dc.contributorVelásquez Lozano, Mario Enrique
dc.contributorZea Ramírez, Hugo Ricardo
dc.contributorProcesos químicos y bioquímicos
dc.creatorAgudelo Amaya, Iván Felipe
dc.date.accessioned2020-08-06T20:33:05Z
dc.date.available2020-08-06T20:33:05Z
dc.date.created2020-08-06T20:33:05Z
dc.date.issued2020-08-03
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77970
dc.description.abstractThis work is focused on the synthesis of a biocatalyst consisting of immobilized β-glucosidase onto a superparamagnetic nanomaterial for its application in the production of fermentable sugars. β-glucosidase acquired from Novozymes ® was immobilized on functionalized magnetite nanoparticles by covalent binding. The nanoparticles were synthesized through the co-precipitation technique and were characterized using X-ray diffraction (XRD) and atomic force microscopy (AFM). Magnetite superparamagnetic nanoparticles were obtained lower than 50 nm. The immobilization of β-glucosidase was confirmed using FT-IR spectrophotometry. The activity of the composite was determined, obtaining that approximately 122 units of the enzyme was immobilized per 100 milligrams of nanoparticle used (at pH 4,00 and 60,0 °C). In addition, the immobilized enzyme showed greater activity at pH 5.0 and at a temperature of 60 ° C. The activity retention capacity was measured from studying the composite under five cycles of enzymatic hydrolysis of cellobiose. It was observed that after the fifth cycle of hydrolysis, the immobilized enzyme showed a relative activity of approximately 80% with respect to the first cycle.
dc.description.abstractEste trabajo se centra en la síntesis de un biocatalizador que consiste en la inmovilización de la β-glucosidasa en un nanomaterial superparamagnético para su aplicación en la producción de azúcares fermentables. La β-glucosidasa adquirida de Novozymes® se inmovilizó en nanopartículas de magnetita funcionalizadas mediante el método de unión covalente. Las nanopartículas se sintetizaron a través de la técnica de co-precipitación y se caracterizaron utilizando difracción de rayos X (DRX) y microscopía de fuerza atómica (AFM). Se obtuvieron nanopartículas superparamagnéticas de magnetita menores a 50 nm. La inmovilización de la β-glucosidasa se confirmó mediante espectrofotometría FT-IR. Se determinó la actividad del compuesto, obteniendo que aproximadamente 122 unidades de la enzima se inmovilizaron en 100 miligramos de nanopartículas utilizadas (a pH 4,00 y 60,0 ° C). Adicionalmente, la enzima inmovilizada mostró mayor actividad a pH 5.0 y a una temperatura de 60 ° C. La capacidad de retención de la actividad se midió a partir del estudio del compuesto en cinco ciclos de hidrólisis enzimática de celobiosa. Se pudo observar que después del quinto ciclo de hidrólisis, la enzima inmovilizada presentó una actividad relativa de aproximadamente un 80% respecto al primer ciclo.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbraham, R. E., Verma, M. L., Barrow, C. J., & Puri, M. (2014). Suitability of magnetic nanoparticle immobilised cellulases in enhancing enzymatic saccharification of pretreated hemp biomass. Biotechnology for Biofuels, 7(90), 1-12. https://doi.org/10.1186/1754-6834-7-90
dc.relationAgrawal, R., Verma, A. K., & Satlewal, A. (2016). Application of nanoparticle-immobilized thermostable β-glucosidase for improving the sugarcane juice properties. Innovative Food Science and Emerging Technologies, 33, 471–482. https://doi.org/10.1016/j.ifset.2015.11.024
dc.relationAlftrén, J., & Hobley, T. J. (2014). Immobilization of cellulase mixtures on magnetic particles for hydrolysis of lignocellulose and ease of recycling. Biomass and Bioenergy, 65, 72–78. https://doi.org/10.1016/j.biombioe.2014.03.009
dc.relationAlternative Fuels Data Center. (2017). Alternative Fuels Data Center: Maps and Data - Global Ethanol Production. Retrieved February 19, 2017, from http://www.afdc.energy.gov/data/10331
dc.relationAlvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: A review. Bioresource Technology, 101(13), 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093
dc.relationAmirbandeh, M., & Taheri-Kafrani, A. (2016). Immobilization of glucoamylase on triazine-functionalized Fe3O4/graphene oxide nanocomposite: Improved stability and reusability. International Journal of Biological Macromolecules, 93, 1183–1191. https://doi.org/10.1016/j.ijbiomac.2016.09.092
dc.relationAndrić, P., Meyer, A. S., Jensen, P. A., & Dam-Johansen, K. (2010). Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes. Biotechnology Advances, 28(3), 308–324. https://doi.org/10.1016/j.biotechadv.2010.01.003
dc.relationASTM. (2012). Standard Terminology for Industrial Biotechnology. In Standard Terminology for Industrial Biotechnology , 60, 524–526 . https://doi.org/10.1520/E3072
dc.relationBabes, L., Jacques, J., Jeune, L., & Jallet, P. (1999). Synthesis of Iron Oxide Nanoparticles Used as MRI Contrast Agents : A Parametric Study, 482, 474–482.
dc.relationBai, H., Wang, H., Sun, J., Irfan, M., Han, M., Huang, Y., … Yang, Q. (2013). Production , Purification and Characterization of Novel Beta Glucosidase From Newly Isolated Penicil-. EXCLI Journal, 12, 528–540.
dc.relationBailey, J. E., & F. Ollis, D. (1986). Biochemical Engineering Fundamentals (Second Edition). McGraw-Hill Book Company.
dc.relationCao, Y., Wen, L., Svec, F., Tan, T., & Lv, Y. (2016). Magnetic AuNP@Fe3O4 nanoparticles as reusable carriers for reversible enzyme immobilization. Chemical Engineering Journal, 286, 272–281. https://doi.org/10.1016/j.cej.2015.10.075
dc.relationCarli, S., Carneiro, L. A. B. de C., Ward, R. J., & Meleiro, L. P. (2019). Immobilization of a β-glucosidase and an endoglucanase in ferromagnetic nanoparticles: A study of synergistic effects. Protein Expression and Purification, 160, 28–35. https://doi.org/10.1016/j.pep.2019.03.016
dc.relationCastelló, J., Antònia, M., & Estelrich, J. (2015). Colloids and Surfaces A : Physicochemical and Engineering Aspects Chitosan ( or alginate ) -coated iron oxide nanoparticles : A comparative study. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 468, 151–158. https://doi.org/10.1016/j.colsurfa.2014.12.031
dc.relationChandel, A. K., Chandrasekhar, G., Silva, M. B., & Silvério Da Silva, S. (2012). The realm of cellulases in biorefinery development. Critical Reviews in Biotechnology, 32(3), 187–202. https://doi.org/10.3109/07388551.2011.595385
dc.relationChen, H. (2014). Biotechnology of lignocellulose: Theory and practice. Chemical Industry Press/Springer. https://doi.org/10.1007/978-94-007-6898-7
dc.relationChen, H., & Fu, X. (2016). Industrial technologies for bioethanol production from lignocellulosic biomass. Renewable and Sustainable Energy Reviews, 57, 468–478. https://doi.org/10.1016/j.rser.2015.12.069
dc.relationChen, T., Yang, W., Guo, Y., Yuan, R., Xu, L., & Yan, Y. (2014). Enhancing catalytic performance of β-glucosidase via immobilization on metal ions chelated magnetic nanoparticles. Enzyme and Microbial Technology, 63, 50–57. https://doi.org/10.1016/j.enzmictec.2014.05.008
dc.relationCheng, G., Xing, J., Pi, Z., Liu, S., Liu, Z., & Song, F. (2019). α-Glucosidase immobilization on functionalized Fe3O4 magnetic nanoparticles for screening of enzyme inhibitors. Chinese Chemical Letters, 30(3), 656–659. https://doi.org/10.1016/j.cclet.2018.12.003
dc.relationCherian, E., Dharmendirakumar, M., & Baskar, G. (2015). Immobilization of cellulase onto MnO<inf>2</inf> nanoparticles for bioethanol production by enhanced hydrolysis of agricultural waste. Cuihua Xuebao/Chinese Journal of Catalysis, 36(8), 1223–1229. https://doi.org/10.1016/S1872-2067(15)60906-8
dc.relationChovau, S., Degrauwe, D., & Van Der Bruggen, B. (2013). Critical analysis of techno-economic estimates for the production cost of lignocellulosic bio-ethanol. Renewable and Sustainable Energy Reviews, 26, 307–321. https://doi.org/10.1016/j.rser.2013.05.064
dc.relationCipolatti, E. P., Silva, M. J. A., Klein, M., Feddern, V., Feltes, M. M. C., Oliveira, J. V., … De Oliveira, D. (2014). Current status and trends in enzymatic nanoimmobilization. Journal of Molecular Catalysis B: Enzymatic, 99, 56–67. https://doi.org/10.1016/j.molcatb.2013.10.019
dc.relationCooper Bribiesca, B. L. (2013). Enzimas xilanolíticas bacterianas y sus aplicaciones industriales, VERTIENTES Revista especializada en ciencias de la salud, 16(1), 19–22. Libre acceso
dc.relationCoutinho, T. C., Rojas, M. J., Tardioli, P. W., Paris, E. C., & Farinas, C. S. (2018). Nanoimmobilization of β-glucosidase onto hydroxyapatite. International Journal of Biological Macromolecules, 119, 1042–1051. https://doi.org/10.1016/j.ijbiomac.2018.08.042
dc.relationCristallography Open Database. (2019). COD 1011032. Retrieved March 25, 2019, from http://www.crystallography.net/cod/result.php
dc.relationDaraei, P., Madaeni, S. S., Ghaemi, N., Salehi, E., Khadivi, M. A., Moradian, R., & Astinchap, B. (2012). Novel polyethersulfone nanocomposite membrane prepared by PANI/Fe 3O 4 nanoparticles with enhanced performance for Cu(II) removal from water. Journal of Membrane Science, 415–416, 250–259. https://doi.org/10.1016/j.memsci.2012.05.007
dc.relationFedebiocombustibles. (2017). Federación Nacional de Biocombustibles de Colombia. Retrieved February 19, 2017, from http://www.fedebiocombustibles.com/v3/estadistica-produccion-titulo-Alcohol_Carburante_(Etanol).htm
dc.relationFengel, D., & Wegener, G. (1989). Wood—chemistry, ultrastructure, reactions. Berlin: Walter de Gruyter. https://doi.org/10.1002/pol.1985.130231112
dc.relationFriák, M., Schindlmayr, A., & Scheffler, M. (2007). Ab initio study of the half-metal to metal transition in strained magnetite. New Journal of Physics, 9, 1-12. https://doi.org/10.1088/1367-2630/9/1/001
dc.relationGarcia-Galan, C., Berenguer-Murcia, Á., Fernandez-Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353(16), 2885–2904. https://doi.org/10.1002/adsc.201100534
dc.relationGerman Salazar-Álvarez. (2004). Doctoral Thesis - Synthesis , Characterisation and Applications of Iron Oxide Nanoparticles. Journal of Materials (Vol. 1). Stockholm, Sweden. https://doi.org/10.1111/j.1469-8986.2009.00852.x
dc.relationGruno, M., Väljamäe, P., Pettersson, G., & Johansson, G. (2004). Inhibition of the Trichoderma reesei cellulases by cellobiose is strongly dependent on the nature of the substrate. Biotechnology and Bioengineering, 86(5), 503–511. https://doi.org/10.1002/bit.10838
dc.relationHaghighi Mood, S., Hossein Golfeshan, A., Tabatabaei, M., Salehi Jouzani, G., Najafi, G. H., Gholami, M., & Ardjmand, M. (2013). Lignocellulosic biomass to bioethanol, a comprehensive review with a focus on pretreatment. Renewable and Sustainable Energy Reviews, 27, 77–93. https://doi.org/10.1016/j.rser.2013.06.033
dc.relationHarris, D. C. (1990). Análisis químico cuantitativo (Tercera edición), Reverté.
dc.relationHe, Y. T., & Traina, S. J. (2007). Transformation of magnetite to goethite under alkaline pH conditions. Clay Minerals, 42(01), 13–19. https://doi.org/10.1180/claymin.2007.042.1.02
dc.relationHola, K., Markova, Z., Zoppellaro, G., Tucek, J., & Zboril, R. (2015). Tailored functionalization of iron oxide nanoparticles for MRI, drug delivery, magnetic separation and immobilization of biosubstances. Biotechnology Advances, 33(6), 1162–1176. https://doi.org/10.1016/j.biotechadv.2015.02.003
dc.relationHuber, D. L. (2005). Synthesis, properties, and applications of iron nanoparticles. Small, 1(5), 482–501. https://doi.org/10.1002/smll.200500006
dc.relationIngham, B., & Toney, M. F. (2013). X-ray diffraction for characterizing metallic films. Metallic Films for Electronic, Optical and Magnetic Applications: Structure, Processing and Properties. https://doi.org/10.1533/9780857096296.1.3
dc.relationIyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization-Aqueous and non-aqueous environment. Process Biochemistry, 43(10), 1019–1032. https://doi.org/10.1016/j.procbio.2008.06.004
dc.relationJonker, J. G. G., van der Hilst, F., Junginger, H. M., Cavalett, O., Chagas, M. F., & Faaij, A. P. C. (2015). Outlook for ethanol production costs in Brazil up to 2030, for different biomass crops and industrial technologies. Applied Energy, 147, 593–610. https://doi.org/10.1016/j.apenergy.2015.01.090
dc.relationJung, Y. R., Shin, H. Y., Song, Y. S., Kim, S. B., & Kim, S. W. (2012). Enhancement of immobilized enzyme activity by pretreatment of β-glucosidase with cellobiose and glucose. Journal of Industrial and Engineering Chemistry, 18(2), 702–706. https://doi.org/10.1016/j.jiec.2011.11.133
dc.relationLai, H.-Y., Chiang, R.-K., Wang, J.-S., Lin, C.-C., & Chen, C.-J. (2009). Preparation of Monodisperse Iron Oxide Nanoparticles via the Synthesis and Decomposition of Iron Fatty Acid Complexes. Nanoscale Research Letters, 4(11), 1343–1350. https://doi.org/10.1007/s11671-009-9403-x
dc.relationLaurent, S., Forge, D., Port, M., Roch, A., Robic, C., Vander Elst, L., & Muller, R. N. (2008). Magnetic iron oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations and biological applications. Chemical Reviews, 108(6), 2064–2110. https://doi.org/10.1021/cr068445e
dc.relationLiu, Z. H., & Chen, H. Z. (2016). Simultaneous saccharification and co-fermentation for improving the xylose utilization of steam exploded corn stover at high solid loading. Bioresource Technology, 201, 15–26. https://doi.org/10.1016/j.biortech.2015.11.023
dc.relationMaitan-Alfenas, G. P., Visser, E. M., & Guimarães, V. ria M. (2015). Enzymatic hydrolysis of lignocellulosic biomass: Converting food waste in valuable products. Current Opinion in Food Science, 1(1), 44–49. https://doi.org/10.1016/j.cofs.2014.10.001
dc.relationMassart, R. (1981). Preparation of Aqueous Magnetic Liquids in Alkaline and Acidic Media. IEEE Transactions on Magnetics, 17(2), 1247–1248.
dc.relationMateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40(6), 1451–1463. https://doi.org/10.1016/j.enzmictec.2007.01.018
dc.relationMehta, J., Bhardwaj, N., Bhardwaj, S. K., Kim, K. H., & Deep, A. (2016). Recent advances in enzyme immobilization techniques: Metal-organic frameworks as novel substrates. Coordination Chemistry Reviews, 322, 30–40. https://doi.org/10.1016/j.ccr.2016.05.007
dc.relationMigneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. C. (2004). Glutaraldehyde: Behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 37(5), 790–802. https://doi.org/10.2144/3705A0790
dc.relationMinisterio de minas y energía. (2010). Atlas del potencial energético de la biomasa residual en Colombia.
dc.relationMorel, M., Martínez, F., & Mosquera, E. (2013). Synthesis and characterization of magnetite nanoparticles from mineral magnetite. Journal of Magnetism and Magnetic Materials, 343, 76–81. https://doi.org/10.1016/j.jmmm.2013.04.075
dc.relationNetto, C. G. C. M., Toma, H. E., & Andrade, L. H. (2013). Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. Journal of Molecular Catalysis B: Enzymatic, 85–86, 71–92. https://doi.org/10.1016/j.molcatb.2012.08.010
dc.relationNguyen, L. T., Lau, Y. S., & Yang, K. L. (2016). Entrapment of cross-linked cellulase colloids in alginate beads for hydrolysis of cellulose. Colloids and Surfaces B: Biointerfaces, 145, 862–869. https://doi.org/10.1016/j.colsurfb.2016.06.008
dc.relationNigam, P. S. (2013). Microbial enzymes with special characteristics for biotechnological applications. Biomolecules, 3(3), 597–611. https://doi.org/10.3390/biom3030597
dc.relationPark, H. J., Driscoll, A. J., & Johnson, P. A. (2018). The development and evaluation of Β-glucosidase immobilized magnetic nanoparticles as recoverable biocatalysts. Biochemical Engineering Journal, 133, 66–73. https://doi.org/10.1016/j.bej.2018.01.017
dc.relationPaulova, L., Patakova, P., Branska, B., Rychtera, M., & Melzoch, K. (2015). Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnology Advances, 33(6), 1091–1107. https://doi.org/10.1016/j.biotechadv.2014.12.002
dc.relationPérez, J., Muñoz-Dorado, J., De La Rubia, T., & Martínez, J. (2002). Biodegradation and biological treatments of cellulose, hemicellulose and lignin: An overview. International Microbiology, 5(2), 53–63. https://doi.org/10.1007/s10123-002-0062-3
dc.relationPiñeros Castro, N. Y. (2012). Hidrólisis de residuos lignocelulósicos derivados de la explotación de palma de aceite hasta azúcares fermentables. Tesis de Doctorado. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/39583/
dc.relationPuri, M., Barrow, C. J., & Verma, M. L. (2013). Enzyme immobilization on nanomaterials for biofuel production. Trends in Biotechnology, 31(4), 215–216. https://doi.org/10.1016/j.tibtech.2013.01.002
dc.relationQuevedo Hidalgo, B. E. (2011). Evaluación de la degradación de residuos de floricultura para la obtención de azúcares con el uso de tres hongos lignocelulolíticos. Tesis de Doctorado. Universidad Nacional de Colombia.
dc.relationRoth, H., Schwaminger, S. P., Schindler, M., Wagner, F. E., & Berensmeier, S. (2015). Journal of Magnetism and Magnetic Materials Influencing factors in the co-precipitation process of superparamagnetic iron oxide nano particles : A model based study. Journal of Magnetism and Magnetic Materials, 377, 81–89. https://doi.org/10.1016/j.jmmm.2014.10.074
dc.relationSaha, B. C., Qureshi, N., Kennedy, G. J., & Cotta, M. A. (2016). Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis. International Biodeterioration and Biodegradation, 109, 29–35. https://doi.org/10.1016/j.ibiod.2015.12.020
dc.relationSánchez, C. (2009). Lignocellulosic residues: Biodegradation and bioconversion by fungi. Biotechnology Advances, 27(2), 185–194. https://doi.org/10.1016/j.biotechadv.2008.11.001
dc.relationSarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: An overview. Renewable Energy, 37(1), 19–27. https://doi.org/10.1016/j.renene.2011.06.045
dc.relationSheldon, R. A. (2007). Enzyme immobilization: The quest for optimum performance. Advanced Synthesis and Catalysis, 349(8–9), 1289–1307. https://doi.org/10.1002/adsc.200700082
dc.relationShuler, M. L., & Kargi, F. (2002). BIOPROCESS ENGINEERING Basic Concepts (Second Edi). Upper Saddle River: Prentice hall PTR. https://doi.org/10.1002/9781118827123
dc.relationSperanza, M., Ruiz-Dueñas, F. J., Ferreira, P., Camarero, S., Guillén, F., Gutiérrez, A., … del Río, J. C. (2005). Biodegradation of lignocellulosics : microbial, chemical, and enzymatic aspects of the fungal attack of lignin. International Microbiology, 8(3), 195–204. https://doi.org/im2305029
dc.relationSrivastava, M., Singh, J., Yashpal, M., Gupta, D. K., Mishra, R. K., Tripathi, S., & Ojha, A. K. (2012). Synthesis of superparamagnetic bare Fe3O4 nanostructures and core/shell (Fe 3O 4/alginate) nanocomposites. Carbohydrate Polymers, 89(3), 821–829. https://doi.org/10.1016/j.carbpol.2012.04.016
dc.relationSrivastava, N., Singh, J., Ramteke, P. W., Mishra, P. K., & Srivastava, M. (2015). Improved production of reducing sugars from rice straw using crude cellulase activated with Fe3O4/Alginate nanocomposite. Bioresource Technology, 183, 262–266. https://doi.org/10.1016/j.biortech.2015.02.059
dc.relationSteffien, D., Aubel, I., & Bertau, M. (2014). Enzymatic hydrolysis of pre-treated lignocellulose with Penicillium verruculosum cellulases. Journal of Molecular Catalysis B: Enzymatic, 103, 29–35. https://doi.org/10.1016/j.molcatb.2013.11.004
dc.relationTakahashi, M., Konishi, T., & Takeda, T. (2011). Biochemical characterization of Magnaporthe oryzae β -glucosidases for efficient β -glucan hydrolysis, 1073–1082. https://doi.org/10.1007/s00253-011-3340-1
dc.relationTan, I. S., & Lee, K. T. (2014). Immobilization of β-glucosidase from Aspergillus niger on κ-carrageenan hybrid matrix and its application on the production of reducing sugar from macroalgae cellulosic residue. Bioresource Technology, 184, 386–394. https://doi.org/10.1016/j.biortech.2014.10.146
dc.relationUniversity, O. S. (2015). Infrared Spectra: Identifying Functional Groups. Retrieved April 25, 2019, from https://www.science.oregonstate.edu/~gablek/CH335/Chapter10/IR.htm
dc.relationValenzuela, R., Castro, J. F., Parra, C., Baeza, J., & Durán, N. (2014). β -Glucosidase immobilisation on synthetic superparamagnetic magnetite nanoparticles and their application in saccharification of wheat straw and Eucalyptus globulus pulps. Journal of Experimental Nanoscience, 9(December), 177–185. https://doi.org/10.1080/17458080.2011.651167
dc.relationVan Dyk, J. S., & Pletschke, B. I. (2012). A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-Factors affecting enzymes, conversion and synergy. Biotechnology Advances, 30(6), 1458–1480. https://doi.org/10.1016/j.biotechadv.2012.03.002
dc.relationVaz, R. P., de Souza Moreira, L. R., & Ferreira Filho, E. X. (2016). An overview of holocellulose-degrading enzyme immobilization for use in bioethanol production. Journal of Molecular Catalysis B: Enzymatic, 133, 127–135. https://doi.org/10.1016/j.molcatb.2016.08.006
dc.relationVazquez-Ortega, P. G., Alcaraz-Fructuoso, M. T., Rojas-Contreras, J. A., López-Miranda, J., & Fernandez-Lafuente, R. (2018). Stabilization of dimeric β-glucosidase from Aspergillus niger via glutaraldehyde immobilization under different conditions. Enzyme and Microbial Technology, 110, 38–45. https://doi.org/10.1016/j.enzmictec.2017.12.007
dc.relationVerma, M. L., Barrow, C. J., Kennedy, J. F., & Puri, M. (2012). Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: Characterization and lactose hydrolysis. International Journal of Biological Macromolecules, 50(2), 432–437. https://doi.org/10.1016/j.ijbiomac.2011.12.029
dc.relationVerma, M. L., Chaudhary, R., Tsuzuki, T., Barrow, C. J., & Puri, M. (2013). Immobilization of ??-glucosidase on a magnetic nanoparticle improves thermostability: Application in cellobiose hydrolysis. Bioresource Technology, 135, 2–6. https://doi.org/10.1016/j.biortech.2013.01.047
dc.relationWang, X., Liu, Z. L., Weber, S. A., & Zhang, X. (2016). Two new native β-glucosidases from Clavispora NRRL Y-50464 confer its dual function as cellobiose fermenting ethanologenic yeast. PLoS ONE, 11(3), 1-19. https://doi.org/10.1371/journal.pone.0151293
dc.relationXue, R., & Woodley, J. M. (2012). Process technology for multi-enzymatic reaction systems. Bioresource Technology, 115, 183–195. https://doi.org/10.1016/j.biortech.2012.03.033
dc.relationZabed, H., Faruq, G., Sahu, J. N., Azirun, M. S., Hashim, R., & Nasrulhaq Boyce, A. (2014). Bioethanol production from fermentable sugar juice. The Scientific World Journal, 2014, 1-11. https://doi.org/10.1155/2014/957102
dc.relationZabed, H., Sahu, J. N., Boyce, A. N., & Faruq, G. (2016). Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renewable and Sustainable Energy Reviews, 66, 751–774. https://doi.org/10.1016/j.rser.2016.08.038
dc.relationZhao, J., & Chen, H. (2013). Correlation of porous structure, mass transfer and enzymatic hydrolysis of steam exploded corn stover. Chemical Engineering Science, 104, 1036–1044. https://doi.org/10.1016/j.ces.2013.10.022
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleInmovilización de β-glucosidasa en nanopartículas de óxido de hierro para la hidrólisis enzimática de celobiosa
dc.typeOtro


Este ítem pertenece a la siguiente institución