation | Nguyen, L. T., Lau, Y. S., & Yang, K. L. (2016). Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose. Colloids and Surfaces B: Biointerfaces, 145, 862–869. https://doi.org/10.1016/j.colsurfb.2016.06.008 | |
dc.relation | Nigam, P. S. (2013). Microbial enzymes with special characteristics for biotechnological applications. Biomolecules, 3(3), 597–611. https://doi.org/10.3390/biom3030597 | |
dc.relation | Park, H. J., Driscoll, A. J., & Johnson, P. A. (2018). The development and evaluation of Β-glucosidase immobilized magnetic nanoparticles as recoverable biocatalysts. Biochemical Engineering Journal, 133, 66–73. https://doi.org/10.1016/j.bej.2018.01.017 | |
dc.relation | Paulova, L., Patakova, P., Branska, B., Rychtera, M., & Melzoch, K. (2015). Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnology Advances, 33(6), 1091–1107. https://doi.org/10.1016/j.biotechadv.2014.12.002 | |
dc.relation | Pérez, J., Muñoz-Dorado, J., De La Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63. https://doi.org/10.1007/s10123-002-0062-3 | |
dc.relation | Piñeros Castro, N. Y. (2012). Hidrólisis de residuos lignocelulósicos derivados de la explotación de palma de aceite hasta azúcares fermentables. Tesis de Doctorado. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/39583/ | |
dc.relation | Puri, M., Barrow, C. J., & Verma, M. L. (2013). Enzyme immobilization on nanomaterials for biofuel production. Trends in Biotechnology, 31(4), 215–216. https://doi.org/10.1016/j.tibtech.2013.01.002 | |
dc.relation | Quevedo Hidalgo, B. E. (2011). Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos. Tesis de Doctorado. Universidad Nacional de Colombia. | |
dc.relation | Roth, H., Schwaminger, S. P., Schindler, M., Wagner, F. E., & Berensmeier, S. (2015). Journal of Magnetism and Magnetic Materials Influencing factors in the co-precipitation process of superparamagnetic iron oxide nano particles : A model based study. Journal of Magnetism and Magnetic Materials, 377, 81–89. https://doi.org/10.1016/j.jmmm.2014.10.074 | |
dc.relation | Saha, B. C., Qureshi, N., Kennedy, G. J., & Cotta, M. A. (2016). Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration and Biodegradation, 109, 29–35. https://doi.org/10.1016/j.ibiod.2015.12.020 | |
dc.relation | Sánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001 | |
dc.relation | Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27. https://doi.org/10.1016/j.renene.2011.06.045 | |
dc.relation | Sheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082 | |
dc.relation | Shuler, M. L., & Kargi, F. (2002). BIOPROCESS ENGINEERING Basic Concepts (Second Edi). Upper Saddle River: Prentice hall PTR. https://doi.org/10.1002/9781118827123 | |
dc.relation | Speranza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Gutiérrez, A., … del Río, J. C. (2005). Biodegradation of lignocellulosics : microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8(3), 195–204. https://doi.org/im2305029 | |
dc.relation | Srivastava, M., Singh, J., Yashpal, M., Gupta, D. K., Mishra, R. K., Tripathi, S., & Ojha, A. K. (2012). Synthesis of superparamagnetic bare Fe3O4 nanostructures and core/shell (Fe 3O 4/alginate) nanocomposites. Carbohydrate Polymers, 89(3), 821–829.
https://doi.org/10.1016/j.carbpol.2012.04.016 | |
dc.relation | Srivastava, N., Singh, J., Ramteke, P. W., Mishra, P. K., & Srivastava, M. (2015). Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresource Technology, 183, 262–266. https://doi.org/10.1016/j.biortech.2015.02.059 | |
dc.relation | Steffien, D., Aubel, I., & Bertau, M. (2014). Enzymatic hydrolysis of pre-treated lignocellulose with Penicillium verruculosum cellulases. Journal of Molecular Catalysis B: Enzymatic, 103, 29–35. https://doi.org/10.1016/j.molcatb.2013.11.004 | |
dc.relation | Takahashi, M., Konishi, T., & Takeda, T. (2011). Biochemical characterization of Magnaporthe oryzae β -glucosidases for efficient β -glucan hydrolysis, 1073–1082. https://doi.org/10.1007/s00253-011-3340-1 | |
dc.relation | Tan, I. S., & Lee, K. T. (2014). Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Bioresource Technology, 184, 386–394. https://doi.org/10.1016/j.biortech.2014.10.146 | |
dc.relation | University, O. S. (2015). Infrared Spectra: Identifying Functional Groups. Retrieved April 25, 2019, from https://www.science.oregonstate.edu/~gablek/CH335/Chapter10/IR.htm | |
dc.relation | Valenzuela, R., Castro, J. F., Parra, C., Baeza, J., & Durán, N. (2014). β -Glucosidase immobilisation on synthetic superparamagnetic magnetite nanoparticles and their application in saccharification of wheat straw and Eucalyptus globulus pulps. Journal of Experimental Nanoscience, 9(December), 177–185. https://doi.org/10.1080/17458080.2011.651167 | |
dc.relation | Van Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002 | |
dc.relation | Vaz, R. P., de Souza Moreira, L. R., & Ferreira Filho, E. X. (2016). An overview of holocellulose-degrading enzyme immobilization for use in bioethanol production. Journal of Molecular Catalysis B: Enzymatic, 133, 127–135.
https://doi.org/10.1016/j.molcatb.2016.08.006 | |
dc.relation | Vazquez-Ortega, P. G., Alcaraz-Fructuoso, M. T., Rojas-Contreras, J. A., López-Miranda, J., & Fernandez-Lafuente, R. (2018). Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions. Enzyme and Microbial Technology, 110, 38–45. https://doi.org/10.1016/j.enzmictec.2017.12.007 | |
dc.relation | Verma, M. L., Barrow, C. J., Kennedy, J. F., & Puri, M. (2012). Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: Characterization and lactose hydrolysis. International Journal of Biological Macromolecules, 50(2), 432–437. https://doi.org/10.1016/j.ijbiomac.2011.12.029 | |
dc.relation | Verma, M. L., Chaudhary, R., Tsuzuki, T., Barrow, C. J., & Puri, M. (2013). Immobilization of ??-glucosidase on a magnetic nanoparticle improves thermostability: Application in cellobiose hydrolysis. Bioresource Technology, 135, 2–6. https://doi.org/10.1016/j.biortech.2013.01.047 | |
dc.relation | Wang, X., Liu, Z. L., Weber, S. A., & Zhang, X. (2016). Two new native β-glucosidases from Clavispora NRRL Y-50464 confer its dual function as cellobiose fermenting ethanologenic yeast. PLoS ONE, 11(3), 1-19. https://doi.org/10.1371/journal.pone.0151293 | |
dc.relation | Xue, R., & Woodley, J. M. (2012). Process technology for multi-enzymatic reaction systems. Bioresource Technology, 115, 183–195. https://doi.org/10.1016/j.biortech.2012.03.033 | |
dc.relation | Zabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol production from fermentable sugar juice. The Scientific World Journal, 2014, 1-11. https://doi.org/10.1155/2014/957102 | |
dc.relation | Zabed, H., Sahu, J. N., Boyce, A. N., & Faruq, G. (2016). Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, 66, 751–774. https://doi.org/10.1016/j.rser.2016.08.038 | |
dc.relation | Zhao, J., & Chen, H. (2013). Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chemical Engineering Science, 104, 1036–1044. https://doi.org/10.1016/j.ces.2013.10.022 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Inmovilización de β-glucosidasa en nanopartículas de óxido de hierro para la hidrólisis enzimática de celobiosa | |
dc.type | Otro | |