dc.contributorJiménez Builes, Jovani Alberto
dc.contributorAcosta Amaya, Gustavo Alonso
dc.contributorGIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial
dc.creatorSerrate Hincapie, Alejandro
dc.date.accessioned2021-10-08T21:27:39Z
dc.date.accessioned2022-09-21T17:25:26Z
dc.date.available2021-10-08T21:27:39Z
dc.date.available2022-09-21T17:25:26Z
dc.date.created2021-10-08T21:27:39Z
dc.date.issued2021-10-06
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80463
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3400504
dc.description.abstractEn el presente trabajo se llevó a cabo el desarrollo de una metodología para el desarrollo de aplicaciones en robótica de servicios basado en industria 4.0 y computación en la nube. La primera parte del trabajo consiste en caracterizar los elementos de industria 4.0 aplicables a la robótica de servicios para interiores. Una vez definidos, se identificaron los modelos de computación en la nube aplicables a la robótica de servicios, y luego se incorporaron técnicas en inteligencia artificial para el control de la navegación de robots móviles en entornos interiores. Después se integraron los elementos de la industria 4.0 y computación en la nube, para la navegación autónoma de un sistema robótico. Con lo anterior se construyó una metodología, adicionándole elementos como sensorica, locomoción, manipulación, desarrollo web, fuentes de datos, entornos de desarrollo en la nube, simulación, arquitecturas de control, y marcadores fiduciales visuales. Finalmente se validó el método propuesto a través de la realización de un conjunto de pruebas en un escenario logístico, generando con ello resultados y conclusiones. (Texto tomado de la fuente)
dc.description.abstractIn the present work, the development of a methodology for the development of applications in robotics of services based on industry 4.0 and cloud computing was carried out. The first part of the work consists of characterizing the elements of Industry 4.0 applicable to indoor service robotics. Once defined, the cloud computing models applicable to service robotics were identified, and then artificial intelligence techniques were incorporated to control the navigation of mobile robots in indoor environments. Afterwards, the elements of Industry 4.0 and cloud computing were integrated, for the autonomous navigation of a robotic system. With the above, a methodology was built, adding elements such as sensorics, locomotion, manipulation, web development, data sources, development environments in the cloud, simulation, control architectures, and visual fiducial markers. Finally, the proposed method was validated by carrying out a set of tests in a logistic setting, thereby generating results and conclusions.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas
dc.publisherDepartamento de la Computación y la Decisión
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationBaalbaki, l., & Xie, X. (2009). A decision framework for operation management of reconfigurable mobile service robots in hospitals. IFAC Proceedings Volumes, 151-156.
dc.relationDeuseab, J. R. (2014). Methodology for the Planning and Implementation of Service Robotics in Industrial WorN Processes. Conference on Assembly Tecnologies and System, 41-46.
dc.relationDourado, C., da Silvaa, S., da Nóbrega, R., Barros, A., Sangaiah, A., Rebouças, P., . . . Victor. (2019). A new approach for mobile robot localization based on an online IoT system. Future Generation Computer Systems, 859-881.
dc.relationDröder, K., lBobka, P., Germann, T., Gabriel, F., & Dietrich, F. (2018). A Machine Learning-Enhanced Digital Twin Approach for Human-Robot-Collaboration. Procedia CIRP, 187-192.
dc.relationErboz, G. (2017). How To Define Industry 4.0: Main Pillars Of Industry 4.0. 7th International Conference on Management (pág. 9). Nitra: ICoM.
dc.relationFarinelli, A., Boscolo, N., Zanotto, E., & Pagello, E. (2017). Advanced approaches for multi-robot coordination in logistic scenarios. Robotics and Autonomous Systems, 34-44.
dc.relationGiusti Bravo, F. (13 de Septiembre de 2016). beetrack. Recuperado el 20 de Diciembre de 2019, de Robótica Industrial: una mirada actual y lo que viene: https://www.beetrack.com/es/blog/robotica-industrial-una-mirada-actual-y-lo-que-viene
dc.relationHehua, Y., Qingsong, H., Yingying, W., Wenguo, W., & Muhammad, I. (2017). Cloud robotics in Smart Manufacturing Environments: Challenges and countermeasures. Computers & Electrical Engineering, 56-62.
dc.relationJin, W., IlKwag, S., & DaeKo, Y. (2020). Optimal capacity and operation design of a robot logistics system for the hotel industry. Tourism Management, 103-971.
dc.relationKousi, N., Koukas, S., Michalos, G., Makris, S., & Chryssolouris, G. (2016). Service Oriented Architecture for Dynamic Scheduling of Mobile Robots for Material Supply. Procedia CIRP, 18-22.
dc.relationKuhner, D., Fiederer, L., & Aldingerad, J. (2019). A service assistant combining autonomous robotics, flexible goal formulation, and deep-learning-based brain–computer interfacing. Robotics and Autonomous Systems, 98-113.
dc.relationLi, H., & Savkin, A. (2018). An algorithm for safe navigation of mobile robots by a sensor network in dynamic cluttered industrial environments. Robotics and Computer-Integrated Manufacturing, 65-82.
dc.relationMadrid, R. (19 de Octubre de 2019). Redaccion Medica. Obtenido de Robots: los nuevos ayudantes hospitalarios: https://www.redaccionmedica.com/noticia/los-robots-los-nuevos-ayudantes-hospitalarios-88603
dc.relationOzaki, K., Kagaya, H., & SatoshiHirano. (2013). Preliminary Trial of Postural Strategy Training Using a Personal Transport Assistance Robot for Patients With Central Nervous System Disorder. Archives of Physical Medicine and Rehabilitation, 59-66.
dc.relationRivera, Z., Simone, M., & Guida, D. (2019). Unmanned Ground Vehicle Modelling in Gazebo/ROS-Based Environments. Machines, 21.
dc.relationSchuessler, Z., Schuessler, H., & Strohaber, J. (2018). Robotic-assisted hysterectomy in a community hospital after seven years of experience. Laparoscopic, Endoscopic and Robotic Surgery, 42-45.
dc.relationVelagic.J, & Balta.H. (2010). Design and Development of Control and Communication Systems for Complex Mobile Robot and Manipulator Structure. IFAC Proceedings Volumes, 307-312.
dc.relationXiaa, C., Zhanga, Y., Wang, L., Coleman, S., & Liua, Y. (2018). Microservice-based cloud robotics system for intelligent space. Robotics and Autonomous Systems, 139-150.
dc.relationYan, H., Hua, Q., Wang, Y., Wei, W., & Imrand, M. (2017). Cloud robotics in Smart Manufacturing Environments: Challenges and countermeasures. Computers & Electrical Engineering, 56-65.
dc.relationYavasa, V., Deniz, Y., & Ozenb, Y. (2020). Logistics centers in the new industrial era: A proposed framework for logistics center 4.0. Transportation Research Part E: Logistics and Transportation Review, 101-864.
dc.relationZhu, D. (2018). IOT and big data based cooperative logistical delivery scheduling method and cloud robot system. Future Generation Computer Systems, 709-715.
dc.relationBhavsar, P., Patel, S., & Sobh, T. (2019). Hybrid Robot-as-a-Service (RaaS) Platform (Using MQTT and CoAP). International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) (pág. 16). Atlanta: IEEE.
dc.relationD. Bogataj, D. B. (2019). The ageing workforce challenge: investments in collaborative robots or contribution to pension schemes, from the multi-echelon perspective. International Journal of Production Economics, 106.
dc.relationGonzales, p., Calvo, I., Etxberria, I., & Zulueta, E. (2015). Hacia un framework basado en ROS para la implementación de Sistemas. Jornadas de Automática,, (págs. 1050-1057). Bilbao.
dc.relationJ. Guiochet, M. M. (2017). Safety-critical advanced robots: a survey. Rob Auton Syst, 52.
dc.relationOMRON. (2019). OMRON Automatizacion Industrial. Obtenido de industrial omron: https://industrial.omron.es/
dc.relationPyo, Y., Nakashima, K., & Kuwahata, S. (2015). Service robot system with an informationally structured environment. Robotics and autonomous System, 148-165.
dc.relationSadek, L., & Ayad, S. (2015). TOWARDS A NEW CLOUD ROBOTICS APPROACH. Proceedings of the 8th International Symposium on Mechatronics and its Applications (ISMA12) (pág. 5). Sharjah: UAE.
dc.relationSakamoto, J., Kiyoyama, K., Matsumoto, K., & Pyo, Y. (2018). Development of ROS-TMS 5.0 for informationally structured environment. ROBOMETCH JOURNAL.
dc.relationSchumann, H. (25 de Junio de 2018). ZIVID. Obtenido de https://blog.zivid.com
dc.relationToris, R., Kent, D., & Chernova, S. (2014). Toris, R., Kent, D., & Chernova, S. (2014). The robot management system: a framework for conducting human-robot interaction studies through crowdsourcing. HRI 2014. HRI, (pág. 16).
dc.relationUllah, l. (2019). Modeling and simulation of complex manufacturing phenomena using sensor signals from the perspective of Industry 4.0. En C. Chen, & T. Hartmann, Advanced Engineering Informatics (pág. 358). ScienceDirect.
dc.relationHu, G., Peng, W., & Wen, Y. (2012). Cloud Robotics:Architecture, Challenges and Applications. IEEE Network , 21-28.
dc.relationKoubaa, A. (2014). A Service-Oriented Architecture for Virtualizing. International Conference on Architecture of Computing Systems, 196-208.
dc.relationMbunge, E., Fashoto, S., & Dlamini, S. (2020). Modelling a Gossip-based Protocol for Enhanced Dynamic Routing. asian journal of information tecnology, 203-206.
dc.relationYoon, J., & Park, H. (2015). A Cloud-based Integrated Development Environment for robot software Development. Journal of Institute of Control, Robotics and Systems, 173-178.
dc.relationA General Framework for Temporal Calibration of Multiple Proprioceptive and Exteroceptive Sensors. (2014). En J. Kelly, & G. S. Sukhatme, Experimental Robotics (págs. 195-209). Springer.
dc.relationA. Batlle, J., & Barjau, A. (2009). Holonomy in mobile robots. Robotics and Autonomous Systems .
dc.relationAcosta, G., Gallardo, j., & Perez, R. (2016). Reactive control architecture for autonomous mobile robot navigation. Revista Chilena de Ingenieria.
dc.relationAlmasri, M., Elleithy, K., & Alajlan, A. (2016). Sensor Fusion Based Model for Collision Free Mobile Robot Navigation. Sensors, 16-24.
dc.relationAndreev, A., & Peregudova, O. (2020). On global trajectory tracking control of robot manipulators in cylindrical phase space. International Journal of Control, 3003-3015.
dc.relationB.S.K.K, I., & Ahmed, M. (2014). Modelling and Control of SCARA Manipulator. Procedia Computer Science, 106-113.
dc.relationBambino, i. (2008). Una Introducción a los Robots Móviles .
dc.relationBarrientos Sotelo, V. R., García Sánchez, J. R., & Silva Ortigoza, R. (2007). Robots Móviles: Evolución y Estado del Arte. Polibits, 12-17.
dc.relationBarrientos, A., Peñin, L. F., Balaguer, C., & Aracil, R. (1997). Fundamentos de Robotica. Madrid: McGraw-Hill.
dc.relationCardoso, E., Fernandez, A., Marrero-Osorio, S. A., & Guardado, P. (2017). Modelos cinemático y dinámico de un robot de cuatro grados de libertad. Ingeniería Electrónica, Automática y Comunicaciones, 56-75.
dc.relationCrick, C., Jay, G., Osentoski, S., Pitzer, B., & Jenkins, O. C. (2017). Rosbridge: ROS for Non-ROS Users. En H. I. Christensen, & O. Khatib, Robotics Research (págs. 493-504). Switzerland: Springer International Publishing.
dc.relationDikra, E., Badreddine, A., Larbi, E., & Jalal, E. (2019). Optimal Trajectory Planning for Spherical Robot Using Evolutionary Algorithms. Procedia Manufacturing, 960-968.
dc.relationFiala, M. (2005). ARTag, a fiducial marker system using digital techniques. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05) (págs. 590-596). IEEE.
dc.relationGea, M., & Gutierrez, l. (2002). La interacción persona-ordenador. Granada: Universidad de Granada.
dc.relationGoergen, R., Maboni, M., & Gioppo de Souza, M. (2018). Design of an Experimental Workbench for Force Control Tests with Pneumatic Actuators. Proposal of an Autonomous System for Inspection of Structures (págs. 52-57). São Paulo: ABIMAQ.
dc.relationHrbáček, J., Ripel, T., & Krejsa, J. (2010). Ackermann mobile robot chassis with independent rear wheel drives. Power Electronics and Motion Control Conference (EPE/PEMC), 2010 14th International.
dc.relationKabanov, A., & Balabanov, A. (2018). The modeling of an anthropomorphic robot arm. International Conference on Modern Trends in Manufacturing Technologies and Equipment (ICMTMTE 2018).
dc.relationMandow, A., Martínez, J. L., Morales, J., & Blanco, J. L. (2007). Experimental kinematics for wheeled skid-steer mobile robots. Intelligent Robots and Systems, 2007. IROS 2007. IEEE/RSJ International, (págs. 1222-1227).
dc.relationMcTaggart, M. &.-B., Razjigaev, A., Rowntree, T., Vijay, K., Wade-McCue, S., & Tow, A. (2017). Mechanical Design of a Cartesian Manipulator for Warehouse Pick and Place. arxiv.
dc.relationMohd Annuar, K., & Sapiee, M. (2018). Synchronous Mobile Robots Formation Control. TELKOMNIKA Indonesian Journal of Electrical Engineering. 16.
dc.relationNavegación en Robots. (2011). En Y. Torres, & A. Ines, Planificacion de trayectorias en robots mobiles (págs. 21-52).
dc.relationNielsen, I., Dang, Q.-V., Bocewicz, G., & Banaszak, Z. (2017). A methodology for Implementation of Mobile Robot in Adaptive Manufacturing Environments. Journal of Intelligent Manufacturing, (págs. 1171 - 1188).
dc.relationprofander, S. (2014). Implementation and Evaluation of multimodal input/output channels for task-based industrial robot programming.
dc.relationRamirez Arias, J. L., Fonseca, R., & Astrid. (2012). Mathematical modeling of the direct. Revista Ingeniería Solidaria, vol. 8, 46-52.
dc.relationRiaño, C., Peña, C., & Sánchez, H. (2018). Aplicación de técnicas de desenvolvimiento de producto para el desarrollo de un robot antropomórfico. Revista UIS Ingenierías , 21-34.
dc.relationRojas, D. B., Lorente, L. E., & de Quirós, C. B. (2002). Planificación local basada en sensores para un manipulador móvil en tareas de colaboración con humanos. Madrid: Universidad Carlos III de Madrid.
dc.relationRossmann, J., Ruf, H., & Schlette, C. (2009). Model-Based Programming “by Demonstration”– Fast Setup of Robot Systems (ProDemo). En T. Kroger, & F. Wahl, Advances in Robotics Research: Theory, Implementation, Application (págs. 159-168). Springer.
dc.relationRubio, f., Valero, F., & Llopis, C. (2019). A review of mobile robots: Concepts, methods, theoretical framework, and applications. International Journal of Advance Robotic Systems.
dc.relationRuiz, J. (2016). Probabilistic Techniques in Semantic. malaga: Universidad de malaga.
dc.relationSalter, T., Michaud, F., Létourneau, D., Lee, D., & Werry, I. (2007). Using proprioceptive sensors for categorizing human-robot interactions. 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI). Arlington: IEEE.
dc.relationSanders, D. (2008). Environmental sensors and networks of sensors. Sensor Review.
dc.relationSungBu, K., I.O.Lee, D.I.Cho, & JangMyung, L. (2006). DYNAMIC LOCALIZATION OF A MOBILE ROBOT WITH ACTIVE BEACON SENSORS. IFAC Proceedings Volumes, 921-925.
dc.relationTerakawa, T., Komori, M., & Matsuda, K. (2019). Motion Analysis of an Omnidirectional Mobile Robot with Wheels Connected by Passive Sliding Joints. Advances in Mechanism and Machine Science , 2279-2288.
dc.relationVinh, Q., Ewa, I., Bøgh, S., & Bocewicz, G. (2013). Modelling and Scheduling Autonomous Mobile Robot for a Real-World Industrial Application. IFAC Conference on Manufacturing Modelling, Management and Control. Russia.
dc.relationZenatti, F., Fontanelli, D., Palopoli, L., Macii, D., & Nazemzadeh, P. (2016). Optimal placement of passive sensors for robot localization. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
dc.rightsAtribución-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleMétodo para el desarrollo de aplicaciones en robótica de servicios basados en industria 4.0 y computación en la nube.
dc.typeTesis


Este ítem pertenece a la siguiente institución