dc.creatorRodríguez Montes, Jaime
dc.date.accessioned2019-06-28T12:12:47Z
dc.date.available2019-06-28T12:12:47Z
dc.date.created2019-06-28T12:12:47Z
dc.date.issued1993
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/43617
dc.identifierhttp://bdigital.unal.edu.co/33715/
dc.description.abstractIt is shown that a quasihypnormal operator on a Hilbert space having 0 as a boundary point of its numerical range is hyponormal. A necessary and sufficient condition is given for the extreme points of the numerical range of a quasihyponormal operator to be eigenvalues. It is also established that if T is bounded and there is IIxll = 1 such that IITxll = IITII and that and lt; Tx, x and gt; is a boundary point of the numerical range of T. then T has eigenvalues. Finally, an example is included of a paranormal operator which is not convexoid and such that T -∝ I is not paranormal for certain values of ∝.
dc.languagespa
dc.publisherUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
dc.relationUniversidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas; Vol. 27, núm. 3-4 (1993); 223-230 0034-7426
dc.relationRodríguez Montes, Jaime (1993) Extreme points of numerical ranges of quasihyponormal operators. Revista Colombiana de Matemáticas; Vol. 27, núm. 3-4 (1993); 223-230 0034-7426 .
dc.relationhttp://revistas.unal.edu.co/index.php/recolma/article/view/33605
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleExtreme points of numerical ranges of quasihyponormal operators
dc.typeArtículo de revista


Este ítem pertenece a la siguiente institución