dc.contributor | Lezama Serrano, José Oswaldo | |
dc.contributor | Seminario de álgebra constructiva, SAC2 | |
dc.creator | Venegas Ramírez, Helbert Javier | |
dc.date.accessioned | 2020-08-05T22:32:16Z | |
dc.date.available | 2020-08-05T22:32:16Z | |
dc.date.created | 2020-08-05T22:32:16Z | |
dc.date.issued | 2020-06-19 | |
dc.identifier | H. Venegas, Zariski cancellation problem, Ph.D Thesis, Universidad Nacional de Colombia, Bogotá (2020). | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77946 | |
dc.description.abstract | A special question for noncommutative algebras is Zariski cancellation problem. In this thesis we establish cancellation for some special classes of algebras such as skew PBW extensions, some Artin--Schelter regular algebras and universal enveloping algebras of dimension three. In addition, we provide general properties for cancellation and we present a noncommutative analogues of a cancellation theorem for algebras of Gelfand-Kirillov dimension one. | |
dc.description.abstract | Una pregunta especial para álgebras no conmutativas es el problema de cancelación de Zariski. En esta tesis, establecemos cancelación para algunas clases especiales de álgebras como extensiones PBW torcidas, algunas álgebras Artin--Schelter regulares y álgebras envolvente universal de dimensión tres. Adicionalmente, proveemos propiedades generales para cancelación y presentamos un análogo no conmutativo del teorema de cancelación para álgebras de dimensión Gelfand-Kirillov uno. | |
dc.language | eng | |
dc.publisher | Bogotá - Ciencias - Doctorado en Ciencias - Matemáticas | |
dc.publisher | Departamento de Matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | J.P. Acosta, C. Chaparro, O. Lezama, I. Ojeda, and C. Venegas,
Ore and Goldie theorems for skew PBW extensions
Asian-European Journal of Mathematics, 6(4) (2013). | |
dc.relation | J. Alev and F. Dumas,
{\it Sur le corps des fractions de certaines algèbres quantiques},
J. of Algebra, {\bf 170} (1994), 229-265. | |
dc.relation | S. Abhyankar, P. Eakin and W. Heinzer,
{\it On the uniqueness of the coefficient ring in a polynomial ring},
\emph{J. Algebra} {\bf 23} (1972), 310--342. | |
dc.relation | F.W. Anderson and K.R. Fuller,
\emph{Rings and categories of modules},
Graduate Texts in Mathematics, Vol. 13. Springer-Verlag, New York-Heidelberg, 1974. | |
dc.relation | E. Armendariz, H.K. Koo and J. Park,
{\it Isomorphic Ore extensions},
Comm. Algebra {\bf 15} (1987), N° 12, 2633-2652. | |
dc.relation | L.P. Acosta, O. Lezama, and M.A. Reyes,
{\it Prime ideals of skew $PBW$ extensions},
Revista de la Unión Matemática Argentina, {\bf 56}(2)(2015), 39-55. | |
dc.relation | M. Artin and W. Schelter,
{\it Graded algebras of global dimension 3},
Adv. Math. {\bf 66} (1987), 171--216. | |
dc.relation | M. Artin, L. Small and J.J. Zhang,
{\it Generic flatness for strongly noetherian algebras},
\emph{J. Algebra} {\bf 221} (1999), 579--610. | |
dc.relation | M. Artin, J. Tate and M. Van den Bergh,
{\it Modules over regular algebras of dimension 3},
Invent. Math. {\bf106}(2) (1991), 335-388. | |
dc.relation | M. Artin, J. Tate and M. Van den Bergh,
{\it Some algebras associated to automorphisms of elliptic curves},
in P.Cartier, et al. (Eds.), The Grothendieck Festschrift, Birkhäuser, Basel, {\bf 1}
(1990), 33-85. | |
dc.relation | M. Artin and J. J. Zhang,
{\it Noncommutative projective schemes},
\emph{Adv. Math.} {\bf 109} (1994), 228-287. | |
dc.relation | J. Bell, M. Hamidizadeh, H. Huang and H. Venegas,
\emph{ Noncommutative analogues of a cancellation theorem of Abhyankar, Eakin, and Heinzer}.
Available at arXiv:1909.04023, to appear in contributions to Algebra and Geometry. | |
dc.relation | A. Bell and K. Goodearl,
\textit{Uniform rank over differential operator rings and Poincaré-Birkhoff-Witt extensions},
Pacific J. Math., {\bf131} (1) (1988), 13-37. | |
dc.relation | J. Bell and J. J. Zhang,
{\it Zariski cancellation problem for noncommutative algebras},
\emph{Selecta Math.} (N.S.) {\bf 23}(3) (2017), 1709--1737. | |
dc.relation | J. Bell and J.J. Zhang,
{\it An isomorphism lemma for graded rings},
\emph{Proc. Am. Math. Soc.} {\bf 145}(3) (2017), 989--994. | |
dc.relation | G. Bellany, D. Rogalski, T. Schedler, T. Stafford and M. Wemyss.
{\it Noncommutative algebraic geometric}, MSRI, (2016), 356. | |
dc.relation | J. Bergen,
{\it Cancellation in skew polynomial rings},
\emph{Comm. Algebra} {\bf 46}(2) (2018), 705--707. | |
dc.relation | N. Bourbaki,
\emph{Algebra II. Chapters 4--7}. Translated from the 1981 French edition by P. M. Cohn and J. Howie.
Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 2003. | |
dc.relation | J.W. Brewer and E.A. Rutter,
{\it Isomorphic polynomial rings},
\emph{Arch. Math.} (Basel) {\bf 23} (1972), 484--488. | |
dc.relation | K.A. Brown and K.R. Goodearl,
\emph{Lectures on algebraic quantum groups},
Biskhauser Basel, 2002. | |
dc.relation | K.A. Brown and M.T. Yakimov,
{\it Azumaya loci and discriminant ideals of PI algebras},
\emph{Adv. Math.} {\bf 340} (2018), 1219--1255. | |
dc.relation | J. Bueso, J. Gómez-Torrecillas and A. Verschoren,
Algorithmic Methods in noncommutative Algebra: Applications to Quantum Groups,
Kluwer, 2003. | |
dc.relation | S. Ceken, J. Palmieri, Y.-H. Wang and J.J. Zhang,
{\it The discriminant controls automorphism groups of noncommutative
algebras},
\emph{Adv. Math.} {\bf 269} (2015), 551--584. | |
dc.relation | S. Ceken, J. Palmieri, Y.-H. Wang and J.J. Zhang,
{\it The discriminant criterion and the
automorphism groups of quantized algebras},
\emph{Adv. Math.} {\bf 286} (2016), 754--801. | |
dc.relation | K. Chan, A. Young, and J.J. Zhang,
{\it Discriminant formulas and applications},
\emph{Algebra Number Theory} {\bf 10}(3) (2016), 557--596. | |
dc.relation | K. Chan, A. Young, and J.J. Zhang,
{\it Discriminants and Automorphism Groups of
Veronese subrings of skew polynomial rings},
\emph{Math. Z.}, {\bf 288}(3-4) (2018), 1395--1420. | |
dc.relation | K. Chan, A. Young, and J.J. Zhang,
{\it Noncommutative Cyclic Isolated Singularities},
preprint (2019), arXiv:1902.04847. | |
dc.relation | D.B. Coleman and E.E. Enochs,
{\it Isomorphic polynomial rings},
\emph{Proc. Amer. Math. Soc.} {\bf 27} (1971), 247--252. | |
dc.relation | A. Crachiola and L. Makar-Limanov,
{\it On the rigidity of small domains},
J. Algebra {\bf 284}(1) (2005), 1--12. | |
dc.relation | W. Danielewski,
{\it On the cancellation problem and automorphism groups of affine algebraic
varieties}, preprint, 1989, 8 pages, Warsaw. | |
dc.relation | J. Dixmier,
\textit{Enveloping Algebras}.
AMS, 1996. | |
dc.relation | J. Dixmier,
\textit{Sur les alg\`{e}bres de Weyl},
Bulletin de la S.M.F., {\bf96} (1968),
209-242. | |
dc.relation | B. Farb and R. K. Dennis,
\emph{Noncommutative algebra.}
Graduate Texts in Mathematics, 144. Springer-Verlag, New York, 1993. | |
dc.relation | G. Freudenburg,
{\it Algebraic theory of locally nilpotent derivations},
Second edition. Encyclopaedia of Mathematical Sciences,
{\bf 136}. Invariant Theory and Algebraic
Transformation Groups, VII. Springer-Verlag, Berlin, 2017. | |
dc.relation | T. Fujita,
{\it On Zariski problem},
\emph{Proc. Japan Acad.} {\bf 55}(A) (1979) 106--110. | |
dc.relation | D. Gale,
{\it Subalgebras of an algebra with a single generator are finitely generated},
Proc. Amer. Math. Soc. {\bf 8} (1957), 929-930. | |
dc.relation | J. Gaddis,
{\it The isomorphism problem for quantum affine spaces, homogenized
quantized Weyl algebras, and quantum matrix algebras},
\emph{J. Pure Appl. Algebra} {\bf 221}(10) (2017), 2511--2524. | |
dc.relation | J. Gaddis, E. Kirkman and W.F. Moore,
{\it On the discriminant of twisted tensor products},
\emph{Journal of Algebra} {\bf 477} (2017), 29--55. | |
dc.relation | J. Gaddis, E. Kirkman, W.F. Moore and R. Won,
{\it Auslander's Theorem for permutation actions on
noncommutative algebras},
\emph{Proc. Amer. Math. Soc.} {\bf 147}(5) (2019), 1881--1896. | |
dc.relation | C. Gallego and O. Lezama,
{\it Gr\"obner bases for ideals of sigma-PBW extensions},
Comm. Algebra, {\bf39} (1) (2011), 50-75. | |
dc.relation | C. Gallego and O. Lezama,
{\it Projective modules and Gröbner bases for skew PBW extensions},
Dissertationes Mathematicae, {\bf521} (2017), 1-50. | |
dc.relation | J. Gaddis and X.-T. Wang,
{\it The Zariski cancellation problem for Poisson algebras},
preprint (2019), arxiv:1904.05836. | |
dc.relation | J. Gaddis, R. Won and D. Yee,
{\it Discriminants of Taft algebra smash products and applications},
\emph{Algebr. Represent. Theory}, (2019),
https://doi.org/10.1007/s10468-018-9798-0. | |
dc.relation | I. Gelfand and A. Kirillov,
Sur le corps liés aux alg\`{e}bres enveloppantes des alg\`{e}bres de Lie, Math. IHES, 31, (1966), 509-523. | |
dc.relation | N. Gupta,
{\it On the Cancellation Problem for the Affine Space ${\mathbb A}^3$
in characteristic $p$},
\emph{Inventiones Math.} {\bf 195}(1) (2014), 279--288. | |
dc.relation | N. Gupta,
{\it On Zariski's cancellation problem in positive characteristic},
\emph{Adv. Math.} {\bf 264} (2014), 296--307. | |
dc.relation | N. Gupta,
{\it A survey on Zariski cancellation problem},
\emph{Indian J. Pure Appl. Math.} {\bf 46}(6) (2015), 865--877. | |
dc.relation | M. Hochster,
{\it Non-uniqueness of the ring of coefficients in a polynomial ring},
\emph{Proc. Amer. Math. Soc.}, {\bf 34} (1972), 81-82. | |
dc.relation | A. Isaev, P. Pyatov and V. Rittenberg,
{\it Diffusion algebras},
{\emph J. Phys. A: Math. Gen.}, {\bf34} (2001), 5815. | |
dc.relation | N. Jacobson,
\emph{Lie algebras},
Dover publications, Inc., New York (1979). | |
dc.relation | H. Kraft,
{\it Challenging problems on affine $n$-space. S{\'e}minaire Bourbaki},
Vol. 1994/95.
\emph{Ast{\'e}risque}, No. {\bf 237} (1996), Exp. No. 802, 5, 295--317. | |
dc.relation | G.R. Krause and T.H. Lenagan,
Growth of algebras and Gelfand-Kirillov dimension,
Research Notes in Mathematics, Pitman Adv. Publ. Program,
{\bf 116} (1985). | |
dc.relation | T. Levasseur,
{\it Some properties of non-commutative regular rings},
\emph{Glasgow Math. J.} {\bf 34} (1992), 277--300. | |
dc.relation | V. Levandovskyy,
Non-commutatve Computer Algebra for Polynomial Algebras: Gröbner Bases, Applications and Implementation, Doctoral Thesis, Universität Kaiserslautern, Germany, 2005. | |
dc.relation | J. Levitt and M. Yakimov,
{\it Quantized Weyl algebras at roots of unity},
\emph{Israel J. Math.} {\bf 225}(2) (2018), 681--719. | |
dc.relation | O. Lezama and M. Reyes,
{\it Some homological properties of skew $PBW$ extensions},
Comm. Algebra, {\bf42}, (2014), 1200-1230. | |
dc.relation | O. Lezama and H. Venegas,
{\it Center of skew $PBW$ extensions},
arXiv: 1804.05425 [math.RA], 2018. | |
dc.relation | O. Lezama and H. Venegas,
{\it The center of the total ring of fractions},
arXiv: 1911.1062 [math.RA], 2019. | |
dc.relation | O. Lezama and H. Venegas,
{\it Some homological properties of skew PBW extensions arising in non-commutative algebraic geometry},
Discussiones Mathematicae-General Algebra and Applications, {\bf37} (1) (2017), 45-57. | |
dc.relation | O. Lezama, Y.-H. Wang and J.J. Zhang,
{\it Zariski cancellation problem for non-domain noncommutative algebras},
\emph{Math. Z.} {\bf292}(3-4) (2019), 1269--1290, https://doi.org/10.1007/s00209-018-2153-7. | |
dc.relation | J.-F. L{\"u}, X.-F. Mao and J.J. Zhang,
{\it Nakayama automorphism and applications},
\emph{Trans. Amer. Math. Soc.} {\bf 369}(4) (2017), 2425--2460. | |
dc.relation | D.-M. Lu, J.H. Palmieri, Q.-S. Wu and J.J. Zhang,
{\it Regular algebras of dimension 4 and their $A_{\infty}$-Ext-algebras},
\emph{Duke Math. J.} {\bf 137}(3) (2007), 537--584. | |
dc.relation | D.-M. Lu, Q.-S. Wu and J.J. Zhang,
{\it Morita cancellation problem},
\emph{Canadian J. Math.} (2019), (to appear). | |
dc.relation | L. Makar-Limanov,
\emph{Locally nilpotent derivations, a new ring invariant and applications}. Available online at \url{http://www.math.wayne.edu/~lml/lmlnotes}. | |
dc.relation | L. Makar-Limanov,
{\it On the hypersurface $x+x^2y+z^2+t^3=0$ in ${\bf C}^4$ or a
${\bf C}^3$-like threefold which is not ${\bf C}^3$},
Israel J. Math. {\bf 96} (1996), part B, 419--429. | |
dc.relation | A.I. Malcev,
{\it On the representations of infinite algebras}. (Russian)
\emph{Rec. Math.} [Mat. Sbornik] N.S. {\bf13} (55) (1943).
263--286. | |
dc.relation | J.C. McConnell and J.C. Robson,
Noncommutative Noetherian Rings, Wiley, Chichester, 1987. | |
dc.relation | M. Miyanishi and T. Sugie,
{\it Affine surfaces containing cylinderlike open sets},
\emph{J. Math. Kyoto Univ.} {\bf 20} (1980), 11--42. | |
dc.relation | I. Mori and K. Ueyama,
{\it Ample Group Action on AS-regular Algebras and Noncommutative
Graded Isolated Singularities},
\emph{Trans. Amer. Math. Soc.} {\bf 368}(10) (2016), 7359--7383. | |
dc.relation | I. Mori and K. Ueyama,
{\it Stable categories of graded maximal Cohen-Macaulay modules over
noncommutative quotient singularities},
\emph{Adv. Math.} {\bf 297} (2016), 54--92. | |
dc.relation | A. Nowicki,
{\it Finitely generated subrings of $R[x]$},
Analitic and Algebraic Geometry 3,
Lódz university press (2019), 117-141. | |
dc.relation | B. Nguyen, K. Trampel, and M. Yakimov,
{\it Noncommutative discriminants via Poisson primes},
\emph{Adv. Math.} {\bf 322} (2017), 269--307. | |
dc.relation | M. A. Reyes,
{\it Ring and Module Theoretic Properties of $\sigma$-PBW Extensions},
Ph.D. Thesis, Universidad Nacional de Colombia, 2013. | |
dc.relation | D. Rogalski, S.J. Sierra and J.T. Stafford,
{\it Algebras in which every subalgebra is Noetherian},
\emph{Proc. Amer. Math. Soc.} {\bf 142}(9) (2014), 2983--2990. | |
dc.relation | P. Russell,
{\it On Affine-Ruled rational surfaces},
\emph{Math. Ann.}, {\bf 255} (3) (1981), 287--302. | |
dc.relation | E.N. Shirikov,
{\it Two-generated graded algebras},
\emph{Algebra Discrete Math.} {\bf 3} (2005), 64--80. | |
dc.relation | L.W. Small and R.B. Warfield Jr.,
{\it Prime affine algebras of Gelfand-Kirillov dimension one},
\emph{J. Algebra} {\bf 91}(2) (1984), 386--389. | |
dc.relation | S.P. Smith and J.J. Zhang,
{\it A remark on Gelfand-Kirillov dimension},
\emph{Proc. Amer. Math. Soc.} {\bf 126}(2) (1998), 349--352. | |
dc.relation | J.T. Stafford,
{\it Auslander-regular algebras and maximal orders},
\emph{J. London Math. Soc.} {\bf 50}(2), (1994), 276--292. | |
dc.relation | D.R. Stephenson and J.J. Zhang,
{\it Growth of graded Noetherian rings},
\emph{Proc. Amer. Math. Soc.} {\bf 125}(6), (1997), 1593--1605. | |
dc.relation | M. Suzuki,
{\it Propri{\'e}t{\'e}s topologiques des polynomes de deux variables complex et automorphisms
alg{\'e}briques de l'espace C2},
\emph{J. Math. Soc. Japan} {\bf 26} (3) (1974), 241--257. | |
dc.relation | X. Tang,
{\it Automorphisms for some symmetric multiparameter quantized
Weyl algebras and their localizations},
\emph{Algebra Colloq.} {\bf 24}(3) (2017), 419--438. | |
dc.relation | X. Tang,
{\it The Automorphism Groups for a family of Generalized Weyl Algebras},
\emph{J Algebra Appl} {\bf 18} (2018), 1850142. | |
dc.relation | X. Tang, H. Venegas, J. Zhang,
\emph{Cancellation problem for AS-regular algebras of dimension three}, (2019).
Available at arXiv:1904.07281. | |
dc.relation | K. Ueyama,
{\it Graded maximal Cohen-Macaulay modules over noncommutative graded
Gorenstein isolated singularities},
\emph{J. Algebra} {\bf 383} (2013), 85-103. | |
dc.relation | A. van den Essen,
{\it Polynomial Automorphisms and the Jacobian conjecture},
Prog. Math., Vol.{\bf190}, Birkhäuser Verlag, Basel, (2000). | |
dc.relation | Y.-H. Wang and J.J. Zhang,
{\it Discriminants of noncommutative algebras and their applications} (in Chinese),
\emph{Sci. China Math.} {\bf 48} (2018), 1615--1630, doi: 10.1360/N012017-00263. | |
dc.relation | C.A. Weibel,
{\it An introduction to homological algebra},
Cambridge Studies in Advanced Mathematics,
{\bf 38} Cambridge University Press, Cambridge, 1994. | |
dc.relation | S.L. Woronowicz,
{\it Twisted $SU(2)$ group. An example of a noncommutative di\-ffe\-ren\-tial calculus},
Publ. RIMS, Kyoto Univ.,
{\bf23} (1987), 117-181. | |
dc.relation | Z. Yi,
{\it Homological dimension of skew group rings and crossed products},
\emph{J. Algebra} {\bf 164}(1) (1994), 101--123. | |
dc.relation | H. Zhang,
{\it The representations of the coordinate ring of the quantum symplectic space},
J. Pure Appl. Algebra, {\bf150} (2000), 95-106. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Zariski cancellation problem for skew PBW extensions | |
dc.type | Otro | |