dc.contributorMojica Nava, Eduardo Alirio
dc.contributorRevelo Fuelagán, Javier
dc.contributorPROGRAMA DE INVESTIGACION SOBRE ADQUISICION Y ANALISIS DE SEÑALES PAAS-UN
dc.creatorErazo Caicedo, Edwin David
dc.date.accessioned2021-06-02T22:14:10Z
dc.date.available2021-06-02T22:14:10Z
dc.date.created2021-06-02T22:14:10Z
dc.date.issued2021-06-02
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79601
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn esta investigación se resuelve el despacho óptimo de potencia activa y reactiva en microrredes AC, cuyo objetivo es la búsqueda de la mejor configuración de los elementos del sistema, para la minimización de su costo de operación y el aseguramiento de la calidad en el servicio de energía eléctrica. Generalmente las microrredes AC son desbalanceadas ya que contienen componentes no simétricos y, por otro lado, son sistemas con alta dependencia de las condiciones del ambiente, por lo que, a continuación se proponen controladores MPC distribuido y centralizado, online y en tiempo real, que afrontan la incertidumbre del ambiente y el desbalance del sistema. Con éste fin se plantea un modelo de estado estacionario, una técnica de flujo de potencia, un problema de optimización y su linealización, y dos controladores más basados en PSO y programación lineal, todos ellos con aportes significativos a la rama de investigación. La evaluación se realiza en sistemas de potencia estándar, bajo condiciones inspiradas en las redes eléctricas colombianas y en una simulación de 24 horas.
dc.description.abstractIn this research, active and reactive optimal power dispatch in AC microgrids is resolved, whose objective is to look for the best system elements configuration, in order to minimize its operation cost and ensure quality in power service. Generally, AC microgrids are unbalanced since they contain non-symmetrical components, and, on the other hand, they are systems that have a high dependence on environmental conditions, so then, online and real-time, distributed and centralized MPC controllers are proposed to face environmental uncertainty and system unbalance. For it, a steady state model, a power flow technique, an optimization problem and its linearization, and two more controllers based on PSO and linear programming have been developed, all of them with significant contributions to the research branch. The evaluation has been carried out in standardized power systems, under conditions inspired by the colombian power network in a 24 hours simulation.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisherFacultad de Ingeniería
dc.publisherBogotá
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] XM S.A. E.S.P., “XM Portal BI información inteligente.” [Online]. Available:http://portalbissrs.xm.com.co/trpr/Paginas/Historicos/Historicos.aspx
dc.relation[2] IEEE PES AMPS DSAS Test Feeder Working Group, “IEEE PES Test Feeders,”2017. [Online]. Available: https://site.ieee.org/pes-testfeeders/resources/
dc.relation[3] O. de las naciones unidas, “Informe de la Comisión Mundial sobre el Medio Ambiente y el Desarrollo,” Tech.Rep., 1987. [Online]. Available: https://es.scribd.com/doc/105305734/ONU-Informe-Brundtland-Ago-1987-Informe-de-la-Comision-Mundial-sobre-Medio\-Ambiente-y-Desarrollo
dc.relation[4] Programa de las Naciones Unidas para el Desarrollo, “Objetivos de DesarrolloSostenible, Colombia.” 2015. [Online]. Available: http://www.co.undp.org/content/dam/colombia/docs/ODM/undp-co-ODSColombiaVSWS-2016.pdf
dc.relation[5] Departamento Nacional de Planeación, “Bases del Plan Nacional de Desarrollo2018-2022,” 2018. [Online]. Available: https://colaboracion.dnp.gov.co/CDT/Prensa/PND/BasesPlanNacionaldeDesarrollo2018-2022-ResumenEjecutivo.pdf
dc.relation[6] N. Hatziargyriou, Microgrids: architectures and control, N. Hatziargyriou, Ed. Athens,Greece: John Wiley & Sons, Ltd., 2014.
dc.relation[7] Fundación de la energía de la comunidad de Madrid, “Guía Básica de la GeneraciónDistribuida.” [Online]. Available: http://www.madrid.org/bvirtual/BVCM005776.pdf
dc.relation[8] Clean Energy Council, “Clean Energy Australia Report 2020,” 2020.[Online]. Available: https://assets.cleanenergycouncil.org.au/documents/resources/reports/clean-energy-australia/clean-energy-australia-report-2020.pdf
dc.relation[9] S. Carvajal and J. Marín, “Impacto de la generación distribuida en el sistema eléctricode potencia colombiano: un enfoque dinámico,” Tecnura, vol. 17, no. 33, pp. 77–89,2013.
dc.relation[10] J. G.-H. y. A. Saavedra-Montes, “Una metodología de diseño de microrredes para zonasno interconectadas de Colombia,” TecnoLógicas, vol. 20, no. 39, 2017.
dc.relation[11] Comisión de regulación de energía y gas (CREG), “Resolución No. 030 (26 feb. 2018),” 2018. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/83b41035c2c4474f05258243005a1191/{\$}FILE/Creg030-2018.pdf
dc.relation[12] Unidad de Planeación Minero Energética (UPME), “Integración de las energías renovables no convencionales en Colombia,” 2015. [Online]. Available: http://www1.upme.gov.co/DemandaEnergetica/INTEGRACION ENERGIAS RENOVANLES WEB.pdf
dc.relation[13] Plan de Energización Rural del Departamento de Nariño, “Diagnóstico Energéticoy Social del Departamento de Nariño,” 2014. [Online]. Available: http://sipersn.udenar.edu.co:90/sipersn/docs/DocumentosAnalisisdeInformacion/Diagn%C3%B3stico%20Energ%C3%A9tico%20y%20Social%20del%20Departamento.pdf.
dc.relation[14] Subdirección De Energía Eléctrica – Grupo De Generación (UPME), “Informe Mensualde Variables de Generación y del Mercado Eléctrico Colombiano – Marzo 2018,” Unidadde Planeación Minero Energética, Tech. Rep., 2018.
dc.relation[15] Semana, “Curiosidades del gran apagón que amenaza con repetirse,” 2015. [Online]. Available: https://www.semana.com/nacion/articulo/asi-fue-el-racionamiento-de-energia-en-1992-en-el-gobierno-de-cesar-gaviria/448643-3/
dc.relation[16] Agencia de Noticias UN, “Microrred generaría energía a bajo costo en zonas no interconectadas,” Medellín, apr2017. [Online]. Available: https://agenciadenoticias.unal.edu.co/detalle/article/microrred-generaria-energia-a-bajo-costo-en-zonas-no-interconectadas.html
dc.relation[17] H. Angarita, A. J. Wickel, J. Sieber, J. Chavarro, J. A. Maldonado-Ocampo,G. A. Herrera-R., J. Delgado, and D. Purkey, “Basin-scale impacts of hydropowerdevelopment on the Mompós Depression wetlands, Colombia,” Hydrology andEarth System Sciences, vol. 22, no. 5, pp. 2839–2865, 2018. [Online]. Available:https://hess.copernicus.org/articles/22/2839/2018/
dc.relation[18] Semana, “¿Cuál es la magnitud real de la emergencia que vive Hidroituango?”may 2018. [Online]. Available: https://www.semana.com/nacion/multimedia/semana-en-vivo-cual-es-la-magnitud-real-de-la-emergencia-que-vive-hidroituango/567320/
dc.relation[19] Portafolio, “La planta de energía solar, Celsia Solar Yumbo, inició operaciones,” sep2017. [Online]. Available: https://www.celsia.com/es/granjas-solares/138 Bibliografía
dc.relation[20] H. Bevrani, B. Fran¸cois, and T. Ise, Microgrid Dynamics and Control : A Solution forIntegration of Renewable Power. Somerset, UNITED STATES: John Wiley & Sons,Incorporated, 2017.
dc.relation[21] E. Mojica, B. Toro, E. Gaona, and C. Trujillo, Control de microrredes eléctricas inteligentes. Bogotá, Colombia: Universidad Distrital Francisco José de Caldas, 2017.
dc.relation[22] D. Florian, J. W. Simpson-Porco, and F. Bullo, “Breaking the Hierarchy : Distributed Control & Economic Optimality in Microgrids,” IEEE transactions on Control ofNetwork Systems, vol. 5870, no. c, 2015.
dc.relation[23] J. Rocabert, A. Luna, and F. Blaabjerg, “Control of Power Converters in AC Microgrids,” IEEE Transactions on Power Electronics, vol. 27, no. 11, pp. 4734–4749,2012.
dc.relation[24] S. S. Reddy, P. R. Bijwe, and A. R. Abhyankar, “Real-Time Economic Dispatch Considering Renewable Power Generation Variability and Uncertainty Over SchedulingPeriod,” IEEE Systems Journal, vol. 9, no. 4, pp. 1440 – 1451, 2015.
dc.relation[25] L. Yang, T. Liu, and D. J. Hill, “Distributed MPC-based frequency control for multiarea power systems with energy storage,” Electric Power Systems Research, vol. 190,no. 106642, p. 7, 2020.
dc.relation[26] E. D. Anese, H. Zhu, and G. B. Giannakis, “Distributed Optimal Power Flow for SmartMicrogrids,” IEEE Transactions on Smart Grid, vol. 4, no. 3, pp. 1464–1475, 2013.
dc.relation[27] K. Lee, Y. M. Park, and J. L. Ortiz, “A United Approach to Optimal Real and ReactivePower Dispatch,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-104,no. 5, pp. 1147–1153, 1985.
dc.relation[28] D. Shirmoharmnadi, H. W. Hong, A. Semlyen, and G. X. Luo, “A Compensation-BasedPower Flow Methdd for Weakly Meshed Distribution and Transmission Networks,”IEEE Transactions on Power Systems, vol. 3, no. 2, pp. 753–762, 1988.
dc.relation[29] F. Andrés, H. Ramírez, J. Hernandez, and E. R. Trujillo, “Optimal Power Flow inElectrical Microgrids,” Energy and Power Engineering, vol. 6, pp. 449–458, 2014.
dc.relation[30] Y. Levron, J. M. Guerrero, and Y. Beck, “Optimal Power Flow in Microgrids WithEnergy Storage,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3226–3234,2013.
dc.relation[31] W. C. Clarke, C. Manzie, and M. J. Brear, “An Economic MPC Approach to MicrogridControl,” in 2016 Australian Control Conference, Newcastle, 2016, pp. 276–281.
dc.relation[32] A. Parisio, E. Rikos, and L. Glielmo, “A model predictive control approach to microgridoperation optimization,” IEEE Transactions on Control Systems Technology, vol. 22,no. 5, pp. 1813–1827, 2014.
dc.relation[33] P. P. Vergara, J. C. López, M. J. Rider, and L. C. P. Silva, “Optimal Operation ofUnbalanced Three-Phase Islanded Droop-Based Microgrids,” IEEE Transactions onSmart Grid, vol. 10, no. 1, pp. 928–940, 2020.
dc.relation[34] M. A. Nasr, A. Rabiee, and I. Kamwa, “MPC and robustness optimisation-based EMSfor microgrids with high penetration of intermittent renewable energy,” IET Generation, Transmission Distribution, vol. 14, no. 22, pp. 5239–5248, 2020.
dc.relation[35] Y. Du, W. Pei, N. Chen, X. Ge, and H. Xiao, “Real-time microgrid economic dispatchbased on model predictive control strategy,” Journal of Modern Power Systems andClean Energy, 2017.
dc.relation[36] J. J. Grainger and W. D. J. Stevenson, Análisis de sistemas de potencia. Mexico,D.F: McGraw-Hill, 1996.
dc.relation[37] P. Kundur, Power System Stability and Control, N. J. Balu and M. G. Lauby, Eds.New York: McGraw-Hill, 1994.
dc.relation[38] H. Saadat, Power System Analysis, B. Jones, Ed. New York: McGraw-Hill, 1999.
dc.relation[39] G. Luo and A. Semlyen, “Efficient Load Flow for Large Weakly Meshed Networks,”IEEE Transactions on Power Systems, vol. 5, no. 4, pp. 1309–1316, 1990.
dc.relation[40] C. S. Cheng and D. Shlrmohammadi, “A Three-Phase Power Flow Method For RealTime Distribution System Analysis,” IEEE Transactions on Power Systems, vol. 10,no. 2, pp. 671–679, 1995.
dc.relation[41] S. Khushalani, J. M. Solanki, and N. N. Schulz, “Development of Three-Phase Unbalanced Power Flow Using PV and PQ Models for Distributed Generation and Studyof the Impact of DG Models,” IEEE Transactions on Power Systems, vol. 22, no. 3,pp. 1019–1025, 2007.
dc.relation[42] A. Carlos, Z. D. Souza, M. Santos, M. Castilla, J. Miret, L. G. D. Vicuña, and D. Marujo, “Voltage security in AC microgrids : a power flow-based approach consideringdroop- controlled inverters,” IET Renewable Power Generation, vol. 9, no. 8, pp. 954–960, 2015.
dc.relation[43] M. Z. Kamh and R. Iravani, “A Unified Three-Phase Power-Flow Analysis Model forElectronically Coupled Distributed Energy Resources,” IEEE Transactions on PowerDelivery, vol. 26, no. 2, pp. 899–909, 2011.
dc.relation[44] M. Kamh and R. Iravani, “Unbalanced Model and Power-Flow Analysis of Microgridsand Active Distribution Systems,” IEEE Transactions on Power Delivery, vol. 25,no. 4, pp. 2851–2858, 2010.
dc.relation[45] W. H. Kersting, Distribution System Modeling and Analysis, third edit ed. Las Cruces,New Mexico: Taylor & Francis Group, 2012.
dc.relation[46] H. W. Dommel and W. F. Tinney, “Optimal Power Flow Solutions,” IEEE Transactions on Power Apparatus and Systems, vol. 87, no. 10, pp. 1866–1876, 1968.
dc.relation[47] C. Bayliss and B. Hardy, Tansmission and Distribution Electrical Engineering, thirdedit ed. Oxford: Elsevier Ltd., 2007.
dc.relation[48] Central Station Engineers of the Westinghouse Electric Corporation, Electrical Transmission and Distribution Reference Book, fourth edi ed., Westinghouse Electric Corporation, Ed. East Pittsburgh, Pennsylvania: Donnelley & Sons Company, 1964.
dc.relation[49] DIgSILENT GmbH, “DIgSILENT PowerFactory 15,” Gomaringen, Germany, 2014.
dc.relation[50] R. D. Zimmerman and C. E. Murillo-Sanchez, “MATPOWER (Version 7.1),” 2020.[Online]. Available: https://matpower.org
dc.relation[51] B. Yang, W. Li, Y. Zhao, and X. He, “Design and Analysis of a Grid-ConnectedPhotovoltaic Power System,” IEEE Transactions on Power Electronics, vol. 25, no. 4,pp. 992–1000, 2010.
dc.relation[52] Q.-C. Zhong and G. Weiss, “Synchronverters: Inverters That Mimic Synchronous Generators,” IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, vol. 58, no. 4,pp. 1259–1267, 2011.
dc.relation[53] F. Hameed, M. A. Hosani, and H. H. Zeineldin, “A Modified Backward / ForwardSweep Load Flow Method for Islanded Radial Microgrids,” IEEE Transactions onSmart Grid, vol. 10, no. 1, pp. 910 – 918, 2019.
dc.relation[54] A. Gabash and P. Li, “Active-Reactive Optimal Power Flow in Distribution NetworksWith Embedded Generation and,” IEEE Transactions on Power Systems, vol. 27,no. 4, pp. 2026–2035, 2012.
dc.relation[55] S. Ge and T. S. Chung, “Optimal Active Power Flow Incorporating Power Flow ControlNeeds in Flexible Ac Transmission Systems,” IEEE Transactions on Power Systems,vol. 14, no. 2, pp. 738–744, 1999.
dc.relation[56] J. Hetzer, D. C. Yu, and K. Bhattarai, “An Economic Dispatch Model IncorporatingWind Power,” IEEE Transactions on Energy Conversion, vol. 23, no. 2, pp. 603–611,2008.
dc.relation[57] Z.-l. Gaing, “Particle Swarm Optimization to Solving the Economic Dispatch Considering the Generator Constraints,” IEEE Transactions on Power Systems, vol. 18, no. 3,pp. 1187–1195, 2003.
dc.relation[58] H. Liang, B. J. Choi, A. Abdrabou, W. Zhuang, and X. S. Shen, “Decentralized Economic Dispatch in Microgrids via Heterogeneous Wireless Networks,” IEEE Journalon Selected Areas in Communications, vol. 30, no. 6, pp. 1061–1074, 2012.
dc.relation[59] M. Mahmoodi, P. Shamsi, and B. Fahimi, “Economic Dispatch of a Hybrid MicrogridWith Distributed Energy Storage,” IEEE Transactions on Smart Grid, vol. 6, no. 6,pp. 2607–2614, 2015.
dc.relation[60] S. Granville, “Optimal Reactive Dispatch Through Interior Point Methods,” IEEETransactions on Power Systems, vol. 9, no. 1, pp. 136–146, 1994.
dc.relation[61] B. Zhao, C. X. Guo, and Y. J. Cao, “A Multiagent-Based Particle Swarm Optimization Approach for Optimal Reactive Power Dispatch,” IEEE Transactions on PowerSystems, vol. 20, no. 2, pp. 1070–1078, 2005.
dc.relation[62] Yong-jun Zhang and Zhen Ren, “Optimal reactive power dispatch considering costs ofadjusting the control devices,” IEEE Transactions on Power Systems, vol. 20, no. 3,pp. 1349–1356, 2005.
dc.relation[63] Q. H. Wu and J. T. Ma, “Power system optimal reactive power dispatch using evolutionary programming,” IEEE Transactions on Power Systems, vol. 10, no. 3, pp.1243–1249, 1995.
dc.relation[64] D. Boice, R. Gursky, and J. Trad, “Cost of Electrical Power System Losses for Usein Economic Evaluations,” IEEE Transactions on Power Systems, vol. 4, no. 2, pp.586–593, 1989.
dc.relation[65] International Business Machines Corporation (IBM), “IBM ILOG CPLEX Optimization Studio,” 2019. [Online]. Available: https://www.ibm.com/co-es/products/ilog-cplex-optimization-studio
dc.relation[66] C. A. Floudas, Nonlinear and Mixed-Integer Optimization : Fundamentals and Applications. Cary, UNITED STATES: Oxford University Press, Incorporated, 1995.
dc.relation[67] Y. Xu and C. Singh, “Adequacy and Economy Analysis of Distribution SystemsIntegrated With Electric Energy Storage and Renewable Energy Resources,” IEEETransactions on Power Systems, vol. 27, no. 4, pp. 2332–2341, 2012.
dc.relation[68] K. Baker, J. Guo, G. Hug, and X. Li, “Distributed MPC for Efficient Coordination ofStorage and Renewable Energy Sources Across Control Areas,” IEEE Transactions onSmart Grid, vol. 7, no. 2, pp. 992–1001, 2016.142 Bibliografía
dc.relation[69] C. X. Rosero, M. Velasco, P. Martí, A. Camacho, J. Miret, and M. Castilla, “ActivePower Sharing and Frequency Regulation in Droop-Free Control for Islanded Microgrids Under Electrical and Communication Failures,” IEEE Transactions on IndustrialElectronics, vol. 67, no. 8, pp. 6461–6472, 2020.
dc.relation[70] H. Mahmood, D. Michaelson, and J. Jiang, “Reactive Power Sharing in Islanded Microgrids Using Adaptive Voltage Droop Control,” IEEE Transactions on Smart Grid,vol. 6, no. 6, pp. 3052–3060, 2015.
dc.relation[71] E. Denny and M. O’Malley, “Wind generation, power system operation, and emissionsreduction,” IEEE Transactions on Power Systems, vol. 21, no. 1, pp. 341–347, 2006.
dc.relation[72] Comisión de regulación de energía y gas (CREG), “Resolución No. 119(21 dic. 2007),” 2007. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1aed427ff782911965256751001e9e55/c63f06a9114e1a150525785a007a6fa2
dc.relation[73] B. Zhao, X. Zhang, J. Chen, C. Wang, and L. Guo, “Operation Optimization of Standalone Microgrids Considering Lifetime Characteristics of Battery Energy Storage System,” IEEE Transactions on Sustainable Energy, vol. 4, no. 4, pp. 934–943, 2013.
dc.relation[74] Comisión de regulación de energía y gas (CREG), “Resolución No. 108(03 jul. 1997),” 1997. [Online]. Available: http://apolo.creg.gov.co/Publicac.nsf/1c09d18d2d5ffb5b05256eee00709c02/5704b5b3164bd1620525785a007a63c3
dc.relation[75] C. Roos, T. Terlaky, and J.-P. Vial, Interior Point Methods for Linear Optimization,second edi ed. Springer, Boston, MA, 2005.
dc.relation[76] G. Liu, M. Starke, X. Zhang, and K. Tomsovic, “A MILP-based distribution optimalpower flow model for microgrid operation,” 2016, pp. 1–5.
dc.relation[77] A. Ravichandran, S. Sirouspour, P. Malysz, and A. Emadi, “A Chance-ConstraintsBased Control Strategy for Microgrids With Energy Storage and Integrated ElectricVehicles,” IEEE Transactions on Smart Grid, vol. 9, no. 1, pp. 346–359, 2018.
dc.relation[78] L. Tian, L. Cheng, J. Guo, and K. Wu, “System Modeling and Optimal Dispatchingof Multi-energy Microgrid with Energy Storage,” Journal of Modern Power Systemsand Clean Energy, vol. 8, no. 5, pp. 809–819, 2020.
dc.relation[79] M.-h. Lin, J. G. Carlsson, D. Ge, J. Shi, and J.-f. Tsai, “A Review of Piecewise Linearization Methods,” Mathematical Problems in Engineering, vol. 2013, p. 8, 2013.
dc.relation[80] P. L. Cavalcante, J. C. López, J. F. Franco, M. J. Rider, A. V. Garcia, M. R. R.Malveira, L. L. Martins, and L. C. M. Direito, “Centralized Self-Healing Scheme forElectrical Distribution Systems,” IEEE Transactions on Smart Grid, vol. 7, no. 1, pp.145–155, 2016.
dc.relation[81] Z. Yang, W. Lin, F. Qiu, J. Yu, and G. Yang, “Correct the Piecewise LinearizationError of Quadratic Objective Function in DC OPF Model,” IEEE Transactions onPower Systems, vol. 34, no. 6, pp. 5083–5086, 2019.
dc.relation[82] J. Zhao, F. Wen, Z. Y. Dong, Y. Xue, and K. P. Wong, “Optimal Dispatch of Electric Vehicles and Wind Power Using Enhanced Particle Swarm Optimization,” IEEETransactions on Industrial Informatics, vol. 8, no. 4, pp. 889–899, 2012.
dc.relation[83] C. M. Colson, M. H. Nehrir, and C. Wang, “Ant colony optimization for microgridmulti-objective power management,” in 2009 IEEE/PES Power Systems Conferenceand Exposition, 2009, pp. 1–7.
dc.relation[84] A. Askarzadeh, “A Memory-Based Genetic Algorithm for Optimization of Power Generation in a Microgrid,” IEEE Transactions on Sustainable Energy, vol. 9, no. 3, pp.1081–1089, 2018.
dc.relation[85] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proceedings ofICNN’95 - International Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948vol.4.
dc.relation[86] M. Yousif, Q. Ai, Y. Gao, W. Ahmad, Z. J. Wattoo, and R. Hao, “An Optimal DispatchStrategy for Distributed Microgrids Using PSO,” CSEE JOURNAL OF POWER ANDENERGY SYSTEMS, vol. 6, no. 3, pp. 724–734, 2020.
dc.relation[87] R. D. Yates and D. J. Goodman, Probability and Stochastic Processes, 2nd ed., B. Zobrist, Ed. Hoboken: John Wiley & Sons, Inc., 2005.
dc.relation[88] F. Y. Ettoumi, H. Sauvageot, and A. Adane, “Statistical bivariate modelling of windusing first-order Markov chain and Weibull distribution,” Renewable Energy, vol. 28,pp. 1787–1802, 2003.
dc.relation[89] A. Loukatou, S. Howell, P. Johnson, and P. Duck, “Stochastic wind speed modellingfor estimation of expected wind power output,” Applied Energy, vol. 228, no. March,pp. 1328–1340, 2018.
dc.relation[90] J. C. Arevalo, F. Santos, and S. Rivera, “Uncertainty Cost Functions for Solar Photovoltaic Generation , Wind Energy Generation , and Plug-In Electric Vehicles : Mathematical Expected Value and Verification by Monte Carlo Simulation Sergio Rivera,”International Journal of Power and Energy Conversion, vol. x, no. x, pp. 1–37.
dc.relation[91] Mathematics Research Developments, Linear Programming New Frontiers in Theoryand Applications, Z. A. Mann, Ed. New York: Nova Science Publishers, Inc, 2020.
dc.relation[92] International Business Machines Corporation (IBM), “ILOG CPLEX Optimization Studio,” 2020. [Online]. Available: https://www.ibm.com/co-es/products/ilog-cplex-optimization-studio
dc.relation[93] J. B. Rawlings, D. Q. Mayne, and M. M. Diehl, Model Predictive Control Theory,Computation, and Design, 2nd ed. Santa Barbara, California: Nob Hill Publishing,LLC, 2019.
dc.relation[94] S. Paran, T. Vu, F. Diaz, C. S. Edrington, T. El-mezyani, S. Paran, T. Vu, F. Diaz,C. S. Edrington, and T. El-mezyani, “MPC-Based Distributed Control for IntelligentEnergy Management of AC Microgrids,” Electric Power Components and Systems,vol. 0, no. 0, pp. 1–13, 2019.
dc.relation[95] C. Bordons, F. Garcia-torres, and M. A. Ridao, Model Predictive Control of Microgrids,M. J. Grimble, A. Ferrara, and O. Jackson, Eds. Springer Nature Switzerland AG,2020.
dc.relation[96] K. Utkarsh, D. Srinivasan, A. Trivedi, W. Zhang, and T. Reindl, “Distributed ModelPredictive Real-Time Optimal Operation of a Network of Smart Microgrids,” IEEETransactions on Smart Grid, vol. 10, no. 3, pp. 2833–2845, 2019.
dc.relation[97] Y. Du, J. Wu, S. Li, C. Long, and I. Ch, “Distributed MPC for Coordinated Energy Efficiency Utilization in Microgrid Systems,” IEEE Transactions on Smart Grid, vol. 10,no. 2, pp. 1781 – 1790, 2019.
dc.relation[98] S. Deilami, A. S. Masoum, P. S. Moses, and M. A. S. Masoum, “Real-Time Coordination of Plug-In Electric Vehicle Charging in Smart Grids to Minimize Power Lossesand Improve Voltage Profile,” IEEE Transactions on Smart Grid, vol. 2, no. 3, pp.456–467, 2011.
dc.relation[99] S. Bae and A. Kwasinski, “Dynamic Modeling and Operation Strategy for a MicrogridWith Wind and Photovoltaic Resources,” IEEE Transactions on Smart Grid, vol. 3,no. 4, pp. 1867–1876, 2012.
dc.relation[100] A. Rodríguez, G. Daniel, L. Alvarado-Barrios, A. Tapia, and J. M. Escaño, “A MPC ´Strategy for the Optimal Management of Microgrids Based on Evolutionary Optimization,” Electronics, vol. 8, no. 1371, pp. 1–16, 2019.
dc.relation[101] P. J. Zucatelli, E. G. S. Nascimento, G. Y. R. Aylas, N. B. P. Souza, Y. K. L. Kitagawa,A. A. B. Santos, A. M. G. Arce, and D. M. Moreira, “Short-term wind speed forecastingin Uruguay using computational intelligence,” Heliyon, vol. 5, p. 11, 2019.
dc.relation[102] S. Fan and R. J. Hyndman, “Short-Term Load Forecasting Based on a Semi-ParametricAdditive Model,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 134–141,2012.
dc.relation[103] H. Chitsaz, P. Zamani-Dehkordi, H. Zareipour, and P. P. Parikh, “Electricity PriceForecasting for Operational Scheduling of Behind-the-Meter Storage Systems,” IEEETransactions on Smart Grid, vol. 9, no. 6, pp. 6612–6622, 2018.
dc.relation[104] E. K. P. Chong and S. H. Zak, An Introduction to Optimization, fourth ed. ed. Hoboken, New Jersey: John Wiley & Sons, Inc., 2013.
dc.relation[105] S. C. Dhulipala, R. V. A. Monteiro, R. F. d. Silva Teixeira, C. Ruben, A. S. Bretas,and G. C. Guimar˜aes, “Distributed Model-Predictive Control Strategy for DistributionNetwork Volt/VAR Control: A Smart-Building-Based Approach,” IEEE Transactionson Industry Applications, vol. 55, no. 6, pp. 7041–7051, 2019.
dc.relation[106] A. Saad, T. Youssef, A. T. Elsayed, A. Amin, O. H. Abdalla, and O. Mohammed, “Data-Centric Hierarchical Distributed Model Predictive Control for Smart GridEnergy Management,” IEEE Transactions on Industrial Informatics, vol. 15, no. 7,pp. 4086–4098, 2019.
dc.relation[107] Y. Censor and S. Zenios, Parallel optimization: Theory, algorithms, and applications.New York: Oxford University Press, 1997.
dc.relation[108] C. Durazzi, V. Ruggiero, and G. Zanghirati, “Parallel Interior-Point Method for Linearand Quadratic Programs with Special Structure,” Journal of Optimization Theory andApplications, vol. 110, no. 2, pp. 289–313, 2001.
dc.relation[109] J. Kazempour, “Distributed optimization,” 2019. [Online]. Available: https://energy-markets-school.dk/summer-school-2019/
dc.relation[110] S. Mei, W. Wei, and L. Feng, “On engineering game theory with its application inpower systems,” Control Theory and Technology, vol. 15, pp. 1–12, 2017.
dc.relation[111] Y. Zheng, Y. Song, D. J. Hill, and K. Meng, “Online Distributed MPC-Based OptimalScheduling for EV Charging Stations in Distribution Systems,” IEEE Transactions onIndustrial Informatics, vol. 15, no. 2, pp. 638–649, 2019.
dc.relation[112] E. Mojica-Nava, C. A. Macana, and N. Quijano, “Dynamic Population Games forOptimal Dispatch on Hierarchical Microgrid Control,” IEEE Transactions on Systems,Man, and Cybernetics: Systems, vol. 44, no. 3, pp. 306–317, 2014.
dc.relation[113] X. Kong, X. Liu, L. Ma, and K. Y. Lee, “Hierarchical Distributed Model PredictiveControl of Standalone Wind/Solar/Battery Power System,” IEEE Transactions onSystems, Man, and Cybernetics: Systems, vol. 49, no. 8, pp. 1570–1581, 2019.
dc.relation[114] G. Carmona, Existence and Stability of Nash Equilibrium. Singapore: WORLDSCIENTIFIC, 2013.
dc.relation[115] L. A. Rademacher, “Cálculo y Estabilidad de Equilibrios de Nash y Aplicaciones alModelamiento del Mercado de Energía Eléctrica,” Ph.D. dissertation, Universidad deChile, 2002.
dc.relation[116] J. A. Jardini, C. M. V. Tahan, M. R. Gouvea, S. U. Ahn, and F. M. Figueiredo, “Dailyload profiles for residential, commercial and industrial low voltage consumers,” IEEETransactions on Power Delivery, vol. 15, no. 1, pp. 375–380, 2000.
dc.relation[117] J. Urrego-Ortiz, J. A. Martínez, P. A. Arias, and A. Jaramillo-Duque, “Assessment and ´Day-Ahead Forecasting of Hourly Solar Radiation in Medellín, Colombia,” Energies,vol. 12, no. 4402, pp. 1–29, 2019.
dc.relation[118] S. Papathanassiou and N. D. Hatziargyriou, “A Benchmark Low Voltage MicrogridNetwork,” in Power systems with dispersed generation: technologies, impacts on development, operation and performances, no. June 2014, Athens, Greece, 2005.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleControl MPC distribuido para el despacho óptimo de potencia activa y reactiva en microrredes
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución