dc.contributorCastellanos Domínguez, Oscar Fernando
dc.contributorGrupo Interdisciplinario de Investigación y Desarrollo en Gestión, Productividad y Competitividad - Biogestión
dc.creatorVerdugo Cañón, Maryluz
dc.date.accessioned2021-09-21T06:49:21Z
dc.date.available2021-09-21T06:49:21Z
dc.date.created2021-09-21T06:49:21Z
dc.date.issued2021-09-11
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80242
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEl presente trabajo de maestría corresponde a los resultados de la investigación realizada en torno al proceso productivo de la línea de banda pesada de la compañía Incolbest S.A. El objetivo general consistió en elaborar una propuesta de implementación de herramientas de mejora continua para el incremento de la productividad en el proceso de fabricación de bandas de materiales de fricción para sistemas de frenos. La etapa diagnóstica se realizó siguiendo la metodología de mapeo de la cadena de valor (herramienta Lean Manufacturing), a partir de la cual se analizaron las causas de la ineficiencia del proceso productivo y se establecieron acciones de mejora. Finalmente, las mejoras propuestas son simuladas bajo el enfoque de procesos (simulación de eventos discretos) en tres escenarios en el software Flexsim. La combinación de la eliminación de la operación de rectificado final y la implementación de un sistema semiautomático para los centros de mecanizado de perforado las mejoras que representarían una mayor eficiencia de producción (8,6 juegos/ operario hora) y un incremento de 38,4% a 47,6% de tiempo de valor agregado en perforado. Se pretende que la compañía tenga en cuenta los resultados de las medidas de desempeño como base para la toma de decisiones, de manera consecuente con los retos actuales del entorno productivo y la complejidad de los procesos de fabricación. (Texto tomado de la fuente)
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Industrial
dc.publisherDepartamento de Ingeniería de Sistemas e Industrial
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherBogotá - Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAlaze, N., Megerle, F., Wilde, W., & Kaes, G. (1992). Hydraulic brake system for motor vehicles. Google Patents. Aoun, M., & Hasnan, N. (2013). Lean production and TQM: Complementary or contradictory driving forces of innovation performance? International Journal of Innovation Science, 5(4), 237–243. https://doi.org/10.1260/1757-2223.5.4.237 Aziz, Z., Qasim, R. M., & Wajdi, S. (2017). Improving productivity of road surfacing operations using value stream mapping and discrete event simulation. Construction Innovation. Belhadi, A., Sha’ri, Y. B. M., Touriki, F. E., & El Fezazi, S. (2018). Lean production in SMEs: literature review and reflection on future challenges. Journal of Industrial and Production Engineering, 35(6), 368–382. https://doi.org/10.1080/21681015.2018.1508081 Bevilacqua, M., Ciarapica, F. E., Mazzuto, G., & Paciarotti, C. (2013). Visual management implementation and evaluation through mental workload analysis. IFAC Proceedings Volumes (IFAC-PapersOnline), 46(7), 294–299. https://doi.org/10.3182/20130522-3-BR-4036.00065 Callender, G. (2008). Efficiency and management. In Efficiency and Management. https://doi.org/10.4324/9780203888957 Carrasco Tineo, E. (2019). Análisis comparativo del freno de tambor y freno de disco para optimizar la eficiencia del sistema de frenos en veh{\’\i}culo de servicio público de 800 cm3 de cilindrada. Costa, L. B. M., Filho, M. G., Rentes, A. F., Bertani, T. M., & Mardegan, R. (2017). Lean healthcare in developing countries: evidence from Brazilian hospitals. International Journal of Health Planning and Management, 32(1), e99–e120. https://doi.org/10.1002/hpm.2331 Diuza Vallejo, R. D., & others. (2016). Diseño de una metodolog{\’\i}a para el uso de la simulación como herramienta para la enseñanza de la gestión de operaciones en la cadena de suministro. Universidad Autónoma de Occidente. Dunna, E. G., Reyes, H. G., & Barrón, L. E. C. (2006). Simulación y análisis de sistemas con ProModel. Pearson Educación. Galsworth, G. D. (2011). Work that Makes Sense: Operator-led Visuality: Creating and Sustaining Visuality on the Value Add Level. Visual-Lean Enterprise Press. Gidey, E., Jilcha, K., Beshah, B., & Kitaw, D. (2014). The plan-do-check-act cycle of value addition. Industrial Engineering & Management, 3(124), 316–2169. Hama Kareem, J. A., & Talib, N. A. (2015). A review on 5S and total productive maintenance and impact of their implementation in industrial organizations. Advanced Science Letters, 21(5), 1073–1082. Harris, R., & Moffat, J. (2015). Plant-level determinants of total factor productivity in Great Britain, 1997–2008. Journal of Productivity Analysis, 44(1). https://doi.org/10.1007/s11123-015-0442-2 Helleno, A. L., de Moraes, A. J. I., & Simon, A. T. (2017). Integrating sustainability indicators and Lean Manufacturing to assess manufacturing processes: Application case studies in Brazilian industry. Journal of Cleaner Production, 153, 405–416. Hidalgo, B.A (2009) Sistema de frenos hidráulico (Figura). Recuperado de https://www.monografias.com/trabajos72/sistema-frenos-hidraulicos/sistema-frenos-hidraulicos.shtml Jacko, M. G., Tsang, P. H. S., & Rhee, S. K. (1984). Automotive friction materials evolution during the past decade. Wear, 100(1–3), 503–515. Kchaou, M., Sellami, A., Elleuch, R., & Singh, H. (2013). Friction characteristics of a brake friction material under different braking conditions. Materials & Design (1980-2015), 52, 533–540. Kotlyar, B. A. (2018). Management of manufacturing process and labour remuneration: Correlation and impact. Tsvetnye Metally, 4, 8–18. https://doi.org/10.17580/tsm.2018.04.01 Kovács, G. (2017). Application of lean methods for improvement of manufacturing processes. Academic Journal of Manufacturing Engineering, 15(2), 31–36. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85026538937&partnerID=40&md5=d9c9f5a2140e5a89dc6d76aaf90047bc Kowalski, A., Królikowski, S., & Szafer, P. (2018). Methods and techniques for evaluating the productivity of production processes in the automotive industry. IOP Conference Series: Materials Science and Engineering, 400(6). https://doi.org/10.1088/1757-899X/400/6/062017 Law, A. M. (2019). How to build valid and credible simulation models. 2019 Winter Simulation Conference (WSC), 1402–1414. León, R. A. G., Pérez, M. A. A., & Solano, E. F. (2015). Análisis del comportamiento de los frenos de disco de los veh{\’\i}culos a partir de la aceleración del proceso de corrosión. Tecnura, 19(45), 53–63. Mahendran, S., & Senthil Kumar, A. (2018). Implementing lean manufacturing principle in an automobile valve manufacturing industry with simulation analysis - A case study. Journal of the Balkan Tribological Association, 24(3), 600–607. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054973421&partnerID=40&md5=fb21dd672a59b7b1ed9fd817a3d6db53 Maluf, O., Angeloni, M., Milan, M. T., Spinelli, D., & Bose Filho, W. W. (2007). Development of materials for automotive disc brakes. Minerva, 4(2), 149–158. Modi, D. B., & Thakkar, H. (2014). Lean thinking: reduction of waste, lead time, cost through lean manufacturing tools and technique. International Journal of Emerging Technology and Advanced Engineering, 4(3), 334–339. Mohamad, E., Ibrahim, M. A., Shibghatullah, A. S., Rahman, M. A. A., Sulaiman, M. A., Rahman, A. A. A., Abdullah, S., & Salleh, M. R. (2016). A simulation-based approach for lean manufacturing tools implementation: a review. ARPN Journal of Engineering and Applied Sciences, 11(5), 3400–3406. Nallusamy, S. (2016). Lean manufacturing implementation in a gear shaft manufacturing company using Value Stream Mapping. International Journal of Engineering Research in Africa, 21, 231–237. https://doi.org/10.4028/www.scientific.net/JERA.21.231 Nallusamy, S., & Adil Ahamed, M. A. (2017a). Implementation of lean tools in an automotive industry for productivity enhancement - A case study. International Journal of Engineering Research in Africa, 29, 175–185. https://doi.org/10.4028/www.scientific.net/JERA.29.175 Nallusamy, S., & Adil Ahamed, M. A. (2017b). Implementation of lean tools in an automotive industry for productivity enhancement - A case study. International Journal of Engineering Research in Africa, 29, 175–185. https://doi.org/10.4028/www.scientific.net/JERA.29.175 Naufal, A., Jaffar, A., Yusoff, N., & Hayati, N. (2012). Development of kanban system at local manufacturing company in Malaysia-Case study. Procedia Engineering, 41, 1721–1726. https://doi.org/10.1016/j.proeng.2012.07.374 Ocampo, J., & Pavón, A. (2012). Integrando la metodolog{\’\i}a DMAIC de Seis Sigma con la Simulación de Eventos Discretos en Flexsim. Tenth LACCEI Latin American and Caribbean Conference for Engineering and Technology. Oday, M (2020) Drum Brake Repair Services at Rice Tire (Figura). Recuperado https://ricetire.com/service/drum-brake-repair/ Palmer, S., & Torgerson, D. J. (1999). Definitions of efficiency. Bmj, 318(7191), 1136. Piercy, N., & Rich, N. (2009). Lean transformation in th e pure service environment: The case of the call service centre. International Journal of Operations and Production Management, 29(1), 54–76. https://doi.org/10.1108/01443570910925361 Quan, Y., Alfnes, E., & Brekken Håvard Gjengstøand Eide, M. M. (2016). A Simulation Enhanced VSM Approach for high-Mix Manufacturing Environment. 6th International Workshop of Advanced Manufacturing and Automation. Rother, M., & Shook, J. (2003). Learning to see: value stream mapping to add value and eliminate muda. Lean Enterprise Institute. Ruales Guzmán, B. V, Brun, A., & Castellanos Domínguez, O. F. (2019). Quality management as a determinant factor of productivity: A systematic literature review. International Journal of Productivity and Performance Management. https://doi.org/10.1108/IJPPM-07-2018-0251 Salah, S., Rahim, A., & Carretero, J. A. (2010). The integration of Six Sigma and lean management. International Journal of Lean Six Sigma. Sanders, A., Elangeswaran, C., & Wulfsberg, J. (2016). Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing. Journal of Industrial Engineering and Management, 9(3), 811–833. https://doi.org/10.3926/jiem.1940 Saravanan, V., Nallusamy, S., & Balaji, K. (2018). Lead Time Reduction through Execution of Lean Tool for Productivity Enhancement in Small Scale Industries. International Journal of Engineering Research in Africa, 34, 116–127. https://doi.org/10.4028/www.scientific.net/JERA.34.116 Saravanan, V., Nallusamy, S., & George, A. (2018). Efficiency Enhancement in a Medium Scale Gearbox Manufacturing Company through Different Lean Tools - A Case Study. International Journal of Engineering Research in Africa, 34, 128–138. https://doi.org/10.4028/www.scientific.net/JERA.34.128 Schroeder, R. G., Linderman, K., Liedtke, C., & Choo, A. S. (2008). Six Sigma: Definition and underlying theory. Journal of Operations Management, 26(4), 536–554. Shah, R., & Ward, P. T. (2007). Defining and developing measures of lean production. Journal of Operations Management, 25(4), 785–805. https://doi.org/10.1016/j.jom.2007.01.019 Simón-Marmolejo, I., Santana-Robles, F., Granillo-Mac\’\ias, R., & Piedra-Mayorga, V. M. (2013). La simulación con FlexSim, una fuente alternativa para la toma de decisiones en las operaciones de un sistema h{\’\i}brido. Cient{\’\i}fica, 17(1), 39–49. Singh, J., & Singh, H. (2012). Continuous improvement approach: state-of-art review and future implications. International Journal of Lean Six Sigma, 3(2), 88–111. Singh, R., Gohil, A. M., Shah, D. B., & Desai, S. (2013). Total productive maintenance (TPM) implementation in a machine shop: A case study. Procedia Engineering, 51, 592–599. Stamm, M. L., Neitzert, T., & Singh, D. P. K. (2009). TQM, TPM, TOC, lean and six sigma-Evolution of manufacturing methodologies under the paradigm shift from Taylorism/Fordism to Toyotism. Sunder, M. V. (2013). Synergies of lean six sigma. IUP Journal of Operations Management, 12(1), 21. Temblador-Perez, C. (2018). ROADMAP FOR AN INTEGRATED LEAN SIX SIGMA MODEL. Proceedings of the International Annual Conference of the American Society for Engineering Management., 1–10. Thürer, M., Tomašević, I., & Stevenson, M. (2017). On the meaning of ‘waste’: review and definition. Production Planning & Control, 28(3), 244–255. Van Tonder, R. (2011). Critical evaluation of the Theory of Constraints Lean Six Sigma continuous improvement management approach. North-West University. Verma, P. C., Ciudin, R., Bonfanti, A., Aswath, P., Straffelini, G., & Gialanella, S. (2016). Role of the friction layer in the high-temperature pin-on-disc study of a brake material. Wear, 346, 56–65. Womack, J. P., Jones, D. T., Roos, D., & Carpenter, D. S. (1991). The machine that changed the world:[based on the Massachusetts Institute of Technology 5-million-dollar 5-year study on the future of the automobile]. Rawson Associates. Yin, Y., Stecke, K. E., Swink, M., & Kaku, I. (2017). Lessons from seru production on manufacturing competitively in a high cost environment. Journal of Operations Management, 49–51, 67–76. https://doi.org/10.1016/j.jom.2017.01.003
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titlePropuesta para la implementación de herramientas Lean Manufacturing en una empresa fabricante de materiales de fricción para sistemas de frenos
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución