dc.contributor | Vega Castro, Nohora Angélica | |
dc.contributor | Grupo de Investigación en Proteínas GRIP | |
dc.creator | Espinosa Velandia, Jessica Natalia | |
dc.date.accessioned | 2022-08-25T16:46:45Z | |
dc.date.available | 2022-08-25T16:46:45Z | |
dc.date.created | 2022-08-25T16:46:45Z | |
dc.date.issued | 2022 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82105 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | El estudio de las lectinas vegetales ha sido de gran importancia debido a su capacidad de reconocer residuos de carbohidratos, los cuales han sido llamados glicotopes; alguno de ellos se encuentra enmascarados en la superficie celular y están asociados con una gran variedad de carcinomas. Algunas de las lectinas que más se han estudiado son las de origen vegetal de la familia Leguminosae, sin embargo, también se han aislado de otras familias botánicas, tales como Lamiácea. Las lectinas de Lamiáceas se caracterizan porque reconocen los glicotopes T y/o Tn. La información disponible acerca de estas proteínas es muy escasa debido a que los procesos de purificación no permiten obtener la cantidad necesaria para realizar estudios de caracterización estructural y de interacción con el antígeno Tn/T; por otra parte, hasta el momento solo hay dos secuencias de especies relacionadas obtenidas a partir del cDNA, la lectina de Salvia miltorriza (LSM) y de Gleheda y solo se han caracterizado cuatro lectinas de la zona de Eurasia y dos lectinas de especies endémicas de Colombia, la lectina de Salvia bogotensis (LSBo-I) y de Lepechinia bullata (LLb-I) En el presente trabajo, se realizó la purificación de la lectina de Salvia bogotensis I (LSBo-I), empleando cromatografía de intercambio iónico y afinidad. Las fracciones obtenidas presentaron actividad aglutinante por eritrocitos Tn y se observó por SDS PAGE, una banda alrededor de 36 kDa por SDS-PAGE que es similar a lo obtenido en estudios previos. La sepharosa 4B, fue acoplada a una IgG de conejo (antiLSBo-I), y la elución se llevó a cabo mediante un gradiente de pH. En cada etapa de purificación se evaluó la actividad aglutinante con eritrocitos humanos A+, los cuales fueron tratados enzimáticamente con neuraminidasa y B- galactosidasa para exponer el Tn. Se obtuvo el 71% de la secuencia y por predicción se determinó que pertenece a las lectinas tipo Leguminosa (L). También se llevaron a cabo ensayos para la obtención del ADNc y la secuencia de nucleótidos de la LSBo-I. (Texto tomado de la fuente) | |
dc.description.abstract | Plant lectins studies have been of great importance due to their ability to recognize carbohydrate residues on surface cells, epitopes-like glycotopes are called. Some of them are masked on the cell surface and are associated with a wide variety of carcinomas. The most studied lectins belong to the Leguminosae family however, they have also been isolated from other botanical families, such as Lamiaceae. Their lectins are characterized by recognizing T and/or Tn glycotypes. The information available about these proteins is very scarce owing to purification processes do not allow obtaining the amount to carry out structural studies and interaction with Tn/T glycans. Secondly, there are only two sequences related to Lamiacea lectins, Salvia miltorriza (SML) and Gleheda and four lectins have been studied from Eurasia zone and two endemic lectins from Colombia, Salvia bogotensis (SBoL-I) and Lepechinia bullata (LBL-I). In this work, Ion-exchange and affinity chromatography’s led to getting SBoL-I that showed only a band by SDS PAGE, around 36 kDa, according to previous studies. Main purification step was carried out using affinity chromatography, a Sepharose 4B was coupled to IgG (antiSBoL-I) and pH gradient elution. The agglutinating activity was tested using A+ human erythrocytes, which were enzymatically treated with neuraminidase and B−galactosidase, to expose Tn structures. Finally, a sequence with 71% coverage was obtained and three-dimensional model type of Leguminous was predicted by homology. Additionally, cDNA assays were carried out to get nucleotide sequence from SBoL-I. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | |
dc.publisher | Departamento de Química | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Pérez G, Vega N. Lamiaceae lectins. Funct Plant Sci Biotechnol. 2007;1:288–99. | |
dc.relation | Hua W, Han L, Wang Z. Molecular cloning and expression of a novel gene related to legume lectin from Salvia miltiorrhiza Bunge. African J Biotechnol. 2015;14(28):2234–43. | |
dc.relation | Wang W, Peumans WJ, Rougé P, Rossi C, Proost P, Chen J, et al. Leaves of the Lamiaceae species Glechoma hederacea (ground ivy) contain a lectin that is structurally and evolutionary related to the legume lectins. Plant J. 2003;33(2):293–304. | |
dc.relation | Vega N, Pérez G. Isolation and characterisation of a Salvia bogotensis seed lectin specific for the Tn antigen. Phytochemistry. 2006;67(4):347–55. | |
dc.relation | Wilches Torres MA. Aproximación a la estructura primaria de lectinas específicas para el antígeno Tn e identificación de nuevas lectinas específicas para glucosa/manosa en semillas de Salvia bogotensis y Lepechinia bullata. Universidad Nacional de Colombia-Sede Bogotá; | |
dc.relation | da Costa V, van Vliet SJ, Carasi P, Frigerio S, García PA, Croci DO, et al. The Tn antigen promotes lung tumor growth by fostering immunosuppression and angiogenesis via interaction with Macrophage Galactose-type lectin 2 (MGL2). Cancer Lett. 2021; | |
dc.relation | Gabba A, Bogucka A, Luz JG, Diniz A, Coelho H, Corzana F, et al. Crystal Structure of the Carbohydrate Recognition Domain of the Human Macrophage Galactose C-Type Lectin Bound to GalNAc and the Tumor-Associated Tn Antigen. Biochemistry. 2021;60(17):1327–36. | |
dc.relation | Simplicien M, Barre A, Benkerrou Y, Van Damme EJM, Rougé P, Benoist H. The T/Tn-Specific Helix pomatia Lectin Induces Cell Death in Lymphoma Cells Negative for T/Tn Antigens. Cancers (Basel). 2021;13(17):4356. | |
dc.relation | Oinam SD, Senjam SS, Kamei R, Hanjabam JS. The Role of Lectin as Potential Biomarker in Ovarian Cancer. Curr Pharm Biotechnol. 2022;23(4):478–85. | |
dc.relation | Hirabayashi J, Tateno H, Shikanai T, Aoki-Kinoshita KF, Narimatsu H. The Lectin Frontier Database (LfDB), and data generation based on frontal affinity chromatography. Molecules. 2015;20(1):951–73. | |
dc.relation | Sousa BL, Silva Filho JC, Kumar P, Pereira RI, Łyskowski A, Rocha BAM, et al. High-resolution structure of a new Tn antigen-binding lectin from Vatairea macrocarpa and a comparative analysis of Tn-binding legume lectins. Int J Biochem Cell Biol. 2015;59:103–10. | |
dc.relation | Wu AM. Lectinochemical studies on the glyco-recognition factors of a Tn (GalNAcα1→ Ser/Thr) specific lectin isolated from the seeds of Salvia sclarea. J Biomed Sci. 2005;12(1):167–84. | |
dc.relation | Medeiros A, Bianchi S, Calvete JJ, Balter H, Bay S, Robles A, et al. Biochemical and functional characterization of the Tn‐specific lectin from Salvia sclarea seeds. FEBS J. 2000;267(5):1434–40. | |
dc.relation | Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev. 1998;98(2):637–74. | |
dc.relation | Duk M, Mitra D, Lisowska E, Kabat EA, Sharon N, Lis H. Immunochemical studies on the combining site of the A+ N blood type specific Moluccella laevis lectin. Carbohydr Res. 1992;236:245–58. | |
dc.relation | Duarte JJF, Pérez G. Tn-specific lectins production from Salvia palifolia and Hyptis mutabilis by cellular somaclonal variation. Rev Fac Ciencias Básicas. 2013;9(1):134–41. | |
dc.relation | Manning JC, Romero A, Habermann FA, Caballero GG, Kaltner H, Gabius H-J. Lectins: a primer for histochemists and cell biologists. Histochem Cell Biol. 2017;147(2):199–222. | |
dc.relation | Lam SK, Ng TB. Lectins: production and practical applications. Appl Microbiol Biotechnol. 2011;89(1):45–55. | |
dc.relation | Dan X, Liu W, Ng TB. Development and applications of lectins as biological tools in biomedical research. Med Res Rev. 2016;36(2):221–47. | |
dc.relation | Rüdiger H, Gabius HJ. The history of lectinology. Sugar Code Fundam Glycosci. 2009;261–8. | |
dc.relation | Fitches E, Wiles D, Douglas AE, Hinchliffe G, Audsley N, Gatehouse JA. The insecticidal activity of recombinant garlic lectins towards aphids. Insect Biochem Mol Biol. 2008;38(10):905–15. | |
dc.relation | Kaur M, Singh K, Rup PJ, Kamboj SS, Singh J. Anti-insect potential of lectins from Arisaema species towards Bactrocera cucurbitae. J Env Biol. 2009;30(6):1019–23. | |
dc.relation | Sattayasai N, Sudmoon R, Nuchadomrong S, Chaveerach A, Kuehnle AR, Mudalige-Jayawickrama RG, et al. Dendrobium findleyanum agglutinin: production, localization, anti-fungal activity and gene characterization. Plant Cell Rep. 2009;28(8):1243–52. | |
dc.relation | Yan Q, Jiang Z, Yang S, Deng W, Han L. A novel homodimeric lectin from Astragalus mongholicus with antifungal activity. Arch Biochem Biophys. 2005;442(1):72–81. | |
dc.relation | Swanson MD, Winter HC, Goldstein IJ, Markovitz DM. A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem. 2010;285(12):8646–55. | |
dc.relation | Kobayashi T, Kuroda J, Ashihara E, Oomizu S, Terui Y, Taniyama A, et al. Galectin-9 exhibits anti-myeloma activity through JNK and p38 MAP kinase pathways. Leukemia. 2010;24(4):843–50. | |
dc.relation | Choi SH, Lyu SY, Park WB. Mistletoe lectin induces apoptosis and telomerase inhibition in human A253 cancer cells through dephosphorylation of Akt. Arch Pharm Res. 2004;27(1):68–76. | |
dc.relation | van Leeuwen SS, Schoemaker RJW, Timmer CJAM, Kamerling JP, Dijkhuizen L. Use of Wisteria floribunda agglutinin affinity chromatography in the structural analysis of the bovine lactoferrin N-linked glycosylation. Biochim Biophys Acta (BBA)-General Subj. 2012;1820(9):1444–55. | |
dc.relation | Morgan GW, Kail M, Hollinshead M, Vaux DJ. Combined biochemical and cytological analysis of membrane trafficking using lectins. Anal Biochem. 2013;441(1):21–31. | |
dc.relation | Inoue K, Wada J, Eguchi J, Nakatsuka A, Teshigawara S, Murakami K, et al. Urinary fetuin-A is a novel marker for diabetic nephropathy in type 2 diabetes identified by lectin microarray. PLoS One. 2013;8(10):e77118. | |
dc.relation | Nakajima K, Inomata M, Iha H, Hiratsuka T, Etoh T, Shiraishi N, et al. Establishment of new predictive markers for distant recurrence of colorectal cancer using lectin microarray analysis. Cancer Med. 2015;4(2):293–302. | |
dc.relation | Bertok T, Sediva A, Katrlik J, Gemeiner P, Mikula M, Nosko M, et al. Label-free detection of glycoproteins by the lectin biosensor down to attomolar level using gold nanoparticles. Talanta. 2013;108:11–8. | |
dc.relation | Tsaneva M, Van Damme EJM. 130 years of plant lectin research. Glycoconj J. 2020;1–19. | |
dc.relation | Jain M, Amera GM, Muthukumaran J, Singh AK. Insights into biological role of plant defense proteins: A review. Biocatal Agric Biotechnol. 2022;102293. | |
dc.relation | Nakamura-Tsuruta S, Kominami J, Kuno A, Hirabayashi J. Evidence that Agaricus bisporus agglutinin (ABA) has dual sugar-binding specificity. Biochem Biophys Res Commun. 2006;347(1):215–20. | |
dc.relation | Jiang S-Y, Ma Z, Ramachandran S. Evolutionary history and stress regulation of the lectin superfamily in higher plants. BMC Evol Biol. 2010;10(1):79. | |
dc.relation | Cordara G, Egge-Jacobsen W, Johansen HT, Winter HC, Goldstein IJ, Sandvig K, et al. Marasmius oreades agglutinin (MOA) is a chimerolectin with proteolytic activity. Biochem Biophys Res Commun. 2011;408(3):405–10. | |
dc.relation | Bonnardel F, Mariethoz J, Salentin S, Robin X, Schroeder M, Perez S, et al. UniLectin3D, a database of carbohydrate binding proteins with curated information on 3D structures and interacting ligands. Nucleic Acids Res. 2019;47(D1):D1236–44. | |
dc.relation | Fujimoto Z, Tateno H, Hirabayashi J. Lectin structures: classification based on the 3-D structures. Lectins. 2014;579–606. | |
dc.relation | Gupta RK, Gupta GS. Mannose Receptor Family: R-Type Lectins. In: Animal Lectins: Form, Function and Clinical Applications. Springer; 2012. p. 331–47. | |
dc.relation | Etzler ME, Surolia A, Cummings RD. L-type lectins. Essentials Glycobiol 2nd Ed. 2009; | |
dc.relation | Kilpatrick DC. Animal lectins: a historical introduction and overview. Biochim Biophys Acta (BBA)-General Subj. 2002;1572(2–3):187–97. | |
dc.relation | Loh SH, Park J-Y, Cho EH, Nah S-Y, Kang Y-S. Animal lectins: potential receptors for ginseng polysaccharides. J Ginseng Res. 2017;41(1):1–9. | |
dc.relation | Anderson K, Evers D, Rice KG. Structure and function of mammalian carbohydrate-lectin interactions. Glycoscience. 2008;2445. | |
dc.relation | Matsumoto J, Nakamoto C, Fujiwara S, Yubisui T, Kawamura K. A novel C-type lectin regulating cell growth, cell adhesion and cell differentiation of the multipotent epithelium in budding tunicates. Development. 2001;128(17):3339–47. | |
dc.relation | Walker JR, Nagar B, Young NM, Hirama T, Rini JM. X-ray crystal structure of a galactose-specific C-type lectin possessing a novel decameric quaternary structure. Biochemistry. 2004;43(13):3783–92. | |
dc.relation | Isseroff RR, Liu F-T. Galectin-3 regulates intracellular trafficking of epidermal growth factor receptor through Alix and promotes keratinocyte migration. J Invest Dermatol. 2012;132(12):2828–37. | |
dc.relation | Konno A, Kitagawa A, Watanabe M, Ogawa T, Shirai T. Tracing protein evolution through ancestral structures of fish galectin. Structure. 2011;19(5):711–21. | |
dc.relation | Ruiz FM, Fernández IS, López-Merino L, Lagartera L, Kaltner H, Menéndez M, et al. Fine-tuning of prototype chicken galectins: structure of CG-2 and structure–activity correlations. Acta Crystallogr Sect D Biol Crystallogr. 2013;69(9):1665–76. | |
dc.relation | Sharon N, Lis H. Molecular structure. Lectins. 2007;105–74. | |
dc.relation | Ley K. The role of selectins in inflammation and disease. Trends Mol Med. 2003;9(6):263–8. | |
dc.relation | Martínez Muñoz P. Estudio de las interacciones entre la vicilina y las lectinas con ay Cel-II de la semilla de Canavalia Ensiformis. Universidad Nacional de Colombia; | |
dc.relation | Lima TE, Sartori ALB, Rodrigues MLM. Plant antiherbivore defenses in Fabaceae species of the Chaco. Brazilian J Biol. 2017;77(2):299–303. | |
dc.relation | Wei J, Xu D, Zhou J, Cui H, Yan Y, Ouyang Z, et al. Molecular cloning, characterization and expression analysis of a C-type lectin (Ec-CTL) in orange-spotted grouper, Epinephelus coioides. Fish Shellfish Immunol. 2010;28(1):178–86. | |
dc.relation | Van Damme EJM. 35 years in plant lectin research: a journey from basic science to applications in agriculture and medicine. Glycoconj J. 2021;1–15. | |
dc.relation | De Coninck T, Van Damme EJM. The multiple roles of plant lectins. Plant Sci. 2021;313:111096. | |
dc.relation | Gorakshakar AC, Ghosh K. Use of lectins in immunohematology. Asian J Transfus Sci. 2016;10(1):12. | |
dc.relation | Kudelka MR, Ju T, Heimburg-Molinaro J, Cummings RD. Simple sugars to complex disease—mucin-type O-glycans in cancer. In: Advances in cancer research. Elsevier; 2015. p. 53–135. | |
dc.relation | Syed P, Gidwani K, Kekki H, Leivo J, Pettersson K, Lamminmäki U. Role of lectin microarrays in cancer diagnosis. Proteomics. 2016;16(8):1257–65. | |
dc.relation | Akkouh O, Ng TB, Singh SS, Yin C, Dan X, Chan YS, et al. Lectins with anti-HIV activity: a review. Molecules. 2015;20(1):648–68. | |
dc.relation | Santos AFS, da Silva MDC, Napoleão TH, Paiva PMG, Correia MTS, Coelho L. Lectins: Function, structure, biological properties andpotential applications. Curr Top Pept protein Res. 2014;15:41–62. | |
dc.relation | Van Holle S, Van Damme EJM. Messages from the past: new insights in plant lectin evolution. Front Plant Sci. 2019;10:36. | |
dc.relation | Tirta Ismaya W, Tjandrawinata RR, Rachmawati H. Lectins from the edible mushroom Agaricus bisporus and their therapeutic potentials. Molecules. 2020;25(10):2368. | |
dc.relation | Carrizo ME, Capaldi S, Perduca M, Irazoqui FJ, Nores GA, Monaco HL. The antineoplastic lectin of the common edible mushroom (Agaricus bisporus) has two binding sites, each specific for a different configuration at a single epimeric hydroxyl. J Biol Chem. 2005;280(11):10614–23. | |
dc.relation | Asensio JL, Cañada FJ, Siebert H-C, Laynez J, Poveda A, Nieto PM, et al. Structural basis for chitin recognition by defense proteins: GlcNAc residues are bound in a multivalent fashion by extended binding sites in hevein domains. Chem Biol. 2000;7(7):529–43. | |
dc.relation | Damme EJM Van, Peumans WJ, Barre A, Rougé P. Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. CRC Crit Rev Plant Sci. 1998;17(6):575–692. | |
dc.relation | Van Damme EJM, Lannoo N, Peumans WJ. Plant lectins. In: Advances in botanical research. Elsevier; 2008. p. 107–209. | |
dc.relation | Cruz P, Campos E, Martínez LM, Ortiz B, Martínez G. Las lectinas vegetales como modelo de estudio de las interacciones proteína-carbohidrato. Rev Educ Bioquímica. 2005;24(1):21–7. | |
dc.relation | Itakura Y, Nakamura-Tsuruta S, Kominami J, Tateno H, Hirabayashi J. Sugar-binding profiles of chitin-binding lectins from the hevein family: A comprehensive study. Int J Mol Sci. 2017;18(6):1160. | |
dc.relation | Dang L, Rougé P, Van Damme EJM. Amaranthin-like proteins with aerolysin domains in plants. Front Plant Sci. 2017;8:1368. | |
dc.relation | Santana SS, Gennari-Cardoso ML, Carvalho FC, Roque-Barreira MC, Santiago A da S, Alvim FC, et al. Eutirucallin, a RIP-2 type lectin from the latex of Euphorbia tirucalli L. presents proinflammatory properties. PLoS One. 2014;9(2):e88422. | |
dc.relation | Cummings RD, Etzler ME. Antibodies and lectins in glycan analysis. 2009; | |
dc.relation | Lagarda-Diaz I, Guzman-Partida AM, Vazquez-Moreno L. Legume lectins: proteins with diverse applications. Int J Mol Sci. 2017;18(6):1242. | |
dc.relation | Ambrosi M, Cameron NR, Davis BG. Lectins: tools for the molecular understanding of the glycocode. Org Biomol Chem. 2005;3(9):1593–608. | |
dc.relation | Lis H, Sharon N. Moluccella laevis Lectin. Trends Glycosci Glycotechnol. 1994;6(27):65–74. | |
dc.relation | Cipolla L, Peri F, Airoldi C. Glycoconjugates in cancer therapy. Anti-Cancer Agents Med Chem (Formerly Curr Med Chem Agents). 2008;8(1):92–121. | |
dc.relation | Wilches A, Rojas J, Sanabria E, Reyes E, Fernández J, Purification and biochemical characterization of at/tn specific lectin from Lepechinia bullata seeds (lamiaceae). 2017; | |
dc.relation | Kitagaki H, Matsumoto I, Seno N, Takahashi N, Endo S, Arata Y. Characterization of the carbohydrate moiety of Clerodendron trichotomum lectins: Its structure and reactivity toward plant lectins. Eur J Biochem. 1986;161(3):779–85. | |
dc.relation | Wang W, Hause B, Peumans WJ, Smagghe G, Mackie A, Fraser R, et al. The Tn antigen-specific lectin from ground ivy is an insecticidal protein with an unusual physiology. Plant Physiol. 2003;132(3):1322–34. | |
dc.relation | Nasir W, Frank M, Kunze A, Bally M, Parra F, Nyholm P-G, et al. Histo-blood group antigen presentation is critical for binding of norovirus VLP to glycosphingolipids in model membranes. ACS Chem Biol. 2017;12(5):1288–96. | |
dc.relation | Rougé P, Peumans WJ, Van Damme EJM, Barre A, Singh T, Wu JH, et al. Glycotope structures and intramolecular affinity factors of plant lectins for Tn/T antigens. In: The Molecular Immunology of Complex Carbohydrates-3. Springer; 2011. p. 143–54. | |
dc.relation | Vega NA. Caracterización Bioquímica funcional y biológica de la lectina de Salvia bogotensis. PhD Tesis Fac Ciencias Univ Nac Colomb Bogotá. 2004; | |
dc.relation | Barroso P, Murcia H, Vega N, Pérez G. Purification of IgY against Salvia bogotensis lectin. Biomédica. 2005;25(4):496–510. | |
dc.relation | Vega N, Murcia H, Pérez G. Characterization of Salvia bogotensis anti-lectin IgYs and their application in immunocytochemical studies involving tn antigen detection. Rev Colomb Química. 2009;38(3):363–77. | |
dc.relation | Torres Romero JC. Purificación y caracterización parcial de mucina citoplasmática utilizando la lectina de Salvia bogotensis. Dep Química. | |
dc.relation | Zhao R, Liu X, Wang Y, Jie X, Qin R, Qin W, et al. Integrated glycomic analysis of ovarian cancer side population cells. Clin Proteomics. 2016;13(1):1–14. | |
dc.relation | Bademler S, Zirtiloglu A, Sari M, Ucuncu MZ, Dogru EB, Karabulut S. Clinical significance of serum membrane-bound mucin-2 levels in breast cancer. Biomolecules. 2019;9(2):40. | |
dc.relation | Betge J, Schneider NI, Harbaum L, Pollheimer MJ, Lindtner RA, Kornprat P, et al. MUC1, MUC2, MUC5AC, and MUC6 in colorectal cancer: expression profiles and clinical significance. Virchows Arch. 2016;469(3):255–65. | |
dc.relation | Cazet A, Julien S, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast cancer Res. 2010;12(3):204. | |
dc.relation | Ju T, Aryal RP, Kudelka MR, Wang Y, Cummings RD. The Cosmc connection to the Tn antigen in cancer. Cancer biomarkers. 2014;14(1):63–81. | |
dc.relation | Ju T, Otto VI, Cummings RD. The Tn antigen—structural simplicity and biological complexity. Angew Chemie Int Ed. 2011;50(8):1770–91. | |
dc.relation | Kailemia MJ, Park D, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395–410. | |
dc.relation | Ju T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR, et al. T n and sialyl‐Tn antigens, aberrant O‐glycomics as human disease markers. PROTEOMICS–Clinical Appl. 2013;7(9–10):618–31. | |
dc.relation | Lisowska E. Tn antigens and their significance in oncology. Acta Biochim Pol. 1995;42(1):11–7. | |
dc.relation | Mall AS. Analysis of mucins: role in laboratory diagnosis. J Clin Pathol. 2008;61(9):1018–24. | |
dc.relation | Atanasova KR, Reznikov LR. Strategies for measuring airway mucus and mucins. Respir Res. 2019;20(1):1–14. | |
dc.relation | Lakshmanan I, Ponnusamy MP, Macha MA, Haridas D, Majhi PD, Kaur S, et al. Mucins in lung cancer: diagnostic, prognostic, and therapeutic implications. J Thorac Oncol. 2015;10(1):19–27. | |
dc.relation | Malaker SA, Pedram K, Ferracane MJ, Bensing BA, Krishnan V, Pett C, et al. The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins. Proc Natl Acad Sci. 2019;116(15):7278–87. | |
dc.relation | Yau T, Dan X, Ng CCW, Ng TB. Lectins with potential for anti-cancer therapy. Molecules. 2015;20(3):3791–810. | |
dc.relation | Mazalovska M, Kouokam JC. Lectins as promising therapeutics for the prevention and treatment of HIV and other potential coinfections. Biomed Res Int. 2018;2018. | |
dc.relation | Rougé P, Peumans WJ, Van Damme EJM, Barre A, Singh T, Wu JH, et al. Structure-function relationships of plant lectins that specifically recognize T and Tn antigens. Mol Immunol Complex Carbohydrates, 3rd ed Springer. 2011;157–70. | |
dc.relation | Sousa BL, Silva-Filho JC, Kumar P, Graewert MA, Pereira RI, Cunha RMS, et al. Structural characterization of a Vatairea macrocarpa lectin in complex with a tumor-associated antigen: a new tool for cancer research. Int J Biochem Cell Biol. 2016;72:27–39. | |
dc.relation | Fernández-Alonso JL. Estudios en Labiatae de Colombia IV. Novedades en Salvia y Sinopsis de las secciones angulatae y purpureae/Studies in Colombian Labiatae IV. Novelties in Salvia and synopsis of sections Angulatae and Purpureae. Caldasia. 2003;235–81. | |
dc.relation | Fernández Alonso JL. Salvia guacana, una nueva Labiatae de Colombia con flores resupinadas y sinopsis de Salvia sect. Tubiflorae. Rev la Acad Colomb Ciencias Exactas, Físicas y Nat. 2012;36(141):517–33. | |
dc.relation | Nieto G. Biological activities of three essential oils of the Lamiaceae family. Medicines. 2017;4(3):63. | |
dc.relation | Satyal P, Jones TH, Lopez EM, McFeeters RL, Ali NAA, Mansi I, et al. Chemotypic characterization and biological activity of Rosmarinus officinalis. Foods. 2017;6(3):20. | |
dc.relation | Uritu CM, Mihai CT, Stanciu G-D, Dodi G, Alexa-Stratulat T, Luca A, et al. Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res Manag. 2018;2018. | |
dc.relation | Martínez-Gordillo M, Bedolla-García B, Cornejo-Tenorio G, Fragoso-Martínez I, García-Peña M del R, González-Gallegos JG, et al. Lamiaceae de México. Bot Sci. 2017;95(4):780–806. | |
dc.relation | Wiederschain GY. Essentials of glycobiology. Springer Nature BV; 2009. | |
dc.relation | Hart GW, Copeland RJ. Glycomics hits the big time. Cell. 2010;143(5):672–6. | |
dc.relation | Smith PK, Krohn RI, Hermanson GT, Mallia a K, Gartner FH, Provenzano MD. Measurement of protein using bicinchoninic acid Anal Biochem 150: 76–85. Anal Biochem. 1985;150(1):76–85. | |
dc.relation | Schagger H, Von Jagow G. Tricine-sodium dodecylsulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem. 1987;166(I 987):368–79. | |
dc.relation | Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259):680–5. | |
dc.relation | Switzer III RC, Merril CR, Shifrin S. A highly sensitive silver stain for detecting proteins and peptides in polyacrylamide gels. Anal Biochem. 1979;98(1):231–7. | |
dc.relation | Vega NA. Detección, purificación y caracterización parcial de la lectina presente en las semillas del género Salvia. Thesis, Chemistry, Universidad Nacional de Colombia, Bogotá; 1997. | |
dc.relation | Stoscheck CM. [6] Quantitation of protein. In: Methods in enzymology. Elsevier; 1990. p. 50–68. | |
dc.relation | Baines MG, Thorpe R. Purification of immunoglobulin G (IgG). In: Immunochemical Protocols. Springer; 1992. p. 79–104. | |
dc.relation | J. R. Extracción, purificación y caracterización parcial de la lectina presente en las semillas de Lepechinia bullata. 2004. | |
dc.relation | Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, et al. Preparation of proteins and peptides for mass spectrometry analysis in a bottom‐up proteomics workflow. Curr Protoc Mol Biol. 2010;90(1):10–25. | |
dc.relation | Swaney DL, McAlister GC, Coon JJ. Decision tree–driven tandem mass spectrometry for shotgun proteomics. Nat Methods. 2008;5(11):959–64. | |
dc.relation | Swaney DL, McAlister GC, Coon JJ. Decision tree–driven tandem mass spectrometry for shotgun proteomics. Nat Methods. 2008;5(11):959–64. | |
dc.relation | Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc mass Spectrom. 1994;5(11):976–89. | |
dc.relation | Banerjee R, Das K, Ravishankar R, Suguna K, Surolia A, Vijayan M. Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactose complex. J Mol Biol. 1996;259(2):281–96. | |
dc.relation | Roy A, Kucukural A, Zhang Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat Protoc. 2010;5(4):725. | |
dc.relation | Yang J, Roy A, Zhang Y. BioLiP: a semi-manually curated database for biologically relevant ligand–protein interactions. Nucleic Acids Res. 2012;41(D1):D1096–103. | |
dc.relation | Kelley LA, Sternberg MJE. Protein structure prediction on the Web: a case study using the Phyre server. Nat Protoc. 2009;4(3):363–71. | |
dc.relation | Trott O, Olson AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem. 2010;31(2):455–61. | |
dc.relation | Schinazi RF, Kohler JJ, Kim B. Reverse transcription. In: Brenner’s Encyclopedia of Genetics. Elsevier; 2013. p. 224. | |
dc.relation | Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science (80- ). 1988;239(4839):487–91. | |
dc.relation | Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–10. | |
dc.relation | Abbas AK, Lichtman AH, Pillai S. Inmunología celular y molecular. Elsevier Health Sciences; 2022. | |
dc.relation | Bergmann-Leitner ES, Mease RM, Duncan EH, Khan F, Waitumbi J, Angov E. Evaluation of immunoglobulin purification methods and their impact on quality and yield of antigen-specific antibodies. Malar J. 2008;7(1):129. | |
dc.relation | Eivazi S, Majidi J. Production and purification of a polyclonal antibody against purified mouse IgG2b in rabbits towards designing mouse monoclonal isotyping kits. Adv Pharm Bull. 2015;5(1):109. | |
dc.relation | Moser AC, Hage DS. Immunoaffinity chromatography: an introduction to applications and recent developments. Bioanalysis. 2010;2(4):769–90. | |
dc.relation | Baldikova E, Pospiskova K, Ladakis D, Kookos IK, Koutinas AA, Safarikova M, et al. Magnetically modified bacterial cellulose: A promising carrier for immobilization of affinity ligands, enzymes, and cells. Mater Sci Eng C. 2017;71:214–21. | |
dc.relation | Turner AJ. Neprilysin. In: Handbook of proteolytic enzymes. Elsevier; 2004. p. 419–26. | |
dc.relation | Sanabria E. Aislamiento, purificación y caracterización parcial de la lectina presente en las semillas de Lepechinia bullata. 1999. | |
dc.relation | Van Driessche E, Beeckmans S, Dejaegere R, Kanarek L. Thiourea: the antioxidant of choice for the purification of proteins from phenol-rich plant tissues. Anal Biochem. 1984;141(1):184–8. | |
dc.relation | Aoki T. A comprehensive review of our current understanding of red blood cell (RBC) glycoproteins. Membranes (Basel). 2017;7(4):56. | |
dc.relation | Iskratsch T, Braun A, Paschinger K, Wilson IBH. Specificity analysis of lectins and antibodies using remodeled glycoproteins. Anal Biochem. 2009;386(2):133–46. | |
dc.relation | Wu AM, Liu J-H, Singh T, Yang Z. Recognition Roles of Mammalian Structural Units and Polyvalency in Lectin–Glycan Interactions. In: The Molecular Immunology of Complex Carbohydrates-3. Springer; 2011. p. 99–116. | |
dc.relation | Wu AM. Polyvalency of Tn (GalNAcα1→ Ser/Thr) glycotope as a critical factor for Vicia villosa B4 and glycoprotein interactions. FEBS Lett. 2004;562(1–3):51–8. | |
dc.relation | Fernandez-Alonso JL, Vega N, Pérez G. Lectin prospecting in Colombian Labiatae. A systematic-ecological approach-III. Mainly exotic species (cultivated or naturalised). Caldasia. 2009;31(2):227–45. | |
dc.relation | Nagano CS, Calvete JJ, Barettino D, Pérez A, Cavada BS, Sanz L. Insights into the structural basis of the pH-dependent dimer–tetramer equilibrium through crystallographic analysis of recombinant Diocleinae lectins. Biochem J. 2008;409(2):417–28. | |
dc.relation | Quintero Moreno M. Elucidación parcial de la estructura primaria de la lectina LGL-P2 y purificación y caracterización parcial de la lectina LGL-P4 presentes en semillas de Galactia lindenii. Dep Química. | |
dc.relation | Cavada BS, Marinho ES, Souza EP, Benevides RG, Delatorre P, Souza LAG, et al. Purification, partial characterization and preliminary X-ray diffraction analysis of a mannose-specific lectin from Cymbosema roseum seeds. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2006;62(3):235–7. | |
dc.relation | Perez G, Hernandez M, Mora E. Isolation and characterization of a lectin from the seeds of Dioclea lehmanni. Phytochemistry. 1990;29(6):1745–9. | |
dc.relation | Sierra A, Pérez G. Extracción, purificación y caracterización de dos lectinas en semillas de Dioclea sericea. Rev Acad Col Ciencias. 1999;23:445–54. | |
dc.relation | Melgarejo LM, Vega N, Pérez G. Isolation and characterization of novel lectins from Canavalia ensiformis DC and Dioclea grandiflora Mart. ex Benth. seeds. Brazilian J Plant Physiol. 2005;17(3):315–24. | |
dc.relation | Wilson IBH. Glycosylation of proteins in plants and invertebrates. Curr Opin Struct Biol. 2002;12(5):569–77. | |
dc.relation | Wang Y-Y, Lin S-Y, Chen W-Y, Liao S-L, Wu C-C, Pan P-H, et al. Glechoma hederacea extracts attenuate cholestatic liver injury in a bile duct-ligated rat model. J Ethnopharmacol. 2017;204:58–66. | |
dc.relation | Babino A, Tello D, Rojas A, Bay S, Osinaga E, Alzari PM. The crystal structure of a plant lectin in complex with the Tn antigen. FEBS Lett. 2003;536(1–3):106–10. | |
dc.relation | Ravishankar R, Ravindran M, Suguna K, Surolia A, Vijayan M. Crystal structure of the peanut lectin–T-antigen complex. Carbohydrate specificity generated by water bridges. Curr Sci. 1997;855–61. | |
dc.relation | Transue TR, Smith AK, Mo H, Goldstein IJ, Saper MA. Structure of benzyl T-antigen disaccharide bound to Amaranthus caudatus agglutinin. Nat Struct Biol. 1997;4(10):779–83. | |
dc.relation | Jeyaprakash AA, Rani PG, Reddy GB, Banumathi S, Betzel C, Sekar K, et al. Crystal structure of the jacalin–T-antigen complex and a comparative study of lectin–T-antigen complexes. J Mol Biol. 2002;321(4):637–45. | |
dc.relation | Alperin DM, Latter H, Lis H, Sharon N. Isolation, by affinity chromatography and gel filtration in 8 M-urea, of an active subunit from the anti-(blood-group A+ N)-specific lectin of Moluccella laevis. Biochem J. 1992;285(1):1–4. | |
dc.relation | Morris GM, Lim-Wilby M. Molecular docking. In: Molecular modeling of proteins. Springer; 2008. p. 365–82. | |
dc.relation | Forli W, Halliday S, Belew R, Olson A. AutoDock Version 4.2. Citeseer. 2012. | |
dc.relation | Sharon N, Lis H. Lectins. Springer Science & Business Media; 2003. | |
dc.relation | Vennapusa AR, Somayanda IM, Doherty CJ, Jagadish S V. A universal method for high-quality RNA extraction from plant tissues rich in starch, proteins and fiber. Sci Rep. 2020;10(1):1–13. | |
dc.relation | Sangha JS, Gu K, Kaur J, Yin Z. An improved method for RNA isolation and cDNA library construction from immature seeds of Jatropha curcas L. BMC Res Notes. 2010;3(1):1–6. | |
dc.relation | Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report. 1993;11(2):113–6. | |
dc.relation | Iandolino AB, Goes da Silva F, Lim H, Choi H, Williams LE, Cook DR. High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L.). Plant Mol Biol Report. 2004;22(3):269–78. | |
dc.relation | Gasic K, Hernandez A, Korban SS. RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Report. 2004;22(4):437–8. | |
dc.relation | White EJ, Venter M, Hiten NF, Burger JT. Modified Cetyltrimethylammonium bromide method improves robustness and versatility: the benchmark for plant RNA extraction. Wiley Online Library; 2008. | |
dc.relation | Rio DC, Ares M, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010(6):pdb-prot5439. | |
dc.relation | Desjardins P, Conklin D. NanoDrop microvolume quantitation of nucleic acids. JoVE (Journal Vis Exp. 2010;(45):e2565. | |
dc.relation | Skrypina NA, Timofeeva A V, Khaspekov GL, Savochkina LP, Beabealashvilli RS. Total RNA suitable for molecular biology analysis. J Biotechnol. 2003;105(1–2):1–9. | |
dc.relation | Liu L, Han R, Yu N, Zhang W, Xing L, Xie D, et al. A method for extracting high-quality total RNA from plant rich in polysaccharides and polyphenols using Dendrobium huoshanense. PLoS One. 2018;13(5):e0196592. | |
dc.relation | Fernández-Alonso JL, Vega N, Filgueira JJ, Pérez G. Lectin prospecting in Colombian Labiatae. A systematic-ecological approach. Biochem Syst Ecol. 2003;31(6):617–33. | |
dc.relation | Pérez G, Vega N, Fernández-Alonso JL. Lectin prospecting in Colombian Labiatae. a systematic-ecological approach-ii. caldasia. 2006;28(2):179–95. | |
dc.relation | Ghaffariyan S, Mohammadi SA, Aharizad S. DNA isolation protocol for the medicinal plant lemon balm (Melissa officinalis, Lamiaceae). Genet Mol Res. 2012;11(2):1049–57. | |
dc.relation | Li Y, Sun C, Luo H-M, Li X-W, Niu Y-Y, Chen S-L. Transcriptome characterization for Salvia miltiorrhiza using 454 GS FLX. Yao xue xue bao= Acta Pharm Sin. 2010;45(4):524–9. | |
dc.relation | Li Y, Sun C, Luo H-M, Li X-W, Niu Y-Y, Chen S-L. Transcriptome characterization for Salvia miltiorrhiza using 454 GS FLX. Yao xue xue bao= Acta Pharm Sin. 2010;45(4):524–9. | |
dc.relation | O’neill M, McPartlin J, Arthure K, Riedel S, McMillan ND. Comparison of the TLDA with the Nanodrop and the reference Qubit system. In: Journal of Physics: Conference Series. IOP Publishing; 2011. p. 12047. | |
dc.relation | Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics. 2012;13(1):1–11. | |
dc.relation | Stothard P. The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. 2000; | |
dc.relation | Banaganapalli B, Shaik NA, Rashidi OM, Jamalalail B, Bahattab R, Bokhari HA, et al. In Silico PCR. In: Essentials of Bioinformatics, Volume I. Springer; 2019. p. 355–71. | |
dc.relation | Wenping H, Yuan Z, Jie S, Lijun Z. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics. 2011;98(4):272–9. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Elucidación de la estructura primaria de la lectina de Salvia bogotensis (LSBo-I) específica para la detección de los antígenos T y Tn | |
dc.type | Trabajo de grado - Maestría | |