dc.contributorRodriguez Sandoval, Eduardo
dc.contributorCadena Ch., Edith M.
dc.contributorIngeniería Agrícola
dc.contributorGaf (Grupo de Alimentos Funcionales)
dc.creatorLopez, Juan David
dc.date.accessioned2022-03-22T14:51:15Z
dc.date.accessioned2022-09-21T17:27:41Z
dc.date.available2022-03-22T14:51:15Z
dc.date.available2022-09-21T17:27:41Z
dc.date.created2022-03-22T14:51:15Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81299
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3400816
dc.description.abstractLas bebidas lácteas fermentadas son productos generalmente elaborados a partir de leche entera los cuales suelen incluir suero de leche liquido en su formulación, lo que afecta negativamente su consistencia. En la producción de bebidas lácteas fermentadas los almidones modificados son comúnmente empleados como estabilizantes y espesantes. El creciente interés en productos de características más “naturales” ha incrementado la importancia de métodos de modificación de almidón alternos a la modificación química. Las propiedades térmicas y de empastamiento de dos almidones modificados enzimáticamente empleando Pululanasa (PUL) y amiloglucosidasa (AGL) fueron estudiadas y comparadas con un almidón modificado químicamente (ADA). Una formulación óptima para la elaboración de las bebidas fue determinada mediante un diseño de superficie de respuesta empleando el almidón ADA, y fue posteriormente empleada para la elaboración y análisis de bebidas preparadas con almidones modificados enzimáticamente. Bebidas lácteas con adición de los almidones modificados enzimáticamente (PUL y AGL) fueron elaboradas y sus características fisicoquímicas, reológicas y sensoriales fueron evaluadas y contrastadas con bebidas elaboradas con almidón modificado químicamente (ADA), bebidas control sin adición de almidón y una muestra comercial en un periodo de 20 días de almacenamiento. Las bebidas elaboradas con almidón modificado enzimáticamente presentaron niveles significativamente mayores de viscosidad, consistencia, aceptabilidad sensorial, y valores de sinéresis significativamente menores que los de las bebidas control, resultados comparables a los obtenidos con el tratamiento ADA. Los almidones AGL mostraron altos niveles de retrogradación (35.04%), lo cual pudo haber afectado negativamente la viscosidad, consistencia, sinéresis y aceptabilidad de las bebidas al final del periodo de almacenamiento. La modificación enzimática del almidón de yuca con Pululanasa muestra un gran potencial como alternativa a los almidones modificados químicamente en la producción de bebidas lácteas fermentadas. (texto tomado de la fuente)
dc.description.abstractFermented dairy beverages are products generally elaborated from whole milk with the inclusion of liquid whey, which can negatively impact the consistency of the product. In the production of fermented dairy beverages, modified starches are commonly used as stabilizers and thickeners. The growing interest in products with more “natural” characteristics has increased the relevance of modification methods different from chemical modification. The thermal and pasting properties of two enzymatically modified starches, one modified with Pullulanase (PUL) and another modified with Amyloglucosidase (AGL), were studied and compared with a chemically modified starch (ADA). An optimal formulation for the production of fermented dairy beverages was determined through a response surface method using the ADA starch, which was later used for the production and analysis of beverages with enzymatically modified starches. Fermented dairy beverages with the inclusion of enzymatically modified starches (PUL y AGL) were elaborated and evaluated with respect to its physicochemical, rheological, and sensory characteristics, and compared to beverages with chemically modified starch (ADA), control beverages without the addition of starch and a commercial sample in a 20 days storage period. Beverages with enzymatically modified starches showed significantly higher levels of apparent viscosity, consistency, sensory acceptability, and significantly lower values of syneresis in comparison to those of the control beverages, similar results to those obtained with chemically modified starch (ADA). AGL starches showed high levels of retrogradation (35.04%), which could have negatively affected the viscosity, consistency, syneresis, and acceptability of the beverages at the end of the storage period. The enzymatic modification of cassava starch with Pullulanase shows great potential as an alternative to chemically modified starches for the production of fermented dairy beverages.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos
dc.publisherDepartamento de Ingeniería Agrícola y Alimentos
dc.publisherFacultad de Ciencias Agrarias
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationAbaee, A., Mohammadian, M., & Jafari, S. M. (2017). Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends in Food Science and Technology, 70, 69–81. https://doi.org/10.1016/j.tifs.2017.10.011
dc.relationAbbas, K. A., Khalil, S. K., & Meor, A. S. (2010). Modified Starches and Their Usages in Selected Food Products: A Review Study. Journal of Agricultural Science, 2(2), 90–100. https://doi.org/10.5539/jas.v2n2p90
dc.relationAbd El-Fattah, A., El-Dieb, S., & Elkashef, H. (2019). Development of functional egg-free flan using whey proteins and evaluation of heat-induced gel properties. Journal of Food Measurement and Characterization, 13(4), 2828–2836. https://doi.org/10.1007/s11694-019-00203-7
dc.relationAbd El-Salam, B. A. (2015). Effect of milk fat replacement with vegetable oil and/or whey protein concentrate on microstructure, texture and sensory characteristics of fresh soft cheese. International Journal of Dairy Science, 10(3), 117–125. https://doi.org/10.3923/ijds.2015.117.125
dc.relationAbdelmoneim, A. H., Sherif, A. M., & Sameh, K. A. (2016). Rheological Properties of Yoghurt Manufactured by using Different Types of Hydrocolloids. Austin Journal of Nutrition and Food Sciences, 4(2), 1–6.
dc.relationAgrahar-Murugkar, D., Gulati, P., Kotwaliwale, N., & Gupta, C. (2015). Evaluation of nutritional, textural and particle size characteristics of dough and biscuits made from composite flours containing sprouted and malted ingredients. Journal of Food Science and Technology, 52(8), 5129–5137. https://doi.org/10.1007/s13197-014-1597-y
dc.relationAi, Y., & Jane, J. L. (2015). Gelatinization and rheological properties of starch. Starch/Staerke, 67(3–4), 213–224. https://doi.org/10.1002/star.201400201
dc.relationAkhtar, M., & Dickinson, E. (2007). Whey protein-maltodextrin conjugates as emulsifying agents: An alternative to gum arabic. Food Hydrocolloids, 21(4), 607–616. https://doi.org/10.1016/j.foodhyd.2005.07.014
dc.relationAkpa, J., & Dagde, K. (2012). Modification of Cassava Starch for Industrial Uses. In International Journal of Engineering and Technology (Vol. 2).
dc.relationAlfaifi, M. S., & Stathopoulos, C. E. (2010). Effect of egg yolk substitution by sweet whey protein isolate on texture, stability and colour of Gelato-style vanilla ice cream. International Journal of Dairy Technology, 63(4), 593–598. https://doi.org/10.1111/j.1471-0307.2010.00609.x
dc.relationAlting, A. C., Fred van de Velde, Kanning, M. W., Burgering, M., Mulleners, L., Sein, A., & Buwalda, P. (2009). Improved creaminess of low-fat yoghurt: The impact of amylomaltase-treated starch domains. Food Hydrocolloids, 23(3), 980–987. https://doi.org/10.1016/j.foodhyd.2008.07.011
dc.relationAltuna, L., Herrera, M. L., & Foresti, M. L. (2018). Synthesis and characterization of octenyl succinic anhydride modified starches for food applications. A review of recent literature. Food Hydrocolloids, 80, 97–110. https://doi.org/10.1016/j.foodhyd.2018.01.032
dc.relationAmaya, S. L., Martínez, A. L., Zazueta, J. J., & Martínez, F. (2008). Acid thinned jicama and maize starches as fat substitute in stirred yogurt. LWT - Food Science and Technology, 41(7), 1274–1281. https://doi.org/10.1016/j.lwt.2007.08.012
dc.relationAOAC Association of Official Analytical Chemists. (1997). Official Methods of Analysis (16th ed.). AOAC.
dc.relationArancibia, C., Costell, E., & Bayarri, S. (2013). Impact of structural differences on perceived sweetness in semisolid dairy matrices. Journal of Texture Studies, 44(5), 346–356. https://doi.org/10.1111/jtxs.12019
dc.relationArango, A., & Garcés, L. F. (2007). Watewater treatment from milk industries. Producción Más Limpia, 2(2).
dc.relationAres, G., Gonçalvez, D., Pérez, C., Reolón, G., Segura, N., Lema, P., & Gámbaro, A. (2007). Influence of gelatin and starch on the instrumental and sensory texture of stirred yogurt. International Journal of Dairy Technology, 60(4), 263–269. https://doi.org/10.1111/j.1471-0307.2007.00346.x
dc.relationAshogbon, A. O., & Akintayo, E. T. (2014). Recent trend in the physical and chemical modification of starches from different botanical sources: A review. Starch/Staerke, 66(1–2), 41–57. https://doi.org/10.1002/star.201300106
dc.relationAsioli, D., Aschemann-Witzel, J., Caputo, V., Vecchio, R., Annunziata, A., Næs, T., & Varela, P. (2017). Making sense of the “clean label” trends: A review of consumer food choice behavior and discussion of industry implications. Food Research International, 99, 58–71. https://doi.org/10.1016/j.foodres.2017.07.022
dc.relationBabu, A. S., & Parimalavalli, R. (2016). Effect of pullulanase debranching and storage temperatures on structural characteristics and digestibility of sweet potato starch. Journal of the Saudi Society of Agricultural Sciences. https://doi.org/10.1016/j.jssas.2016.04.005
dc.relationBajwa, U. (2017). Whey Protein Concentrate qs A Substitute to Skim Milk Powder in Soy Yoghurt. Agricultural Research & Technology: Open Access Journal, 6(4), 0–5. https://doi.org/10.19080/artoaj.2017.06.555691
dc.relationBeMiller, J. N., & Huber, K. C. (2015). Physical Modification of Food Starch Functionalities. Annual Review of Food Science and Technology, 6(1), 19–69. https://doi.org/10.1146/annurev-food-022814-015552
dc.relationBenavent-Gil, Y., & Rosell, C. M. (2017a). Comparison of porous starches obtained from different enzyme types and levels. Carbohydrate Polymers, 157, 533–540. https://doi.org/10.1016/j.carbpol.2016.10.047
dc.relationBenavent-Gil, Y., & Rosell, C. M. (2017b). Morphological and physicochemical characterization of porous starches obtained from different botanical sources and amylolytic enzymes. International Journal of Biological Macromolecules, 103, 587–595. https://doi.org/10.1016/j.ijbiomac.2017.05.089
dc.relationBilgin, B., Daglioglu, O., & Konyali, M. (2006). FUNCTIONALITY OF BREAD MADE WITH PASTEURIZED WHEY AND/OR BUTTERMILK. In Italian Journal of Food Science (Vol. 18, Issue 3).
dc.relationBlazek, J., & Gilbert, E. P. (2010). Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules, 11(12), 3275–3289. https://doi.org/10.1021/bm101124t
dc.relationBravo, Á., Pando, V., & Gómez, M. (2019). Physically and chemically modified starches as texturisers of low-fat milk gels. International Dairy Journal, 92, 21–27. https://doi.org/10.1016/j.idairyj.2019.01.007
dc.relationÇakmak, H., Özselek, Y., Turan, O. Y., Fıratlıgil, E., & Karbancioğlu-Güler, F. (2020). Whey protein isolate edible films incorporated with essential oils: Antimicrobial activity and barrier properties. Polymer Degradation and Stability, 179. https://doi.org/10.1016/j.polymdegradstab.2020.109285
dc.relationCanales, N. (2021). yuca y su potencial en la bioeconomía de Colombia.
dc.relationCao, M., & Gao, Q. (2020). Internal structure of high degree substitution acetylated potato starch by chemical surface gelatinization. International Journal of Biological Macromolecules, 145, 133–140. https://doi.org/10.1016/j.ijbiomac.2019.12.102
dc.relationCastells, M. L., González, M., Mattos, C., Juliano, P., Mellinger, C., Sepulveda, J. U., Jorcín, S., Krolow, A. C., Di Risio, J., & López, T. (2017). Valorización del lactosuero. In Alternativas de valorización de sueros de quesería. https://www.inti.gob.ar/lacteos/pdf/lactosuero.pdf
dc.relationCatarino, M. D., Alves-Silva, J. M., Fernandes, R. P., Gonçalves, M. J., Salgueiro, L. R., Henriques, M. F., & Cardoso, S. M. (2017). Development and performance of whey protein active coatings with Origanum virens essential oils in the quality and shelf life improvement of processed meat products. Food Control, 80, 273–280. https://doi.org/10.1016/j.foodcont.2017.03.054
dc.relationCayot, P., Schenker, F., Houzé, G., Sulmont, C., & Colas, B. (2008). Creaminess in relation to consistency and particle size in stirred fat-free yogurt. International Dairy Journal, 18(3), 303–311. https://doi.org/10.1016/j.idairyj.2007.06.009
dc.relationChacón, L. R., Chávez, A., Rentería, A. L., & Rodríguez, J. C. (2017). Proteínas del lactosuero usos, relación con la salud y bioactividades. Interciencia: Revista de Ciencia y Tecnología de América, 42(11), 712–718. https://dialnet.unirioja.es/servlet/articulo?codigo=6182640
dc.relationChisenga, S. M., Workneh, T. S., Bultosa, G., & Alimi, B. A. (2019). Progress in research and applications of cassava flour and starch: a review. Journal of Food Science and Technology, 56(6), 2799–2813. https://doi.org/10.1007/s13197-019-03814-6
dc.relationCodex Alimentarius. (2010). Codex Stan 243-2003. 1–11.
dc.relationCui, B., Lu, Y., Tan, C., Wang, G., & Li, G. (2014). Effect of cross-linked acetylated starch content on the structure and stability of set yoghurt. Food Hydrocolloids, 35, 576–582. https://doi.org/10.1016/j.foodhyd.2013.07.018
dc.relationDANE (Departamento Administrativo Nacional de Estadística). (2016a). El cultivo de la yuca (Manihot esculenta Crantz). Boletín Mensual de Insumos y Factores Asociados a La Producción Agropecuaria, 46, 1–7.
dc.relationDANE (Departamento Administrativo Nacional de Estadística). (2016b). El cultivo de la yuca (Manihot esculenta Crantz). Boletín Mensual de Insumos y Factores Asociados a La Producción Agropecuaria, 46, 1–7. https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_abr_2016.pdf
dc.relationDe Castro, F. P., Cunha, T. M., Barreto, P. L. M., Amboni, R. D. D. M. C., & Prudêncio, E. S. (2009). Effect of oligofructose incorporation on the properties of fermented probiotic lactic beverages. International Journal of Dairy Technology, 62(1), 68–74. https://doi.org/10.1111/j.1471-0307.2008.00447.x
dc.relationDe Castro, R. J. S., Domingues, M. A. F., Ohara, A., Okuro, P. K., dos Santos, J. G., Brexó, R. P., & Sato, H. H. (2017). Whey protein as a key component in food systems: Physicochemical properties, production technologies and applications. Food Structure, 14, 17–29. https://doi.org/10.1016/j.foostr.2017.05.004
dc.relationDey, A., & Sit, N. (2017). Modification of foxtail millet starch by combining physical, chemical and enzymatic methods. International Journal of Biological Macromolecules, 95, 314–320. https://doi.org/10.1016/j.ijbiomac.2016.11.067
dc.relationDinika, I., Verma, D. K., Balia, R., Utama, G. L., & Patel, A. R. (2020). Potential of cheese whey bioactive proteins and peptides in the development of antimicrobial edible film composite: A review of recent trends. Trends in Food Science and Technology, 103(January), 57–67. https://doi.org/10.1016/j.tifs.2020.06.017
dc.relationDo, V. H., Mun, S., Kim, Y. L., Rho, S. J., Park, K. H., & Kim, Y. R. (2016). Novel formulation of low-fat spread using rice starch modified by 4-α-glucanotransferase. Food Chemistry, 208, 132–141. https://doi.org/10.1016/j.foodchem.2016.03.101
dc.relationDullius, A., Goettert, M. I., & de Souza, C. F. V. (2018). Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. Journal of Functional Foods, 42(December 2017), 58–74. https://doi.org/10.1016/j.jff.2017.12.063
dc.relationEncuesta anual manufacturera (EAM) 2019. (n.d.). https://www.dane.gov.co/index.php/estadisticas-por-tema/industria/encuesta-anual-manufacturera-enam
dc.relationFalade, K. O., Ibanga-Bamijoko, B., & Ayetigbo, O. E. (2019). Comparing properties of starch and flour of yellow-flesh cassava cultivars and effects of modifications on properties of their starch. Journal of Food Measurement and Characterization, 13(4), 2581–2593. https://doi.org/10.1007/s11694-019-00178-5
dc.relationFalguera, V., Aliguer, N., & Falguera, M. (2012). An integrated approach to current trends in food consumption: Moving toward functional and organic products? Food Control, 26(2), 274–281. https://doi.org/10.1016/j.foodcont.2012.01.051
dc.relationFox, P. F., Guinee, T. P., Cogan, T. M., & McSweeney, P. L. H. (2016). Fundamentals of cheese science, second edition. Fundamentals of Cheese Science, Second Edition, 1–799. https://doi.org/10.1007/978-1-4899-7681-9
dc.relationFu, Z. Q., Wu, M., Zhang, H., & Wang, J. H. (2018). Retrogradation of partially gelatinised potato starch prepared by ball milling. International Journal of Food Science and Technology, 53(4), 1065–1071. https://doi.org/gunarat
dc.relationGałkowska, D., Długosz, M., & Juszczak, L. (2013). Effect of high methoxy pectin and sucrose on pasting, rheological, and textural properties of modified starch systems. Starch/Staerke, 65(5–6), 499–508. https://doi.org/10.1002/star.201200148
dc.relationGao, H., Ma, L., Li, T., Sun, D., Hou, J., Li, A., & Jiang, Z. (2019). Impact of ultrasonic power on the structure and emulsifying properties of whey protein isolate under various pH conditions. Process Biochemistry, 81(March), 113–122. https://doi.org/10.1016/j.procbio.2019.03.012
dc.relationGauche, C., Tomazi, T., Barreto, P. L. M., Ogliari, P. J., & Bordignon-Luiz, M. T. (2009). Physical properties of yoghurt manufactured with milk whey and transglutaminase. LWT - Food Science and Technology, 42(1), 239–243. https://doi.org/10.1016/j.lwt.2008.05.023
dc.relationGavilanes, P. I., Zambrano, Á. M., Romero, C. F., & Moro, A. (2018). Evaluación de una bebida láctea fermentada novel a base de lactosuero y harina de camote. La Técnica: Revista de Las Agrociencias., 19, 47–59. https://doi.org/10.33936/la_tecnica.v0i19.734
dc.relationGoncalvez, D., Pérez, C., Reolon, G., Segura, N., Lema, P., Gámbaro, A., Ares, G., & Varela, P. (2005). Effect of Thickeners on the Texture of Stirred Yogurt. Alimentos Nutricionales, 16(3), 207–211.
dc.relationGonzález, C., Becerra, M., Cháfer, M., Albors, A., Carot, J. M., & Chiralt, A. (2002). Influence of substituting milk powder for whey powder on yoghurt quality. Trends in Food Science and Technology, 13(9–10), 334–340. https://doi.org/10.1016/S0924-2244(02)00160-7
dc.relationGuénard-Lampron, V., St-Gelais, D., Villeneuve, S., & Turgeon, S. L. (2019). Individual and sequential effects of stirring, smoothing, and cooling on the rheological properties of nonfat yogurts stirred with a technical scale unit. Journal of Dairy Science, 102(1), 190–201. https://doi.org/10.3168/jds.2018-14565
dc.relationGuillen, J. S., & Aranda, N. J. (2020). Effect of partial substitution of milk by whey on the sensory and physicochemical characteristics of quinoa ice cream. Ingeniería e Innovación, 8(1), 6. https://doi.org/10.21897/23460466.2103
dc.relationGunaratne, A., & Corke, H. (2007). Functional properties of hydroxypropylated, cross-linked, and hydroxypropylated cross-linked tuber and root starches. Cereal Chemistry, 84(1), 30–37. https://doi.org/10.1094/CCHEM-84-1-0030
dc.relationGunasekaran, S., Xiao, L., & Ould Eleya, M. M. (2006). Whey protein concentrate hydrogels as bioactive carriers. Journal of Applied Polymer Science, 99(5), 2470–2476. https://doi.org/10.1002/app.22838
dc.relationGunorubon, J., & Kekpugile, K. (2012). Modification of Cassava Starch for Industrial Uses. International Journal of Engineering and Technology, 2(6), 913–919.
dc.relationGuo, L. (2018). Sweet potato starch modified by branching enzyme, β-amylase and transglucosidase. Food Hydrocolloids, 83, 182–189. https://doi.org/10.1016/j.foodhyd.2018.05.005
dc.relationGuo, X., Guo, X., Meng, H., Chen, X., Zeng, Q., & Yu, S. (2019). Influences of different pectins on the emulsifying performance of conjugates formed between pectin and whey protein isolate. International Journal of Biological Macromolecules, 123, 246–254. https://doi.org/10.1016/j.ijbiomac.2018.11.040
dc.relationGupta, D., Kocot, M., Tryba, A. M., Serafim, A., Stancu, I. C., Jaegermann, Z., Pamuła, E., Reilly, G. C., & Douglas, T. E. L. (2020). Novel naturally derived whey protein isolate and aragonite biocomposite hydrogels have potential for bone regeneration. Materials and Design, 188, 108408. https://doi.org/10.1016/j.matdes.2019.108408
dc.relationHa, J. H., Lee, J. H., Lee, J. J., Choi, Y. Il, & Lee, H. J. (2019). Effects of whey protein injection as a curing solution on chicken breast meat. Food Science of Animal Resources, 39(3), 494–502. https://doi.org/10.5851/kosfa.2019.e44
dc.relationHan, X. Z., & Hamaker, B. R. (2001). Amylopectin fine structure and rice starch paste breakdown. Journal of Cereal Science, 34(3), 279–284. https://doi.org/10.1006/jcrs.2001.0374
dc.relationHe, J., Han, Y., Liu, M., Wang, Y., Yang, Y., & Yang, X. (2019). Effect of 2 types of resistant starches on the quality of yogurt. Journal of Dairy Science, 102(5), 3956–3964. https://doi.org/10.3168/jds.2018-15562
dc.relationHong, J., Zeng, X. A., Buckow, R., Han, Z., & Wang, M. sheng. (2016). Nanostructure, morphology and functionality of cassava starch after pulsed electric fields assisted acetylation. Food Hydrocolloids, 54, 139–150. https://doi.org/10.1016/j.foodhyd.2015.09.025
dc.relationHuijbrechts, A. (2008). Multifunctional starch derivatives: synthesis, characterization and properties. http://library.wur.nl/WebQuery/clc/1891911
dc.relationICONTEC. (2006). Norma técnica ntc colombiana 805 productos lácteos. Leches fermentadas. Instituto Colombiano de Normas Técnicas y Certificación. (ICONTEC). Bogotá, D.C.
dc.relationICONTEC. (2012). Norma Tecnica Colombiana 3501. Análisis sensorial. Vocabulario. 571, 1–5. http://tienda.icontec.org/brief/NTC3501.pdf
dc.relationImbachí, P. C., Sepúlveda, J. U., & Rodríguez, E. (2018). Effect of modified cassava starch on the rheological and quality properties of a dairy beverage prepared with sweet whey. Food Science and Technology, 39(1), 134–142. https://doi.org/10.1590/1678-457x.28017
dc.relationIndrani, D., Prabhasankar, P., Rajiv, J., & Rao, G. V. (2007). Influence of whey protein concentrate on the rheological characteristics of dough, microstructure and quality of unleavened flat bread (parotta). Food Research International, 40(10), 1254–1260. https://doi.org/10.1016/j.foodres.2007.08.005
dc.relationJane, J. (2007). Starch Properties, Modifications, and Applications. Journal of Macromolecular Science, Part A, 32(4), 751–757. https://doi.org/10.1080/10601329508010286
dc.relationJaniaski, D. R., Pimentel, T. C., Cruz, A. G., & Prudencio, S. H. (2016). Strawberry-flavored yogurts and whey beverages: What is the sensory profile of the ideal product? Journal of Dairy Science, 99(7), 5273–5283. https://doi.org/10.3168/jds.2015-10097
dc.relationJiang, S., Altaf hussain, M., Cheng, J., Jiang, Z., Geng, H., Sun, Y., Sun, C., & Hou, J. (2018). Effect of heat treatment on physicochemical and emulsifying properties of polymerized whey protein concentrate and polymerized whey protein isolate. Lwt, 98(May), 134–140. https://doi.org/10.1016/j.lwt.2018.08.028
dc.relationJoon, R., Mishra, S. K., Brar, G. S., Singh, P. K., Mishra, S. K., & Panwar, H. (2017). Instrumental texture and syneresis analysis of yoghurt prepared from goat and cow milk. The Pharma Innovation Journal, 6(7), 971–974.
dc.relationJukić, M., Komlenić, D., Mastanjević, K., Mastanjević, K., Lučan, M., Popovici, C., Nakov, G., & Lukinac, J. (2019). Influence of damaged starch on the quality parameters of wheat dough and bread. Ukrainian Food Journal, 8(3), 512–521. https://doi.org/10.24263/2304-974x-2019-8-3-8
dc.relationJuliyarsi, I., Tanifal, M., Melia, S., Arief, Djamaan, A., & Purwati, E. (2020). Characterization of Edible Film Whey with Addition of Curcuma Extract (Curcuma domestica val.) on Moisture, Water Vapor Absorption, Solubility Time, and Antioxidant Activity. IOP Conference Series: Earth and Environmental Science, 515(1). https://doi.org/10.1088/1755-1315/515/1/012050
dc.relationJyothi, A. N., Moorthy, S. N., & Rajasekharan, K. N. (2006). Effect of cross-linking with epichlorohydrin on the properties of cassava (Manihot esculenta Crantz) starch. Starch/Staerke, 58(6), 292–299. https://doi.org/10.1002/star.200500468
dc.relationKanemaru, N. (2002). Enhancement of Sucrose Sweetness with Soluble Starch in Humans. Chemical Senses, 27(1), 67–72. https://doi.org/10.1093/chemse/27.1.67
dc.relationKaraki, N., Aljawish, A., Humeau, C., Muniglia, L., & Jasniewski, J. (2016). Enzymatic modification of polysaccharides: Mechanisms, Properties, And potential applications: A review. Enzyme and Microbial Technology, 90, 1–18. https://doi.org/10.1016/j.enzmictec.2016.04.004
dc.relationKaur, B., Ariffin, F., Bhat, R., & Karim, A. A. (2012). Progress in starch modification in the last decade. Food Hydrocolloids, 26(2), 398–404. https://doi.org/10.1016/j.foodhyd.2011.02.016
dc.relationKelleher, C. M., Aydogdu, T., Murphy, K. M., O’Mahony, J. A., Kelly, A. L., O’Callaghan, D. J., & McCarthy, N. A. (2020). The effect of protein profile and preheating on denaturation of whey proteins and development of viscosity in milk protein beverages during heat treatment. International Journal of Dairy Technology, 73(3), 494–501. https://doi.org/10.1111/1471-0307.12679
dc.relationKoksoy, A., & Kilic, M. (2004). Use of hydrocolloids in textural stabilization of a yoghurt drink, ayran. Food Hydrocolloids, 18(4), 593–600. https://doi.org/10.1016/j.foodhyd.2003.10.002
dc.relationKurakake, M., Akiyama, Y., Hagiwara, H., & Komaki, T. (2009). Effects of cross-linking and low molecular amylose on pasting characteristics of waxy corn starch. Food Chemistry, 116(1), 66–70. https://doi.org/10.1016/j.foodchem.2009.02.006
dc.relationL. Santana, Á., & Angela A. Meireles, M. (2014). New Starches are the Trend for Industry Applications: A Review. Food and Public Health, 4(5), 229–241. https://doi.org/10.5923/j.fph.20140405.04
dc.relationLappa, I. K., Papadaki, A., & Kachrimanidou, V. (2019). Cheese Whey Processing : Integrated Biorefinery. Foods, 8, 1–37. www.mdpi.com/journal/foods%0AFoods
dc.relationLee, W. J., & Lucey, J. A. (2010). Formation and Physical Properties of Yogurt. Asian-Australasian Journal of Animal Sciences, 23(9), 1127–1136. https://doi.org/10.5713/ajas.2010.r.05
dc.relationLeón-López, A., Pérez-Marroquín, X. A., Campos-Lozada, G., Campos-Montiel, R. G., & Aguirre-Álvarez, G. (2020). Characterization of whey-based fermented beverages supplemented with hydrolyzed collagen: Antioxidant activity and bioavailability. Foods, 9(8). https://doi.org/10.3390/foods9081106
dc.relationLevin, M. A., Burrington, K. J., & Hartel, R. W. (2016). Whey protein phospholipid concentrate and delactosed permeate: Applications in caramel, ice cream, and cake. Journal of Dairy Science, 99(9), 6948–6960. https://doi.org/10.3168/jds.2016-10975
dc.relationLi, J., & Guo, M. (2006). Effects of Polymerized Whey Proteins on Consistency and Water-holding Properties of Goat’s Milk Yogurt. Journal of Food Science, 71(1), C34–C38. https://doi.org/10.1111/j.1365-2621.2006.tb12385.x
dc.relationLi, M. N., Xie, Y., Chen, H. Q., & Zhang, B. (2019). Effects of heat-moisture treatment after citric acid esterification on structural properties and digestibility of wheat starch, A- and B-type starch granules. Food Chemistry, 272(August 2018), 523–529. https://doi.org/10.1016/j.foodchem.2018.08.079
dc.relationLievore, P., Simões, D. R. S., Silva, K. M., Drunkler, N. L., Barana, A. C., Nogueira, A., & Demiate, I. M. (2015). Chemical characterisation and application of acid whey in fermented milk. Journal of Food Science and Technology, 52(4), 2083–2092. https://doi.org/10.1007/s13197-013-1244-z
dc.relationLiu, G., Gu, Z., Hong, Y., Cheng, L., & Li, C. (2017). Structure, functionality and applications of debranched starch: A review. Trends in Food Science and Technology, 63, 70–79. https://doi.org/10.1016/j.tifs.2017.03.004
dc.relationLiu, Z., Liu, C., Sun, X., Zhang, S., Yuan, Y., Wang, D., & Xu, Y. (2020). Fabrication and characterization of cold-gelation whey protein-chitosan complex hydrogels for the controlled release of curcumin. Food Hydrocolloids, 103(January), 105619. https://doi.org/10.1016/j.foodhyd.2019.105619
dc.relationLobato-Calleros, C., Reyes-Hernández, J., Beristain, C. I., Hornelas-Uribe, Y., Sánchez-García, J. E., & Vernon-Carter, E. J. (2007). Microstructure and texture of white fresh cheese made with canola oil and whey protein concentrate in partial or total replacement of milk fat. Food Research International, 40(4), 529–537. https://doi.org/10.1016/j.foodres.2006.10.011
dc.relationLobato, C., Ramírez, C., Vernon, E. J., & Alvarez, J. (2014). Impact of native and chemically modified starches addition as fat replacers in the viscoelasticity of reduced-fat stirred yogurt. Journal of Food Engineering, 131, 110–115. https://doi.org/10.1016/j.jfoodeng.2014.01.019
dc.relationLondoño, M. M., Sepúlveda, J. U., Hernández, A., & Parra, J. (2008). Bebida fermentada de suero de Queso fresco con Lactobacillus casei. Rev Fac Nal Agr Medellin, 61(1), 4409–4421.
dc.relationLuo, F. X., Huang, Q., Fu, X., Zhang, L. X., & Yu, S. J. (2009). Preparation and characterisation of crosslinked waxy potato starch. Food Chemistry, 115(2), 563–568. https://doi.org/10.1016/j.foodchem.2008.12.052
dc.relationMacwan, S. R., Dabhi, B. K., Parmar, S. C., & Aparnathi, K. D. (2016). Whey and its Utilization. International Journal of Current Microbiology and Applied Sciences, 5(8), 134–155. https://doi.org/10.20546/ijcmas.2016.508.016
dc.relationMahmood, K. T., Ahmad, S. F., & Ali, Z. K. (2018). Effect of using of liquid whey cheese on some physical characteristics and sensory evaluation of yellow layer cakes. 10(1), 1–8.
dc.relationManiglia, B. C., Castanha, N., Le-Bail, P., Le-Bail, A., & Augusto, P. E. D. (2020). Starch modification through environmentally friendly alternatives: a review. Critical Reviews in Food Science and Nutrition, 0(0), 1–24. https://doi.org/10.1080/10408398.2020.1778633
dc.relationMann, B., Athira, S., Sharma, R., Kumar, R., & Sarkar, P. (2018). Bioactive peptides from whey proteins. In Whey Proteins: From Milk to Medicine. Elsevier Inc. https://doi.org/10.1016/B978-0-12-812124-5.00015-1
dc.relationMarques, G. de A., São José, J. F. B. de, Silva, D. A., & Silva, E. M. M. da. (2016). Whey protein as a substitute for wheat in the development of no added sugar cookies. LWT - Food Science and Technology, 67, 118–126. https://doi.org/10.1016/j.lwt.2015.11.044
dc.relationMarti-Quijal, F. J., Zamuz, S., Tomašević, I., Gómez, B., Rocchetti, G., Lucini, L., Remize, F., Barba, F. J., & Lorenzo, J. M. (2019). Influence of different sources of vegetable, whey and microalgae proteins on the physicochemical properties and amino acid profile of fresh pork sausages. Lwt, 110(October 2018), 316–323. https://doi.org/10.1016/j.lwt.2019.04.097
dc.relationMaruyama, S., Streletskaya, N. A., & Lim, J. (2021). Clean label: Why this ingredient but not that one? Food Quality and Preference, 87(June 2020). https://doi.org/10.1016/j.foodqual.2020.104062
dc.relationMazorra-Manzano (SNI I), M. Á., & Moreno-Hernández, J. M. (2019). Propiedades y opciones para valorizar el lactosuero de la quesería artesanal. CienciaUAT, 14(1), 133. https://doi.org/10.29059/cienciauat.v14i1.1134
dc.relationMccarthy, K. L., & Mccarthy, M. J. (2009). Relationship between in-line viscosity and bostwickmeasurement during ketchup production. Journal of Food Science, 74(6), 291–297. https://doi.org/10.1111/j.1750-3841.2009.01205.x
dc.relationMolero, M. S., Flores, C., Leal, M., & Briñes, W. J. (2017). Evaluación sensorial de bebidas probióticas fermentadas a base de lactosuero. Revista Científica, 27(2), 70–77.
dc.relationMontesdeoca, R., Benítez, I., Guevara, R., & Guevara, G. (2017). Procedimiento para la producción de una bebida láctea fermentada utilizando lactosuero. Revista Chilena de Nutricion, 44(1), 39–44. https://doi.org/10.4067/S0717-75182017000100006
dc.relationMontesdeoca, R., Benítez, I., Guevara, R. R., Guevara, G., BenÃ\-tez, I., Guevara, R. R., & Guevara, G. (2017). Procedimiento para la producción de una bebida láctea fermentada utilizando lactosuero. Revista Chilena de Nutricion, 44(1), 33–38. https://doi.org/10.4067/S0717-75182017000100005
dc.relationNastaj, M., Sołowiej, B. G., Terpiłowski, K., & Mleko, S. (2020). Effect of erythritol on physicochemical properties of reformulated high protein meringues obtained from whey protein isolate. International Dairy Journal, 105. https://doi.org/10.1016/j.idairyj.2020.104672
dc.relationNeta, M. C. A., de Queiroga, A. P. R., Almeida, R. L. J., Soares, A. C., Gonçalves, J. M., Fernandes, S. S., de Sousa, M. C., Dos Santos, K. M. O., Buriti, F. C. A., & Florentino, E. R. (2018). Fermented dessert with whey, ingredients from the peel of Jabuticaba (Myrciaria cauliflora) and an indigenous culture of lactobacillus plantarum: Composition, microbial viability, antioxidant capacity and sensory features. Nutrients, 10(9), 1–19. https://doi.org/10.3390/nu10091214
dc.relationNikitina, E., Ahmad Riyanto, R., Vafina, A., Yurtaeva, T., & Tsyganov, Galina Ezhkova, M. (2019). Effect of Fermented Modified Potato Starches to Low-fat Yogurt. Journal of Food and Nutrition Research, 7(7), 549–553. https://doi.org/10.12691/jfnr-7-7-10
dc.relationNöbel, S., Protte, K., Körzendörfer, A., Hitzmann, B., & Hinrichs, J. (2016). Sonication induced particle formation in yogurt: Influence of the dry matter content on the physical properties. Journal of Food Engineering, 191, 77–87. https://doi.org/10.1016/j.jfoodeng.2016.07.007
dc.relationNorthon, L., Santos, R., Gontijo, J. M., Iouko, E., & Mottin, I. (2012). Cassava starch as a stabilizer of soy-based beverages. Food Science and Technology International, 18(5), 489–499. https://doi.org/10.1177/1082013211433072
dc.relationOliveira, C. A., Massingue, A. A., Moura, A. P. R., Fontes, P. R., Ramos, A. L., & Ramos, E. M. (2017). Restructured low-fat cooked ham containing liquid whey fortified with lactulose. Journal of the Science of Food and Agriculture, 98(2), 807–816. doi:10.1002/jsfa.8529
dc.relationOzel, B., Cikrikci, S., Aydin, O., & Oztop, M. H. (2017). Polysaccharide blended whey protein isolate-(WPI) hydrogels: A physicochemical and controlled release study. Food Hydrocolloids, 71, 35–46. https://doi.org/10.1016/j.foodhyd.2017.04.031
dc.relationPacheco, M. M., Porras, O. O., Velasco, E., Morales, E. M., & Navarro, A. (2017). Effect of the milk-whey relation over physicochemical and rheological properties on a fermented milky drink. Ingeniería Y Competitividad, 19(2), 83–91. https://doi.org/10.25100/iyc.v19i2.5295
dc.relationPais, J. M., Núñez, J., Lara, M. V, Rivera, L. M., Trujillo, L. E., & Cuaran, M. J. (2017). Valorización del suero de leche: Una visión desde la biotecnología. Bionatura, 2(4), 468–476. https://doi.org/10.21931/RB/2017.02.04.11
dc.relationPanesar, P. S., Kennedy, J. F., Gandhi, D. N., & Bunko, K. (2007). Bioutilisation of whey for lactic acid production. Food Chemistry, 105(1), 1–14. https://doi.org/10.1016/j.foodchem.2007.03.035
dc.relationPang, Z., Xu, R., Luo, T., Che, X., Bansal, N., & Liu, X. (2019). Physiochemical properties of modified starch under yogurt manufacturing conditions and its relation to the properties of yogurt. Journal of Food Engineering, 245, 11–17. https://doi.org/10.1016/j.jfoodeng.2018.10.003
dc.relationPapademas, P., & Kotsaki, P. (2020). Technological Utilization of Whey towards Sustainable Exploitation. Advances in Dairy Research, 7(4), 1–10. https://doi.org/10.35248/2329-888X.19.7.231
dc.relationPark, K. H., Park, J. H., Lee, S., Yoo, S. H., & Kim, J. W. (2008). Enzymatic Modification of Starch for Food Industry. In Carbohydrate-Active Enzymes: Structure, Function and Applications. Woodhead Publishing Limited. https://doi.org/10.1533/9781845695750.2.157
dc.relationhttps://doi.org/10.1533/9781845695750.2.157 Parra, H., & Ricardo, A. (2013). Efecto del té verde (Camellia Sinensis L.) en las características fisicoquímicas, microbiológicas, proximales y sensoriales de yogurt durante el almacenamiento bajo refrigeración. @Limentech., 11(1), 56–64. https://doi.org/10.24054/16927125.v1.n1.2013.383
dc.relationPenna, A. L., Baruffaldi, R., & Oliveira, M. N. (1997). Optimization of yogurt production using demineralized whey. Journal of Food Science, 62(4), 846–850. https://doi.org/10.1111/j.1365-2621.1997.tb15469.x
dc.relationPimentel, T. C., Gomes da Cruz, A., & Deliza, R. (2016). Sensory Evaluation: Sensory Rating and Scoring Methods. In Encyclopedia of Food and Health (1st ed., pp. 744–749). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00617-6
dc.relationPongsawatmanit, R., Temsiripong, T., & Suwonsichon, T. (2007). Thermal and rheological properties of tapioca starch and xyloglucan mixtures in the presence of sucrose. Food Research International, 40(2), 239–248. https://doi.org/10.1016/j.foodres.2006.10.013
dc.relationPoveda, E. (2013). Suero lácteo, generalidades y potencial uso como fuente de calcio de alta biodisponibilidad. Revista Chilena de Nutrición, 40(4), 397–403. https://doi.org/10.4067/S0717-75182013000400011
dc.relationPrasad, L. N., Sherkat, F., & Shah, N. P. (2013). Influence of Galactooligosaccharides and Modified Waxy Maize Starch on Some Attributes of Yogurt. Journal of Food Science, 78(1), 77–83. https://doi.org/10.1111/j.1750-3841.2012.03004.x
dc.relationPrindiville, E. A., Marshall, R. T., & Heymann, H. (2000). Effect of milk fat, cocoa butter, and whey protein fat replacers on the sensory properties of lowfat and nonfat chocolate ice cream. Journal of Dairy Science, 83(10), 2216–2223. https://doi.org/10.3168/jds.S0022-0302(00)75105-8
dc.relationPunia, S. (2020). Barley starch modifications: Physical, chemical and enzymatic - A review. International Journal of Biological Macromolecules, 144, 578–585. https://doi.org/10.1016/j.ijbiomac.2019.12.088
dc.relationPuranik, D. B., & Gupta, S. K. (2017). Development of Egg-Less Cake Using Whey Protein Concentrate As Egg Substitute. International Journal of Science, Enviornment and Technology, 6(4), 2343–2352. www.ijset.net
dc.relationRadi, M., Niakousari, M., & Amiri, S. (2009). Physicochemical, textural and sensory properties of low-fat yogurt produced by using modified wheat starch as a fat replacer. Journal of Applied Sciences, 9(11), 2194–2197. https://doi.org/10.3923/jas.2009.2194.2197
dc.relationRaigond, P., Ezekiel, R., & Raigond, B. (2015). Resistant starch in food: A review. Journal of the Science of Food and Agriculture, 95(10), 1968–1978. https://doi.org/10.1002/jsfa.6966
dc.relationRajapaksha, D. S. W., Kodithuwakku, K. A. H. T., Silva, K. F. S. T., & Rupasinghe, R. A. J. N. L. (2013). Evaluation of Potassium sorbate and Ε-polylysine for their inhibitory activity on post-acidification of set yoghurt under cold storage for 20 days. International Journal of Scientific and Research Publications, 3(6), 1–7. www.ijsrp.org
dc.relationRamos, O. L., Pereira, R. N., Rodrigues, R. M., Teixeira, J. A., Vicente, A. A., & Malcata, F. X. (2015). Whey and Whey Powders: Production and Uses. In Encyclopedia of Food and Health (1st ed.). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00747-9
dc.relationReddy, C. K., Suriya, M., & Haripriya, S. (2013). Physico-chemical and functional properties of Resistant starch prepared from red kidney beans (Phaseolus vulgaris.L) starch by enzymatic method. Carbohydrate Polymers, 95(1), 220–226. https://doi.org/10.1016/j.carbpol.2013.02.060
dc.relationRinaldo, D. (2020). Carbohydrate and bioactive compounds composition of starchy tropical fruits and tubers, in relation to pre and postharvest conditions: A review. Journal of Food Science, 85(2), 249–259. https://doi.org/10.1111/1750-3841.15002
dc.relationRyan, M. P., & Walsh, G. (2016). The biotechnological potential of whey. Reviews in Environmental Science and Biotechnology, 15(3), 479–498. https://doi.org/10.1007/s11157-016-9402-1
dc.relationSaartrat, S., Puttanlek, C., Rungsardthong, V., & Uttapap, D. (2005). Paste and gel properties of low-substituted acetylated canna starches. Carbohydrate Polymers, 61(2), 211–221. https://doi.org/10.1016/j.carbpol.2005.05.024
dc.relationŠárka, E., & Bubník, Z. (2009). Using image analysis to identify acetylated distarch adipate in a mixture. Starch/Staerke, 61(8), 457–462. https://doi.org/10.1002/star.200800118
dc.relationScheuer, P. M., Di Luccio, M., Zibetti, A. W., de Miranda, M. Z., & de Francisco, A. (2016). Relationship between Instrumental and Sensory Texture Profile of Bread Loaves Made with Whole-Wheat Flour and Fat Replacer. Journal of Texture Studies, 47(1), 14–23. https://doi.org/10.1111/jtxs.12155
dc.relationSerdaroǧlu, M. (2006). Improving low fat meatball characteristics by adding whey powder. Meat Science, 72(1), 155–163. https://doi.org/10.1016/j.meatsci.2005.06.012
dc.relationShen, X., Fang, T., Gao, F., & Guo, M. (2017). Effects of ultrasound treatment on physicochemical and emulsifying properties of whey proteins pre- and post-thermal aggregation. Food Hydrocolloids, 63, 668–676. https://doi.org/10.1016/j.foodhyd.2016.10.003
dc.relationShraddha, R., Chavan, R., Nalawade, T., & Kumar, A. (2015). Whey Based Beverage: Its Functionality, Formulations, Health Benefits and Applications. Journal of Food Processing & Technology, 6(10). https://doi.org/10.4172/2157-7110.1000495
dc.relationSilva, I. R. A., Magnani, M., de Albuquerque, F. S. M., Batista, K. S., Aquino, J. de S., & Queiroga-Neto, V. (2017). Characterization of the chemical and structural properties of native and acetylated starches from avocado (Persea americana Mill.) seeds. International Journal of Food Properties, 20(1), S279–S289. https://doi.org/10.1080/10942912.2017.1295259
dc.relationSilva, K. S., Fonseca, T. M. R., Amado, L. R., & Mauro, M. A. (2018). Physicochemical and microstructural properties of whey protein isolate-based films with addition of pectin. Food Packaging and Shelf Life, 16(June 2017), 122–128. https://doi.org/10.1016/j.fpsl.2018.03.005
dc.relationSingh, M., & Kim, S. (2009). Yogurt fermentation in the presence of starch-lipid composite. Journal of Food Science, 74(2), 2–6. https://doi.org/10.1111/j.1750-3841.2008.01028.x
dc.relationSingh, S., & Khatkar, S. K. (2019). Estimating the consumer preference and cost of production of whey protein enriched milk chocolate for assessing the technological viability. 8(1), 11–15.
dc.relationSolak, B. B., & Akin, N. (2012). Health Benefits of Whey Protein: A Review. Journal of Food Science and Engineering, 2(3), 129–137. https://doi.org/10.17265/2159-5828/2012.03.001
dc.relationSong, M. Q., Shi, C. M., Lin, S. M., Chen, Y. J., Shen, H. M., & Luo, L. (2018). Effect of starch sources on growth, hepatic glucose metabolism and antioxidant capacity in juvenile largemouth bass, Micropterus salmoides. Aquaculture, 490(2017), 355–361. https://doi.org/10.1016/j.aquaculture.2018.03.002
dc.relationSoykeabkaew, N., Thanomsilp, C., & Suwantong, O. (2015). A review: Starch-based composite foams. In Composites Part A: Applied Science and Manufacturing (Vol. 78, Issue August). Elsevier Ltd. https://doi.org/10.1016/j.compositesa.2015.08.014
dc.relationSun, N. xia, Liang, Y., Yu, B., Tan, C. ping, & Cui, B. (2016). Interaction of starch and casein. Food Hydrocolloids, 60, 572–579. https://doi.org/10.1016/j.foodhyd.2016.04.029
dc.relationTamime, A. Y., Barrantes, E., & Sword, A. M. (1996). The effect of starch based fat substitutes on the microstructure of set-style yogurt made from reconstituted skimmed milk powder. Journal of the Society of Dairy Technology, 49(1), 1–10. https://doi.org/10.1111/j.1471-0307.1996.tb02612.x
dc.relationTavares, L., Souza, H. K. S., Gonçalves, M. P., & Rocha, C. M. R. (2021). Physicochemical and microstructural properties of composite edible film obtained by complex coacervation between chitosan and whey protein isolate. Food Hydrocolloids, 113(November 2020). https://doi.org/10.1016/j.foodhyd.2020.106471
dc.relationTortoe, C., Akonor, P. T., & Ofori, J. (2019). Starches of two water yam (Dioscorea alata) varieties used as congeals in yogurt production. Food Science and Nutrition, 7(3), 1053–1062. https://doi.org/10.1002/fsn3.941
dc.relationTribst, A. A. L., Falcade, L. T. P., Carvalho, N. S., Leite Júnior, B. R. de C., & Oliveira, M. M. de. (2020). Manufacture of a fermented dairy product using whey from sheep’s milk cheese: An alternative to using the main by-product of sheep’s milk cheese production in small farms. International Dairy Journal, 111. https://doi.org/10.1016/j.idairyj.2020.104833
dc.relationTsuchiya, A. C., Da Graç, A., Da Silva, M., Brandt, D., Kalschne, D. L., Drunkler, D. A., & Colla, E. (2017). Lactose-reduced ice cream enriched with whey powder. Semina:Ciencias Agrarias, 38(2), 749–758. https://doi.org/10.5433/1679-0359.2017v38n2p749
dc.relationVargas-Díaz, S., Sepúlveda-V, J. U., Ciro-V, H. J., Mosquera, A. J., & Bejarano, E. (2019). Physicochemical, sensory and stability properties of a milk caramel spread sweetened with a glucose-galactose syrup from sweet whey. Revista Facultad Nacional de Agronomia Medellin, 72(3), 8995–9005. https://doi.org/10.15446/rfnam.v72n3.76558
dc.relationVyakhaya, J. D., & Parvez, R. (2019). Evaluation of the quality and sensory attributes of chocolate under different trials. 8(5), 729–733.
dc.relationWang, P., & Xu, X. (2017). Modified Starches and the Stability of Frozen Foods. In Starch in Food Structure, Function and Applications (2nd ed., pp. 581–593). Elsevier Ltd. https://doi.org/10.1016/B978-0-08-100868-3.00014-7
dc.relationWang, S., Li, C., Copeland, L., Niu, Q., & Wang, S. (2015). Starch Retrogradation: A Comprehensive Review. Comprehensive Reviews in Food Science and Food Safety, 14(5), 568–585. https://doi.org/10.1111/1541-4337.12143
dc.relationWang, S., Li, C., Zhang, X., Copeland, L., & Wang, S. (2016). Retrogradation enthalpy does not always reflect the retrogradation behavior of gelatinized starch. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep20965
dc.relationWefers, D., Bindereif, B., Karbstein, H. P., & van der Schaaf, U. S. (2018). Whey protein-pectin conjugates: Linking the improved emulsifying properties to molecular and physico-chemical characteristics. Food Hydrocolloids, 85(May), 257–266. https://doi.org/10.1016/j.foodhyd.2018.06.030
dc.relationWitczak, M., Ziobro, R., Juszczak, L., & Korus, J. (2016). Starch and starch derivatives in gluten-free systems - A review. Journal of Cereal Science, 67(2015), 46–57. https://doi.org/10.1016/j.jcs.2015.07.007
dc.relationXu, X., Zhong, J., Chen, J., Liu, C., Luo, L., Luo, S., Wu, L., & McClements, D. J. (2016). Effectiveness of partially hydrolyzed rice glutelin as a food emulsifier: Comparison to whey protein. Food Chemistry, 213, 700–707. https://doi.org/10.1016/j.foodchem.2016.07.047
dc.relationYadav, J. S. S., Yan, S., Pilli, S., Kumar, L., Tyagi, R. D., & Surampalli, R. Y. (2015). Cheese whey: A potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides. Biotechnology Advances, 33(6), 756–774. https://doi.org/10.1016/j.biotechadv.2015.07.002
dc.relationYetim, H., Müller, W. D., Dogan, M., & Klettner, P. G. (2001). Using fluid whey in comminuted meat products: Effects on textural properties of frankfurter-type sausages. Journal of Muscle Foods, 17(3), 354–366. https://doi.org/10.1111/j.1745-4573.2006.00055.x
dc.relationZhang, L., Zhang, L., Han, X., & Li, Y. (2012). Effects of fat on relationship between particle size and physical properties of cross-linking yogurt by purified Transglutaminase from Streptomyces mobaraensis DSM 40587. Advanced Materials Research, 468–471, 1631–1637. https://doi.org/10.4028/www.scientific.net/amr.468-471.1631
dc.relationZhao, C., & Ashaolu, T. J. (2020). Bioactivity and safety of whey peptides. Lwt, 134(July), 109935. https://doi.org/10.1016/j.lwt.2020.109935
dc.relationZhou, J., Liu, J., & Tang, X. (2018). Effects of whey and soy protein addition on bread rheological property of wheat flour. Journal of Texture Studies, 49(1), 38–46. https://doi.org/10.1111/jtxs.12275
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEfecto del almidón de yuca modificado por vía enzimática sobre las propiedades de calidad de una bebida láctea fermentada elaborada con lactosuero
dc.typeTesis


Este ítem pertenece a la siguiente institución