dc.contributorAraque Quijano, Javier Leonardo
dc.contributorGrupo de investigación en electrónica de alta frecuencia y telecomunicaciones (cmun)
dc.creatorRodriguez Duarte, David Orlando
dc.date.accessioned2020-01-20T18:55:46Z
dc.date.available2020-01-20T18:55:46Z
dc.date.created2020-01-20T18:55:46Z
dc.date.issued2018-09-01
dc.date.issued2018-09-01
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75498
dc.description.abstractLa comunicación In-Band-Full-Duplex (IBFD) se refiere a un sistema capaz de soportar la transmisión simultánea de datos a través de la misma banda de frecuencia. Este modo de operación particular surge como una solución atractiva para los sistemas de comunicación inalámbrica, ya que tiene el potencial de mejorar la eficiencia espectral de los sistemas actuales y resolver algunos problemas de red bien conocidos, como el problema de la terminal oculta. Sin embargo, la fuerte autointerferencia (SI) experimentada por un terminal IBFD debido a la pérdida de señal TX en el receptor hace que su implementación sea realmente desafiante. Entonces, un sistema práctico requiere una suma de técnicas pasivas y activas que trabajan en el dominio de propagación, analógico y digital para alcanzar una reducción de SI lo suficientemente buena. Esta tesis se basa en la observación de que enfocarse en la porción electromagnética del receptor de IBFD tiene el potencial de mejorar el nivel de supresión del SI en decenas de dB en la entrada del sistema, complementando así las mejoras logradas en las etapas posteriores del receptor. Se enfrenta el diseño, la fabricación y la validación de la antena de doble puerto para un dispositivo móvil IBFD, llegando una estructura multicapa compacta con un aislamiento del orden de 20 a 30 dB que opera a 2,65 GHz y cuatro estados reconfigurables para lograr una mejor adaptación ambiental . La antena suprime la señal SI empleando una combinación de mecanismos pasivos tales como directividad, diversidad direccional, polarización, colocación de simetría y está disenada sobre un optimizador multinivel (Algoritmo genético (GA), búsqueda codiciosa local y búsqueda exhaustiva). ) con un solucionador de campo electromagnético basado en Método de Momentos de (MoM). Además, se realizan pruebas en interiores con enlaces IBFD de corto alcance para validar la antena. En general, este proyecto muestra cómo un módulo de autointerferencia de antena mejora la viabilidad de la operación de IBFD, apunta a la validación de algoritmos de optimización para antenas en el caso de IBFD y desarrolla un bloque de radio adaptativo (antena y radio frontal) que trabaja en condiciones limitadas y es un complemento de los trabajos encontrados en la literatura, que se centran en el procesamiento analógico y digital en las etapas posteriores de la cadena de recepción.
dc.description.abstractIn-Band-Full-Duplex(IBFD) communication refers to a system capable of supporting simultaneous transmission of data over the same frequency band. This particular operation mode emerges as an attractive solution for wireless communication systems since it has the potential to enhance the spectral efficiency of current systems and solve some well-known network issues such as the hidden terminal problem. However, the strong Self-Interference(SI) experienced by an IBFD terminal due to its TX-signal leaking to the receiver makes its implementation really challenging. Then, a practical system requires a sum of passive and active techniques working on propagation, analog, and digital domain in order to reach a good enough SI reduction. This thesis is based on the observation that focusing on the electromagnetic portion of the IBFD receiver has the potential to improve the SI suppression level by tens of dB at the very entrance of the system, thus complementing the improvements achieved on subsequent stages of the receiver. The design, manufacture and validation of dual-port antenna for an IBFD mobile device is faced, finding out a compact multilayer structure with an isolation on the order of 20 to 30 dB operating at 2.65GHz and four reconfigurable states to achieve a better environmental adaptation. The antenna suppresses the SI signal employing a combination of passive suppression mechanisms such as directivity, directional diversity, polarization, symmetry placement and is built on an efficient coupling of a multi-level optimizer (Genetic Algorithm (GA), local greedy search and exhaustive search) with a full-wave Method of Moments (MoM) electromagnetic field solver. Also, indoor over-the-air tests with short-range IBFD links are performed to validate the antenna. Overall, this project shows how a module of antenna self-interference improves the feasibility of IBFD operation, aims the validation of optimization algorithms for antennas in the case of IBFD, develops an adaptive radio block (antenna and radio front-end) for full-duplex wireless communication systems working under limited conditions, and is a complement to works found in literature, which focus on analog and digital processing on subsequent stages of the receiving chain. Nevertheless, IBFD radios are still in very early stages and there remains a vast amount of work still to be done. In future research is discussed extensions to this thesis that could improve the optimization techniques and results.
dc.languageeng
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] Cisco. Cisco visual networking index: Global mobile data traffic forecast update, 2014-2019. White Paper, 2015. [2] Nokia. Futureworks looking ahead to 5g. White Paper, 2015. [3] Stephen Blust and Sergio Buonomo. Forging paths to imt 2020 (5g), February 2017. [4] ITU. Minimum requirements related to technical performance for imt-2020 radio interfaces, November 2017. [5] F. Hu, B. Chen, and K. Zhu. Full spectrum sharing in cognitive radio networks toward 5g: A survey. IEEE Access, 6:15754–15776, 2018. [6] L.Wang, F. Tian, T. Svensson, D. Feng, M. Song, and S. Li. Exploiting full duplex for deviceto- device communications in heterogeneous networks. IEEE Communications Magazine, 53(5):146–152, May 2015. [7] S. Parkvall, E. Dahlman, A. Furuskar, and M. Frenne. Nr: The new 5g radio access technology. IEEE Communications Standards Magazine, 1(4):24–30, Dec 2017. [8] A. Bleicher. The 5g phone future [news]. IEEE Spectrum, 50(7):15–16, July 2013. [9] S. A. A. Shah, E. Ahmed, M. Imran, and S. Zeadally. 5g for vehicular communications. IEEE Communications Magazine, 56(1):111–117, Jan 2018. [10] C. L. I, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan. Toward green and soft: a 5g perspective. IEEE Communications Magazine, 52(2):66–73, February 2014. [11] Nisha Panwar, Shantanu Sharma, and Awadhesh Kumar Singh. A survey on 5g: The next generation of mobile communication. Physical Communication, 18:64 – 84, 2016. Special Issue on Radio Access Network Architectures and Resource Management for 5G. [12] S. Hong, J. Brand, J. I. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis. Applications of selfinterference cancellation in 5g and beyond. IEEE Communications Magazine, 52(2):114– 121, 2 2014. [13] Kristen Clark Amy Nordrum and IEEE Spectrum Staff. Everything you need to know about 5g, January 2017. [14] Liao Y. Zhou M. and Song L. Full-Duplex Wireless Communications for 5G, chapter 11. Springer, 10 2016. [15] Taneli Riihonen and Risto Wichman. Full-Duplex in Wireless Communications. Wiley, 8 2016. [16] A. Sabharwal, P. Schniter, D. Guo, D. W. Bliss, S. Rangarajan, and R. Wichman. In-band full-duplex wireless: Challenges and opportunities. IEEE Journal on Selected Areas in Communications, 32(9):1637–1652, 9 2014. [17] Z. Zhang, X. Chai, K. Long, A. V. Vasilakos, and L. Hanzo. Full duplex techniques for 5g networks: self-interference cancellation, protocol design, and relay selection. IEEE Communications Magazine, 53(5):128–137, May 2015. [18] Jung Il Choi, Mayank Jain, Kannan Srinivasan, Philip Levis, and Sachin Katti. Achieving Single Channel, Full Duplex Wireless Communication. In Proceedings of the 16th Annual International Conference on Mobile Computing and Networking (Mobicom 2010), 9 2010. [19] Dinesh Bharadia, Emily McMilin, and Sachin Katti. Full duplex radios. SIGCOMMComput. Commun. Rev., 43(4):375–386, August 2013. [20] Nokia Solutions and Networks. Td-lte frame configuration primer. White Paper, 2013. [21] Ericsson. On the pulse of the networked society. White Paper, 2012. [22] V. Aggarwal, M. Duarte, A. Sabharwal, and N. K. Shankaranarayanan. Full- or half-duplex? a capacity analysis with bounded radio resources. In 2012 IEEE Information Theory Workshop, pages 207–211, Sept 2012. [23] L. Li, L. J. Cimini, and Y. Xiao. Spectral efficiency of cooperative full-duplex relaying with imperfect channel estimation. In 2014 IEEE Global Communications Conference, pages 4203–4208, Dec 2014. [24] Z. Zhang, K. Long, A. V. Vasilakos, and L. Hanzo. Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of the IEEE, 104(7):1369– 1409, July 2016. [25] Mayank Jain, Jung Il Choi, Taemin Kim, Dinesh Bharadia, Siddharth Seth, Kannan Srinivasan, Philip Levis, Sachin Katti, and Prasun Sinha. Practical, real-time, full duplex wireless. In Proceedings of the 17th Annual International Conference on Mobile Computing and Networking, MobiCom ’11, pages 301–312, New York, NY, USA, 2011. ACM. [26] Achaleshwar Sahai, Gaurav Patel, and Ashutosh Sabharwal. Pushing the limits of fullduplex: Design and real-time implementation. arXiv preprint arXiv:1107.0607, 2011. [27] Ehsan Aryafar, Mohammad Amir Khojastepour, Karthikeyan Sundaresan, Sampath Rangarajan, and Mung Chiang. Midu: Enabling mimo full duplex. In Proceedings of the 18th Annual International Conference on Mobile Computing and Networking, Mobicom ’12, pages 257–268, New York, NY, USA, 2012. ACM. [28] L. Anttila, D. Korpi, E. Antonio-Rodriguez, R. Wichman, and M. Valkama. Modeling and efficient cancellation of nonlinear self-interference in mimo full-duplex transceivers. In 2014 IEEE Globecom Workshops (GC Wkshps), pages 777–783, Dec 2014. [29] Alexios Balatsoukas-Stimming, Pavle Belanovic, Konstantinos Alexandris, and Andreas Burg. On self-interference suppression methods for low-complexity full-duplex MIMO. 2013 Asilomar Conference on Signals, Systems and Computers, (1):992–997, 2013. [30] S. Huberman and T. Le-Ngoc. Mimo full-duplex precoding: A joint beamforming and self-interference cancellation structure. IEEE Transactions on Wireless Communications, 14(4):2205–2217, April 2015. [31] Dinesh Bharadia and Sachin Katti. Full duplex MIMO radios. Proceedings of the 11th USENIX Syposium on Networked Systems Design and Implementation, pages 359–372, 2014. [32] Mikko Heino, Dani Korpi, Timo Huusari, Emilio Antonio-Rodriguez, Sathya Venkatasubramanian, Taneli Riihonen, Lauri Anttila, Clemens Icheln, Katsuyuki Haneda, RistoWichman, and Mikko Valkama. Recent advances in antenna design and interference cancellation algorithms for in-band full duplex relays. IEEE Communications Magazine, 53(5):91–101, 2015. [33] A. K. Khandani. Two-way (true full-duplex) wireless. In 2013 13th Canadian Workshop on Information Theory, pages 33–38, 6 2013. [34] A. Sahai, S. Diggavi, and A. Sabharwal. On uplink/downlink full-duplex networks. In 2013 Asilomar Conference on Signals, Systems and Computers, pages 14–18, Nov 2013. [35] B. Radunovic, D. Gunawardena, P. Key, A. Proutiere, N. Singh, V. Balan, and G. Dejean. Rethinking indoor wireless mesh design: Low power, low frequency, full-duplex. In 2010 Fifth IEEE Workshop on Wireless Mesh Networks, pages 1–6, June 2010. [36] H. SHI, R. V. Prasad, E. Onur, and I. G. M. M. Niemegeers. Fairness in wireless networks: issues, measures and challenges. IEEE Communications Surveys Tutorials, 16(1):5– 24, First 2014. [37] Y. Tawk, J. Costantine, and C. G. Christodoulou. Cognitive-radio and antenna functionalities: A tutorial [wireless corner]. IEEE Antennas and Propagation Magazine, 56(1):231– 243, Feb 2014. [38] Y. Liang, K. Chen, G. Y. Li, and P. Mahonen. Cognitive radio networking and communications: an overview. IEEE Transactions on Vehicular Technology, 60(7):3386–3407, Sept 2011. [39] G. Zheng, I. Krikidis, and B. o. Ottersten. Full-duplex cooperative cognitive radio with transmit imperfections. IEEE Transactions on Wireless Communications, 12(5):2498–2511, May 2013. [40] Y. Guo. Application of full duplex guarantees secure wireless communication. Journal of Communications and Networks, 19(2):105–113, April 2017. [41] F. Zhu, F. Gao, T. Zhang, K. Sun, and M. Yao. Physical-layer security for full duplex communications with self-interference mitigation. IEEE Transactions onWireless Communications, 15(1):329–340, Jan 2016. [42] G. Chen, Y. Gong, P. Xiao, and J. A. Chambers. Physical layer network security in the fullduplex relay system. IEEE Transactions on Information Forensics and Security, 10(3):574– 583, March 2015. [43] J. Lee. Full-duplex relay for enhancing physical layer security in multi-hop relaying systems. IEEE Communications Letters, 19(4):525–528, April 2015. [44] Z. Mobini, M. Mohammadi, and C. Tellambura. Wireless-powered full-duplex relay and friendly jamming for secure cooperative communications. IEEE Transactions on Information Forensics and Security, 14(3):621–634, March 2019. [45] D. W. Bliss, P. A. Parker, and A. R. Margetts. Simultaneous transmission and reception for improved wireless network performance. In 2007 IEEE/SP 14th Workshop on Statistical Signal Processing, pages 478–482, 8 2007. [46] Paramvir Bahl, Atul Adya, Jitendra Padhye, and Alec Wolman. Reconsidering wireless systems with multiple radios. SIGCOMM Comput. Commun. Rev., 34(5):39–46, 10 2004. [47] Melissa Duarte. Full-duplex Wireless: Design, Implementation and Characterization. PhD thesis, Rice University, 2012. [48] A. K. Khandani. Methods for spatial multiplexing of wireless two-way channels, 10 2010. US Patent 7,817,641. [49] Evan Everett, Achaleshwar Sahai, and Ashutosh Sabharwal. Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Transactions on Wireless Communications, 13:680–694, 2014. [50] E. Ahmed, A. M. Eltawil, Z. Li, and B. A. Cetiner. Full-duplex systems using multireconfigurable antennas. IEEE Transactions onWireless Communications, 14(11):5971–5983, Nov 2015. [51] T. Dinc and H. Krishnaswamy. A t/r antenna pair with polarization-based reconfigurable wideband self-interference cancellation for simultaneous transmit and receive. In 2015 IEEE MTT-S International Microwave Symposium, pages 1–4, May 2015. [52] J. Leonardo Araque Quijano and G. Vecchi. Optimization of an innovative type of compact frequency-reconfigurable antenna. IEEE Transactions on Antennas and Propagation, 57(1):9–18, Jan 2009. [53] J. L. Araque Quijano and G. Vecchi. Optimization of a compact frequency- and environmentreconfigurable antenna. IEEE Transactions on Antennas and Propagation, 60(6):2682–2689, June 2012. [54] C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):379–423, July 1948. [55] Yoondong Sung, Junil Ahn, Binh Van Nguyen, and Kiseon Kim. Loop-interference suppression strategies using antenna selection in full-duplex mimo relays. In 2011 International Symposium on Intelligent Signal Processing and Communications Systems (ISPACS), pages 1–4, Dec 2011. [56] 3GPP. Text proposal on inband full duplex relay for tr 36.814. 3GPP TSG RAN WG1 R1- 101659, Tech. Rep., February 2010. [57] S. Hong, J. Brand, J. I. Choi, M. Jain, J. Mehlman, S. Katti, and P. Levis. Applications of selfinterference cancellation in 5g and beyond. IEEE Communications Magazine, 52(2):114– 121, February 2014. [58] D. Korpi, J. Tamminen, M. Turunen, T. Huusari, Y. Choi, L. Anttila, S. Talwar, and M. Valkama. Full-duplex mobile device: pushing the limits. IEEE Communications Magazine, 54(9):80–87, September 2016. [59] Melissa Duarte, Ashutosh Sabharwal, Vaneet Aggarwal, Rittwik Jana, K. K. Ramakrishnan, Christopher W. Rice, and N. K. Shankaranarayanan. Design and characterization of a full duplex multiantenna system for wifi networks. IEEE Transactions on Vehicular Technology, 63(3):1160–1177, 2012. [60] Amir K. Khandani. Two-way (true full-duplex) wireless. 2013 13th Canadian Workshop on Information Theory, CWIT 2013, pages 33–38, 2013. [61] Mohammad A. Khojastepour, Karthik Sundaresan, Sampath Rangarajan, Xinyu Zhang, and Sanaz Barghi. The case for antenna cancellation for scalable full-duplex wireless communications. In Proceedings of the 10th ACM Workshop on Hot Topics in Networks, HotNets-X, pages 17:1–17:6, New York, NY, USA, 2011. ACM. [62] D. Korpi, S. Venkatasubramanian, T. Riihonen, L. Anttila, S. Otewa, C. Icheln, K. Haneda, S. Tretyakov, M. Valkama, and R. Wichman. Advanced self-interference cancellation and multiantenna techniques for full-duplex radios. In 2013 Asilomar Conference on Signals, Systems and Computers, pages 3–8, Nov 2013. [63] J. Ha, M. A. Elmansouri, P. Valale Prasannakumar, and D. S. Filipovic. Monostatic copolarized full-duplex antenna with left- or right-hand circular polarization. IEEE Transactions on Antennas and Propagation, 65(10):5103–5111, Oct 2017. [64] W. Kim, M. Lee, J. Kim, H. Lim, J. Yu, B. Jang, and J. Park. A passive circulator for rfid application with high isolation using a directional coupler. In 2006 European Microwave Conference, pages 196–199, Sept 2006. [65] L. Laughlin, M. A. Beach, K. A. Morris, and J. L. Haine. Optimum single antenna full duplex using hybrid junctions. IEEE Journal on Selected Areas in Communications, 32(9):1653– 1661, 9 2014. [66] M. E. Knox. Single antenna full duplex communications using a common carrier. In WAMICON 2012 IEEE Wireless Microwave Technology Conference, pages 1–6, 4 2012. [67] Melissa Duarte and Ashutosh Sabharwal. Full-duplex wireless communications using offthe- shelf radios: Feasibility and first results. Conference Record - Asilomar Conference on Signals, Systems and Computers, pages 1558–1562, 2010. [68] M. Duarte and A. Sabharwal. Full-duplex wireless communications using off-the-shelf radios: Feasibility and first results. In 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, pages 1558–1562, 11 2010. [69] E. Everett, A. Sahai, and A. Sabharwal. Passive self-interference suppression for full-duplex infrastructure nodes. IEEE Transactions on Wireless Communications, 13(2):680–694, 2 2014. [70] Amir K Khandani. Shaping Future of Wireless : Two way Connecvity. 2012. [71] M. Heino, S. N. Venkatasubramanian, C. Icheln, and K. Haneda. Design of wavetraps for isolation improvement in compact in-band full-duplex relay antennas. IEEE Transactions on Antennas and Propagation, 64(3):1061–1070, March 2016. [72] E. Everett, M. Duarte, C. Dick, and A. Sabharwal. Empowering full-duplex wireless communication by exploiting directional diversity. In 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pages 2002–2006, 11 2011. [73] B. P. Day, A. R. Margetts, D. W. Bliss, and P. Schniter. Full-duplex bidirectional mimo: Achievable rates under limited dynamic range. IEEE Transactions on Signal Processing, 60(7):3702–3713, July 2012. [74] T. Riihonen, S. Werner, and R. Wichman. Mitigation of loopback self-interference in fullduplex mimo relays. IEEE Transactions on Signal Processing, 59(12):5983–5993, Dec 2011. [75] P. Lioliou, M. Viberg, M. Coldrey, and F. Athley. Self-interference suppression in full-duplex mimo relays. In 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers, pages 658–662, Nov 2010. [76] T. Riihonen, A. Balakrishnan, K. Haneda, S. Wyne, S. Werner, and R. Wichman. Optimal eigenbeamforming for suppressing self-interference in full-duplex mimo relays. In 2011 45th Annual Conference on Information Sciences and Systems, pages 1–6, March 2011. [77] D. Korpi, T. Riihonen, V. Syrjala, L. Anttila, M. Valkama, and R. Wichman. Full-duplex transceiver system calculations: Analysis of adc and linearity challenges. IEEE Transactions on Wireless Communications, 13(7):3821–3836, July 2014. [78] E. Antonio-Rodriguez, R. Lopez-Valcarce, T. Riihonen, S.Werner, and R.Wichman. Adaptive self-interference cancellation in wideband full-duplex decode-and-forward mimo relays. In 2013 IEEE 14th Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pages 370–374, June 2013. [79] E. Antonio-Rodriguez, R. Lopez-Valcarce, T. Riihonen, S. Werner, and R. Wichman. Sinr optimization in wideband full-duplex mimo relays under limited dynamic range. In 2014 IEEE 8th Sensor Array and Multichannel Signal Processing Workshop (SAM), pages 177– 180, June 2014. [80] D. Korpi, L. Anttila, V. Syrjala, and M. Valkama. Widely linear digital self-interference cancellation in direct-conversion full-duplex transceiver. IEEE Journal on Selected Areas in Communications, 32(9):1674–1687, Sept 2014. [81] Z. Li,Y. Xia,W. Pei, K.Wang, and D. P. Mandic. An augmented nonlinear lms for digital selfinterference cancellation in full-duplex direct-conversion transceivers. IEEE Transactions on Signal Processing, 66(15):4065–4078, Aug 2018. [82] S. E. Johnston and P. D. Fiore. Full-duplex communication via adaptive nulling. In 2013 Asilomar Conference on Signals, Systems and Computers, pages 1628–1631, Nov 2013. [83] E. Foroozanfard, O. Franek, A. Tatomirescu, E. Tsakalaki, E. D. Carvalho, and G. F. Pedersen. Full-duplex mimo system based on antenna cancellation technique. Electronics Letters, 50(16):1116–1117, July 2014. [84] Y. Cao and C. Tellambura. Cognitive beamforming in underlay two-way relay networks with multiantenna terminals. IEEE Transactions on Cognitive Communications and Networking, 1(3):294–304, Sept 2015. [85] T. Dinc, A. Chakrabarti, and H. Krishnaswamy. A 60 ghz same-channel full-duplex cmos transceiver and link based on reconfigurable polarization-based antenna cancellation. In 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pages 31–34, May 2015. [86] K. Yang, H. Cui, L. Song, and Y. Li. Joint relay and antenna selection for full-duplex af relay networks. In 2014 IEEE International Conference on Communications (ICC), pages 4454–4459, June 2014. [87] M. Gao, H. H. Chen, Y. Li, M. Shirvanimoghaddam, and J. Shi. Full-duplex wirelesspowered communication with antenna pair selection. In 2015 IEEE Wireless Communications and Networking Conference (WCNC), pages 693–698, March 2015. [88] K.Yang, H. Cui, L. Song, andY. Li. Efficient full-duplex relaying with joint antenna-relay selection and self-interference suppression. IEEE Transactions on Wireless Communications, 14(7):3991–4005, July 2015. [89] T. Riihonen, S.Werner, and R.Wichman. Hybrid full-duplex/half-duplex relaying with transmit power adaptation. IEEE Transactions on Wireless Communications, 10(9):3074–3085, September 2011. [90] J. G. McMichael and K. E. Kolodziej. Optimal tuning of analog self-interference cancellers for full-duplex wireless communication. In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 246–251, Oct 2012. [91] K. E. Kolodziej, J. G. McMichael, and B. T. Perry. Adaptive rf canceller for transmit-receive isolation improvement. In 2014 IEEE Radio and Wireless Symposium (RWS), pages 172– 174, Jan 2014. [92] K. E. Kolodziej, B. T. Perry, and J. S. Herd. Simultaneous transmit and receive (star) system architecture using multiple analog cancellation layers. In 2015 IEEE MTT-S International Microwave Symposium, pages 1–4, May 2015. [93] T. Huusari, Y. Choi, P. Liikkanen, D. Korpi, S. Talwar, and M. Valkama. Wideband selfadaptive rf cancellation circuit for full-duplex radio: Operating principle and measurements. In 2015 IEEE 81st Vehicular Technology Conference (VTC Spring), pages 1–7, May 2015. [94] D. Korpi, Y. Choi, T. Huusari, L. Anttila, S. Talwar, and M. Valkama. Adaptive nonlinear digital self-interference cancellation for mobile inband full-duplex radio: Algorithms and rf measurements. In 2015 IEEE Global Communications Conference (GLOBECOM), pages 1–7, Dec 2015. [95] D. O. Rodriguez, M. A. Saavedra, G. A. Ramirez, and J. L. Araque. Realization of a compact reconfigurable antenna for mobile communications. In 2014 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), pages 284–287, Aug 2014. [96] G. A. R. Arroyave and J. L. A. Quijano. Dual-port reconfigurable planar antennas for diversity and duplexing applications. In 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), pages 1247–1248, June 2016. [97] T. Dinc, A. Chakrabarti, and H. Krishnaswamy. A 60 ghz cmos full-duplex transceiver and link with polarization-based antenna and rf cancellation. IEEE Journal of Solid-State Circuits, 51(5):1125–1140, May 2016. [98] B. Debaillie, D. van den Broek, C. LavA˜ n, B. van Liempd, E. A.M. Klumperink, C. Palacios, J. Craninckx, B. Nauta, and A. Parssinen. Analog/rf solutions enabling compact full-duplex radios. IEEE Journal on Selected Areas in Communications, 32(9):1662–1673, Sept 2014. [99] B. Li, Y. Yin, W. Hu, Y. Ding, and Y. Zhao. Wideband dual-polarized patch antenna with low cross polarization and high isolation. IEEE Antennas and Wireless Propagation Letters, 11:427–430, 2012. [100] X. Wang, W. Che, W. Yang, W. Feng, and L. Gu. Self-interference cancellation antenna using auxiliary port reflection for full-duplex application. IEEE Antennas and Wireless Propagation Letters, 16:2873–2876, 2017. [101] X. Wang, W. Che, W. Yang, and W. Feng. Antenna pair with self-interference cancellation for full duplex communication. In 2017 10th Global Symposium on Millimeter-Waves, pages 44–46, May 2017. [102] H. Nawaz and I. Tekin. Compact dual-polarised microstrip patch antenna with high interport isolation for 2.5ghz in-band full-duplex wireless applications. IET Microwaves, Antennas Propagation, 11(7):976–981, 2017. [103] Dani Korpi, Sathya Venkatasubramanian, Taneli Riihonen, Lauri Anttila, Strasdosky Otewa, Clemens Icheln, Katsuyuki Haneda, Sergei Tretyakov, Mikko Valkama, and RistoWichman. Advanced self-interference cancellation and multiantenna techniques for full-duplex radios. CoRR, abs/1401.3331, 2014. [104] E. Yetisir, C. Chen, and J. L. Volakis. Low-profile uwb 2-port antenna with high isolation. IEEE Antennas and Wireless Propagation Letters, 13:55–58, 2014. [105] Miguel Saavedra. Diseno, construccion y evaluacion de antenas para un sistema rc en modo interweave. Master’s thesis, Universidad Nacional de Colombia, 2018. [106] CEL Corp. 50 ohm termination type high power spdt switch for wimax, upg2176t5n, 2008. [107] G. A. Ramirez Arroyave and J. L. Araque Quijano. Evaluation of additive manufacturing processes for 3-d multiband antennas. In 2018 International Conference on Electromagnetics in Advanced Applications (ICEAA), pages 589–592, Sept 2018. [108] GNU radio. Gnu radio manual and c++ api reference 3.7.13.4. [109] Ettus reseach. Usrp b200/b210 series. https://www.ettus.com/content/files/ b200-b210_spec_sheet.pdf, May 2013. Accessed: 2018-10-10. [110] Rogers Corporation. Ro 3000 series circuit materials ro 3003, ro 3006, ro 3010 and ro3035 high frequency laminates. https://www.rogerscorp.com/documents/722/ acs/RO3000-Laminate-Data-Sheet-RO3003-RO3006-RO3010-RO3035.pdf. Accessed: 2018-10-10.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleAdaptive Antenna and Radio Front-End for Full-Duplex Mobile Communications
dc.typeOtro


Este ítem pertenece a la siguiente institución