dc.contributorMartínez Rodríguez, Fleming
dc.contributorGrupo de Investigaciones Farmacéutico-Fisicoquímicas
dc.creatorOsorio Amado, Irmis Patricia
dc.date.accessioned2021-09-16T15:41:16Z
dc.date.available2021-09-16T15:41:16Z
dc.date.created2021-09-16T15:41:16Z
dc.date.issued2021-02
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80215
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractIn the present study, the solubility of sulfadiazine in aqueous mixtures of Carbitol and N-methyl-2-pyrrolidone (NMP) at 278.15 K - 313.15 K was analyzed. It was found that the solubility of sulfadiazine in aqueous Carbitol mixtures did not vary with temperature. For aqueous mixtures of NMP, it was found that the trend of the increase in solubility was different for rich mixtures in NMP. This could be by a possible phase change of the crystalline structure of sulfadiazine. The thermodynamic properties of solution, mixture and transfer were calculated. The preferential solvation parameters of sulfadiazine were determined using the experimental solubility values and the thermodynamic functions of solution by means of the inverse Kirkwood-Buff integrals (IKBI) method. For both cosolvent systems, it was found that sulfadiazine is preferentially solvated by water in water-rich mixtures, probably due to the hydrophobic hydration phenomenon, but preferentially solvated by Carbitol or NMP in cosolvent-rich mixtures, probably due to the behavior of sulfadiazine as Lewis acid in front of the cosolvent molecules. The enthalpy-entropy relationship of the (NMP + water) system was analyzed, finding a non-linear relationship by plotting the enthalpy of solution as a function of the Gibbs energy of solution. Finally, when evaluating the sulfadiazine solubility values calculated using the semi-empirical Jouyban-Acree and the extended Hildebrand models, notable deviations were obtained with respect to the experimental values. The smallest mean percentage deviations % MPD were achieved with the extended Hildebrand model using an order 5 polynomial, obtaining a value of 0.88% for the (Carbitol + water) system and 1.47% for the (NMP + water) system, both at 313.15 K.
dc.description.abstractEn el presente estudio se determinó la solubilidad de la sulfadiazina en mezclas acuosas de Carbitol y N-metil-pirrolidona (NMP) en el rango de temperaturas de 278,15 K a 313,15 K. Se encontró que la solubilidad de la sulfadiazina en mezclas acuosas de Carbitol no varió con la temperatura. Para la solubilidad de sulfadiazina en mezclas acuosas de NMP se encontró que la tendencia del aumento de solubilidad era diferente para mezclas ricas en NMP, lo que podría ser explicado por un posible cambio de fase de la estructura cristalina de la sulfadiazina. Se calcularon además las funciones termodinámicas aparentes de solución, mezcla y transferencia de dichos sistemas. Los parámetros de solvatación preferencial de la sulfadiazina se hallaron utilizando los valores de solubilidad experimentales y las funciones termodinámicas de solución por medio del método de las integrales inversas de Kirkwood-Buff (IKBI, Inverse Kirkwood-Buff Integrals). Para ambos sistemas de cosolventes, se encontró que la sulfadiazina es solvatada preferencialmente por agua en mezclas ricas en agua, debido probablemente al fenómeno de hidratación hidrofóbica, pero solvatada preferencialmente por Carbitol o NMP en mezclas ricas en cosolvente, debido probablemente al comportamiento de la sulfadiazina como ácido de Lewis frente a las moléculas de los cosolventes. Se analizó la relación entálpica-entrópica del sistema (NMP + agua) encontrando una relación no lineal al graficar la entalpía de solución en función de la energía de Gibbs de solución. Finalmente, al evaluar los valores de solubilidad de sulfadiazina calculados mediante los modelos semiempíricos de Jouyban-Acree y el modelo extendido de Hildebrand se obtuvieron desviaciones notables con respecto a los valores experimentales. Las menores desviaciones promedio porcentuales se lograron con el modelo extendido de Hildebrand utilizando un polinomio de orden 5 para calcular el factor W, obteniendo un porcentaje de 0,88% para el sistema (Carbitol + agua) y de 1,47% para el sistema (NMP + agua), ambos a 313,15 K. (Texto tomado de la fuente).
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.publisherDepartamento de Farmacia
dc.publisherFacultad de Ciencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationBireme
dc.relationAcree, W. E. (1992). Mathematical representation of thermodynamic properties: Part 2. Derivation of the combined nearly ideal binary solvent (NIBS)/Redlich-Kister mathematical representation from a two-body and three-body interactional mixing model. Thermochimica Acta, 198(1), 71–79. https://doi.org/10.1016/0040-6031(92)85059-5
dc.relationAdjei, A., Newburger, J., & Martin, A. (1980). Extended hildebrand approach: Solubility of caffeine in dioxane–water mixtures. Journal of Pharmaceutical Sciences, 69(6), 659–661. https://doi.org/10.1002/jps.2600690613
dc.relationAEFI. (2001). Selectividad. In Validación de Métodos Analíticos (pp. 46–55). Asociación española farmacéutica de la industria - AEFI.
dc.relationAmidon, G. L., Lennernäs, H., Shah, V. P., & Crison, J. R. (1995). A Theoretical Basis for a Biopharmaceutic Drug Classification: The Correlation of in Vitro Drug Product Dissolution and in Vivo Bioavailability. Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists, 12(3), 413–420. https://doi.org/10.1023/A:1016212804288
dc.relationÁvila, C. M., & Martínez, F. (2002). Thermodynamic study of the solubility of benzocaine in some organic and aqueous solvents. Journal of Solution Chemistry, 31(12), 975–985. https://doi.org/10.1023/A:1021825509697
dc.relationBarton, A. F. M. (1991a). Calculated Cohesion Parameter. In Hansen Solubility Parameters: A Users Handbook (2nd ed., pp. 157–185). Boca Raton,Fl: CRC Press.
dc.relationBarton, A. F. M. (1991b). Handbook of Solubility Parameters and Other Cohesion Parameters (2nd ed.). New York: CRC Press.
dc.relationBarzegar-Jalali, M., Mazaher Haji Agha, E., Adibkia, K., Martinez, F., & Jouyban, A. (2020). The solubility of ketoconazole in binary Carbitol + water mixtures at T = (293.2–313.2) K. Journal of Molecular Liquids, 297, 111756. https://doi.org/10.1016/j.molliq.2019.111756
dc.relationBarzegar-Jalali, M., Mohammadzade, M., Martinez, F., & Jouyban, A. (2016). Solubility of naproxen in some aqueous mixtures of N-methyl-2-pyrrolidone at various temperatures. Journal of Molecular Liquids, 220, 484–488. https://doi.org/10.1016/j.molliq.2016.04.120
dc.relationBarzegar-Jalali, M., Rahimpour, E., Martinez, F., & Jouyban, A. (2019). Solubility and thermodynamics of lamotrigine in Carbitol + water mixtures from T = (293.2 to 313.2) K. Chemical Engineering Communications, 206(2), 182–192. https://doi.org/10.1080/00986445.2018.1477765
dc.relationBen-Naim, A. (1998). Theory of preferential solvation of nonelectrolytes. Cell Biophysics, 12(1), 255–269. https://doi.org/10.1007/bf02918361
dc.relationBlanco, A., García-Abuín, A., Gómez-Díaz, D., & Navaza, J. M. (2012). Density, speed of sound, viscosity, refractive index, and excess volume of n -methyl-2-pyrrolidone (NMP) + water + ethanol from T = (293.15 to 323.15) K. Journal of Chemical and Engineering Data, 57(4), 1009–1014. https://doi.org/10.1021/je201152j
dc.relationBustamante, P., Romero, S., Peña, A., Escalera, B., & Reillo, A. (1998). Enthalpy–entropy compensation for the solubility of drugs in solvent mixtures: Paracetamol, acetanilide, and nalidixic acid in dioxane–water. Journal of Pharmaceutical Sciences, 87(12), 1590–1596. https://doi.org/10.1021/js980149x
dc.relationBustamante, Pilar, Escalera, B., Martin, A., & Selles, E. (1993). A Modification of the Extended Hildebrand Approach to Predict the Solubility of Structurally Related Drugs in Solvent Mixtures. Journal of Pharmacy and Pharmacology, 45(4), 253–257. https://doi.org/10.1111/j.2042-7158.1993.tb05548.x
dc.relationCárdenas, Z. J., Jiménez, D. M., & Martínez, F. (2015). Solubility and solution thermodynamics of meloxicam in polyethylene glycol 400 + water mixtures. Journal of Molecular Liquids, 211, 233–238. https://doi.org/10.1016/j.molliq.2015.07.013
dc.relationConnors, K. A. (2002a). Energy and the First Law of Thermodynamics. In Thermodynamics of Pharmaceutical Systems (pp. 3–17). New Jersey: John Wiley and Sons Inc.
dc.relationConnors, K. A. (2002b). Solubility. In Thermodynamics of Pharmaceutical Systems (pp. 116–135). New Jersey: John Wiley and Sons Inc.
dc.relationConnors, K. A. (2002c). The Entropy Concept. In Thermodynamics of Pharmaceutical Systems (pp. 17–30). New Jersey: John Wiley and Sons Inc.
dc.relationConnors, K. A. (2002d). The Free Energy. In Thermodynamics of Pharmaceutical Systems (pp. 30–42). New Jersey: John Wiley and Sons Inc.
dc.relationConnors, K. A. (2002e). Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy. New Jersey: John Wiley & Sons.
dc.relationCruz-González, A. M., Vargas-Santana, M. S., Ortiz, C. P., Cerquera, N. E., Delgado, D. R., Martínez, F., … Acree, W. E. (2021). Solubility of sulfadiazine in (ethylene glycol + water) mixtures: Measurement, correlation, thermodynamics and preferential solvation. Journal of Molecular Liquids, 323, 115058. https://doi.org/10.1016/j.molliq.2020.115058
dc.relationde Araújo, M. V. G., Vieira, E. K. B., Silva Lázaro, G., Conegero, L. S., Almeida, L. E., Barreto, L. S., … Gimenez, I. F. (2008). Sulfadiazine/hydroxypropyl-β-cyclodextrin host-guest system: Characterization, phase-solubility and molecular modeling. Bioorganic and Medicinal Chemistry, 16(10), 5788–5794. https://doi.org/10.1016/j.bmc.2008.03.057
dc.relationDel Mar Muñoz, M., Delgado, D. R., Peña, M. Á., Jouyban, A., & Martínez, F. (2015). Solubility and preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in propylene glycol + water mixtures at 298.15 K. Journal of Molecular Liquids, 204, 132–136. https://doi.org/10.1016/j.molliq.2015.01.047
dc.relationDelgado, Daniel R., & Martínez, F. (2013). Solution thermodynamics of sulfadiazine in some ethanol + water mixtures. Journal of Molecular Liquids, 187, 99–105. https://doi.org/10.1016/j.molliq.2013.06.011
dc.relationDelgado, Daniel R., & Martínez, F. (2014a). Solubility and preferential solvation of sulfadiazine in methanol+water mixtures at several temperatures. Fluid Phase Equilibria, 379, 128–138. https://doi.org/10.1016/j.fluid.2014.07.013
dc.relationDelgado, Daniel R., & Martínez, F. (2014b). Solubility and solution thermodynamics of some sulfonamides in 1-propanol + water mixtures. Journal of Solution Chemistry, 43(5), 836–852. https://doi.org/10.1007/s10953-014-0169-0
dc.relationDelgado, Daniel R., Peña, M., & Martínez, F. (2019). Extended Hildebrand solubility approach applied to sulphadiazine, sulphamerazine and sulphamethazine in some {1-propanol (1) + water (2)} mixtures at 298.15 K. Physics and Chemistry of Liquids, 57(3), 388–400. https://doi.org/10.1080/00319104.2018.1476976
dc.relationDelgado, Daniel Ricardo, Caviedes-Rubio, D. I., Ortiz, C. P., Parra-Pava, Y. L., Peña, M. Á., Jouyban, A., … Acree, W. E. (2020). Solubility of sulphadiazine in (acetonitrile + water) mixtures: measurement, correlation, thermodynamics and preferential solvation. Physics and Chemistry of Liquids, 58(3), 381–396. https://doi.org/10.1080/00319104.2019.1594227
dc.relationDelgado, Daniel Ricardo, & Martínez, F. (2014). Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. Journal of Molecular Liquids, 193, 152–159. https://doi.org/10.1016/j.molliq.2013.12.021
dc.relationDu, W., Yin, Q., Hao, H., Bao, Y., Zhang, X., Huang, J., … Gong, J. (2014). Solution-mediated polymorphic transformation of prasugrel hydrochloride from form II to form i. Industrial and Engineering Chemistry Research, 53(14), 5652–5659. https://doi.org/10.1021/ie404245s
dc.relationDumitriu, R. P., Profire, L., Nita, L. E., Dragostin, O. M., Ghetu, N., Pieptu, D., & Vasile, C. (2015). Sulfadiazine-chitosan conjugates and their polyelectrolyte complexes with hyaluronate destined to the management of burn wounds. Materials, 8(1), 317–338. https://doi.org/10.3390/ma8010317
dc.relationElworthy, P. H., & Worthington, H. E. C. (1968). The solubility of sulphadiazine in water-dimethylformamide mixtures. Journal of Pharmacy and Pharmacology, 20(11), 830–835. https://doi.org/10.1111/j.2042-7158.1968.tb09656.x
dc.relationFedors, R. F. (1974). A method for estimating both the solubility parameters and molar volumes of liquids. Polymer Engineering & Science, 14(2), 147–154. https://doi.org/10.1002/pen.760140211
dc.relationGanbavale, G., Marcolli, C., Krieger, U. K., Zuend, A., Stratmann, G., & Peter, T. (2014). Experimental determination of the temperature dependence of water activities for a selection of aqueous organic solutions. Atmospheric Chemistry and Physics, 14(18), 9993–10012. https://doi.org/10.5194/acp-14-9993-2014
dc.relationGodavarthy, S. S., Yerramsetty, K. M., Rachakonda, V. K., Neely, B. J., Madihally, S. V., Robinson, R. L., & Gasem, K. A. M. (2010, January 1). Design of improved permeation enhancers for transdermal drug delivery. Journal of Pharmaceutical Sciences, Vol. 99, p. 563. https://doi.org/10.1002/jps.21681
dc.relationGrant, D. J. W., & Higuchi, T. (1990). Solubility Behavior of Organic Compounds. New York: Wiley-Interscience. Hansen, C. M. (2007). Hansen Solubility Parameters: A Users Handbook, Second Edition. In Hansen Solubility Parameters: A Users Handbook, Second Edition (2nd ed., pp. 5–6). https://doi.org/10.1201/9781420006834
dc.relationHatefi, A., Rahimpour, E., Ghafourian, T., Martinez, F., Barzegar-Jalali, M., & Jouyban, A. (2019). Solubility of ketoconazole in N-methyl-2-pyrrolidone + water mixtures at T = (293.2 to 313.2) K. Journal of Molecular Liquids, 281, 150–155. https://doi.org/10.1016/j.molliq.2019.02.038
dc.relationHiguchi, T., & Connors, K. A. (1965). Phase Solubility Techniques. Advances in Analytical Chemistry and Instrumentation, 4, 117–212.
dc.relationHildebrand, J.H.; Scott, R. . (1950). The Solubility of Nonelectrolytes (3rd ed.). New York: Reinhold. International Conference on Harmonisation. (1994). International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. Validation of Analytical Procedures: Text and Methodology Q2(R1): Q2A: Validation of Analytical Methods (De Nitions and Terminology).
dc.relationJiménez, D. M., Cárdenas, Z. J., Delgado, D. R., Peña, M. T., & Martínez, F. (2015). Solubility temperature dependence and preferential solvation of sulfadiazine in 1,4-dioxane+water co-solvent mixtures. Fluid Phase Equilibria, 397, 26–36. https://doi.org/10.1016/j.fluid.2015.03.046
dc.relationJouyban-Gharamaleki, A., Valaee, L., Barzegar-Jalali, M., Clark, B. J., & Acree, W. E. (1999). Comparison of various cosolvency models for calculating solute solubility in water–cosolvent mixtures. International Journal of Pharmaceutics, 177(1), 93–101. https://doi.org/10.1016/S0378-5173(98)00333-0
dc.relationJouyban, A, & Acree, W. E. (2006). In silico prediction of drug solubility in water-ethanol mixtures using Jouyban-Acree model. Journal of Pharmacy & Pharmaceutical Sciences : A Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques, 9(2), 262–269. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16959195
dc.relationJouyban, Abolghasem. (2008). Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. Journal of Pharmacy and Pharmaceutical Sciences, Vol. 11, pp. 32–58. https://doi.org/10.18433/J3PP4K
dc.relationJouyban, Abolghasem. (2010). Handbook of Solubility Data for Pharmaceuticals. Boca Raton: CRC Press.
dc.relationJouyban, Abolghasem, Acree, W. E., & Martínez, F. (2020). Preferential solvation of apremilast in some (Transcutol® + water) mixtures. Journal of Molecular Liquids, 316, 113905. https://doi.org/10.1016/j.molliq.2020.113905
dc.relationJouyban, K., Mazaher Haji Agha, E., Hemmati, S., Martinez, F., Kuentz, M., & Jouyban, A. (2020). Solubility of 5-aminosalicylic acid in N-methyl-2-pyrrolidone + water mixtures at various temperatures. Journal of Molecular Liquids, 310, 113143. https://doi.org/10.1016/j.molliq.2020.113143
dc.relationJung, E., Kang, Y. P., Yoon, I. S., Kim, J. S., Kwon, S. W., Chung, S. J., … Kim, D. D. (2013). Effect of permeation enhancers on transdermal delivery of fluoxetine: In vitro and in vivo evaluation. International Journal of Pharmaceutics, 456(2), 362–369. https://doi.org/10.1016/j.ijpharm.2013.08.080
dc.relationKhajir, S., Shayanfar, A., Acree, W. E., & Jouyban, A. (2019). Effects of N-methylpyrrolidone and temperature on phenytoin solubility. Journal of Molecular Liquids, 285, 58–61. https://doi.org/10.1016/j.molliq.2019.04.049
dc.relationKhoubnasabjafari, M., Shayanfar, A., Martinez, F., Acree, W. E., & Jouyban, A. (2016). Generally trained models to predict solubility of drugs in Carbitol + water mixtures at various temperatures. Journal of Molecular Liquids, 219, 435–438. https://doi.org/10.1016/j.molliq.2016.03.043
dc.relationKrug, R. R., Hunter, W. G., & Grieger, R. A. (1976). Enthalpy-entropy compensation. 2. Separation of the chemical from the statistical effect. Journal of Physical Chemistry, 80(21), 2341–2351. https://doi.org/10.1021/j100562a007
dc.relationLee, P. J., Langer, R., & Shastri, V. P. (2005). Role of n-methyl pyrrolidone in the enhancement of aqueous phase transdermal transport. Journal of Pharmaceutical Sciences, 94(4), 912–917. https://doi.org/10.1002/jps.20291
dc.relationLee, S. K., Sim, W. Y., Ha, E. S., Park, H., Kim, J. S., Jeong, J. S., & Kim, M. S. (2020). Solubility of bisacodyl in fourteen mono solvents and N-methyl-2-pyrrolidone + water mixed solvents at different temperatures, and its application for nanosuspension formation using liquid antisolvent precipitation. Journal of Molecular Liquids, 310, 113264. https://doi.org/10.1016/j.molliq.2020.113264
dc.relationLi, A., & Yalkowsky, S. H. (1994). Solubility of organic solutes in ethanol/water mixtures. Journal of Pharmaceutical Sciences, 83(12), 1735–1740. https://doi.org/10.1002/jps.2600831217
dc.relationLi, X., Xu, G., Wang, Y., & Hu, Y. (2009). Density, Viscosity, and Excess Properties for Binary Mixture of Diethylene Glycol Monoethyl Ether + Water from 293.15 to 333.15 K at Atmospheric Pressure. Chinese Journal of Chemical Engineering, 17(6), 1009–1013. https://doi.org/10.1016/S1004-9541(08)60309-2
dc.relationMacaringue, E. G. J., Wu, S., Liu, S., Xu, S., & Gong, J. (2019). Influence of the Solvent Content on the Phase Transformation of Sulfadiazine N-Methyl Pyrrolidone Solvate. Chemical Engineering and Technology, 42(7), 1435–1445. https://doi.org/10.1002/ceat.201800738
dc.relationMarcus, Y. (1998). The Properties of Solvents. Chichester: John Wiley & Sons.
dc.relationMarcus, Y. (2002a). Preferential solvation in binary solvent mixtures. In Solvent mixtures properties and selective solvation (pp. 142–178). New York: Marcel Dekker.
dc.relationMarcus, Y. (2002b). Properties of Binary Solvent Mixture. In Solvent mixtures properties and selective solvation (pp. 16–118). New York: Marcel Dekker.
dc.relationMarcus, Y. (2008). On the preferential solvation of drugs and PAHs in binary solvent mixtures. Journal of Molecular Liquids, 140(1–3), 61–67. https://doi.org/10.1016/j.molliq.2008.01.005
dc.relationMartin, A. N., Bustamante, P., & Chun, A. (1993). Physical Pharmacy: Physical Chemical Principles in the Pharmaceutical Sciences (4th ed.). Philadelphia: Lea & Febiger.
dc.relationMartin, A., Newburger, J., & Adjei, A. (1980). Extended hildebrand solubility approach: Solubility of theophylline in polar binary solvents. Journal of Pharmaceutical Sciences, 69(5), 487–491. https://doi.org/10.1002/jps.2600690503
dc.relationMartin, A., Wu, P. L., Adjei, A., Lindstrom, R. E., & Elworthy, P. H. (1982). Extended hildebrand solubility approach and the log linear solubility equation. Journal of Pharmaceutical Sciences, 71(8), 849–856. https://doi.org/10.1002/jps.2600710803
dc.relationMartin, A., Wu, P. L., & Velasquez, T. (1985). Extended hildebrand solubility approach: Sulfonamides in binary and ternary solvents. Journal of Pharmaceutical Sciences, 74(3), 277–282. https://doi.org/10.1002/jps.2600740311
dc.relationMartínez, F., & Gómez, A. (2002). Estimation of the solubility of sulfonamides in aqueous media from partition coefficients and entropies of fusion. Physics and Chemistry of Liquids, 40(4), 411–420. https://doi.org/10.1080/0031910021000017735
dc.relationMartínez, F., Jouyban, A., & Acree, W. E. (2016). Comments on “solubility and thermodynamic function of a new anticancer drug ibrutinib in {2-(2-ethoxyethoxy)ethanol + water} mixtures at different temperatures.” Journal of Chemical Thermodynamics, 95, 180–182. https://doi.org/10.1016/j.jct.2015.11.031
dc.relationMillard, J. W., Alvarez-Núñez, F. A., & Yalkowsky, S. H. (2002). Solubilization by cosolvents: Establishing useful constants for the log-linear model. International Journal of Pharmaceutics, 245(1–2), 153–166. https://doi.org/10.1016/S0378-5173(02)00334-4
dc.relationMora, C. P., & Martínez, F. (2006). Thermodynamic quantities relative to solution processes of Naproxen in aqueous media at pH 1.2 and 7.4. Physics and Chemistry of Liquids, 44(5), 585–596. https://doi.org/10.1080/00319100600889715
dc.relationMozo, I., De La Fuente, I. G., González, J. A., & Cobos, J. C. (2007). Thermodynamics of mixtures containing alkoxyethanols. XXIV. Densities, excess molar volumes, and speeds of sound at (293.15, 298.15, and 303.15) K and isothermal compressibilities at 298.15 K for 2-(2-alkoxyethoxy)ethanol + 1-butanol systems. Journal of Chemical and Engineering Data, 52(5), 2086–2090. https://doi.org/10.1021/je700281z
dc.relationNakayama, H., & Shinoda, K. (1971). Enthalpies of mixing of water with some cyclic and linear ethers. The Journal of Chemical Thermodynamics, 3(3), 401–405. https://doi.org/10.1016/S0021-9614(71)80057-5 National Center for Biotechnology Information. (2020). 1-Methyl-2-pyrrolidinone | C5H9NO - PubChem. Retrieved December 4, 2020, from PubChem Compound Summary for CID 13387, 1-Methyl-2-pyrrolidinone website: https://pubchem.ncbi.nlm.nih.gov/compound/1-methyl-2-pyrrolidinone
dc.relationNewman, K. E. (1994). Kirkwood-Buff solution theory: Derivation and applications. Chemical Society Reviews, Vol. 23, pp. 31–40. https://doi.org/10.1039/CS9942300031
dc.relationNorouzi, F., Jouyban, A., Martinez, F., Barzegar-Jalali, M., & Rahimpour, E. (2019). Solubility of celecoxib in Carbitol + water mixtures at various temperatures: experimental data and mathematical modelling. Physics and Chemistry of Liquids, 57(6), 755–767. https://doi.org/10.1080/00319104.2018.1519712
dc.relationNozohouri, S., Shayanfar, A., Cárdenas, Z. J., Martinez, F., & Jouyban, A. (2017). Solubility of celecoxib in N-methyl-2-pyrrolidone+water mixtures at various temperatures: Experimental data and thermodynamic analysis. Korean Journal of Chemical Engineering, 34(5), 1435–1443. https://doi.org/10.1007/s11814-017-0028-y
dc.relationOchsner, A. B., Belloto, R. J., & Sokoloski, T. D. (1985). Prediction of Xanthine Solubilities Using Statistical Techniques. Journal of Pharmaceutical Sciences, 74(2), 132–135. https://doi.org/10.1002/JPS.2600740206
dc.relationOsborne, D. W. (2011). Diethylene glycol monoethyl ether: An emerging solvent in topical dermatology products. Journal of Cosmetic Dermatology, 10(4), 324–329. https://doi.org/10.1111/j.1473-2165.2011.00590.x
dc.relationParuta, A. N., Sciarrone, B. J., & Lordi, N. G. (1964). Solubility of Salicylic Acid as a Function of Dielectric Constant. Journal of Pharmaceutical Sciences, 53(11), 1349–1353. https://doi.org/10.1002/jps.2600531114
dc.relationPetri, W. A. (2007). Sulfonamidas, trimetoprim-sulfametoxazol, quinolonas y fármacos contra infecciones de las vías urinarias. In L. L. Brunton (Ed.), Las Bases Farmacológicas de la Terapéutica (Undecima, pp. 1111–1126). Mexico D.F: Goodman & Gilman.
dc.relationPoe, W. A., Mak, J. K., & Mokhatab, S. (2019). Natural Gas Treatment. In Handbook of Natural Gas Transmission and Processing; Principles and Practices (4th ed., pp. 231–269). Cambridge, MA: Elsevier.
dc.relationPrausnitz, J. M., Lichtenhaler, R. N., & Gomez, E. (2000a). Fugacidades en mezclas liquidas. Funciones de exceso. In Termodinámica Molecular de los Equilibrios de Fase (Tercera ed, pp. 171–243). Madrid: Prentice Hall.
dc.relationPrausnitz, J. M., Lichtenhaler, R. N., & Gomez, E. (2000b). Fugacidades en mezclas liquidas. Modelos y teorias de disoluciones. In Termodinámica Molecular de los Equilibrios de Fase (Tercera ed, pp. 249–332). Madrid: Prentice Hall.
dc.relationRegosz, A., Pelpliñska, T., Kowalski, P., & Thiel, Z. (1992). Prediction of solubility of sulfonamides in water and organic solvents based on the extended regular solution theory. International Journal of Pharmaceutics, 88(1–3), 437–442. https://doi.org/10.1016/0378-5173(92)90344-2
dc.relationReillo, A., Bustamante, P., Escalera, B., Jiménez, M. M., & Sellés, E. (1995). Solubility parameter-based methods for predicting the solubility of sulfapyridine in solvent mixtures. Drug Development and Industrial Pharmacy, 21(18), 2073–2084. https://doi.org/10.3109/03639049509065891
dc.relationRosenholm, J. B. (2009, February 28). Solubility and interaction parameters as references for solution properties. I. Exceptional mixing and excess functions. Advances in Colloid and Interface Science, Vol. 146, pp. 31–41. https://doi.org/10.1016/j.cis.2008.09.007
dc.relationRoyal Society of Chemistry. (n.d.). 2-(2-Ethoxyethoxy)ethanol | C6H14O3. Retrieved December 8, 2020, from http://www.chemspider.com/Chemical-Structure.13839107.html
dc.relationRubino, J. T. (2006). Cosolvents and Cosolvency. In J. Swarbrick (Ed.), Encyclopedia of Pharmaceutical Technology (Third, pp. 806–819). New York: Informa Healthcare.
dc.relationSanches, B. M. A., & Ferreira, E. I. (2019). Is prodrug design an approach to increase water solubility? International Journal of Pharmaceutics, 568. https://doi.org/10.1016/j.ijpharm.2019.118498
dc.relationSánchez de Dios, A. B. (2013). Mecanismo de acción y óptima selección de codisolventes en formas farmacéuticas. Tesis doctoral, Universidad de Alcala de Henares, Madrid, España.
dc.relationSanghvi, R., Narazaki, R., Machatha, S. G., & Yalkowsky, S. H. (2008). Solubility improvement of drugs using N-methyl pyrrolidone. AAPS PharmSciTech, 9(2), 366–376. https://doi.org/10.1208/s12249-008-9050-z
dc.relationShakeel, F., Bhat, M. A., & Haq, N. (2016). Solubility and thermodynamics of 4-(4-ethoxyphenyl)-5-(3,4,5-trimethoxybenzoyl)-3,4-dihydropyrimidin-2(1H)-one in various pure solvents at different temperatures. Journal of Molecular Liquids, 224, 624–628. https://doi.org/10.1016/j.molliq.2016.10.047
dc.relationShakeel, F., Haq, N., Alanazi, F. K., Alanazi, S. A., & Alsarra, I. A. (2020). Solubility of sinapic acid in various (Carbitol + water) systems: computational modeling and solution thermodynamics. Journal of Thermal Analysis and Calorimetry, 1–10. https://doi.org/10.1007/s10973-020-09451-y
dc.relationShakeel, F., Haq, N., El-Badry, M., Alanazi, F. K., & Alsarra, I. A. (2014). Thermodynamics and solubility of tadalafil in diethylene glycol monoethyl ether + water co-solvent mixtures at (298.15 to 333.15) K. Journal of Molecular Liquids, 197, 334–338. https://doi.org/10.1016/j.molliq.2014.06.010
dc.relationShakeel, F., Haq, N., & Salem-Bekhit, M. M. (2015). Thermodynamics of solubility of isatin in Carbitol + water mixed solvent systems at different temperatures. Journal of Molecular Liquids, 207, 274–278. https://doi.org/10.1016/j.molliq.2015.03.038
dc.relationShakeel, F., Haq, N., Siddiqui, N. A., Alanazi, F. K., & Alsarra, I. A. (2015). Solubility and thermodynamics of vanillin in Carbitol-water mixtures at different temperatures. LWT - Food Science and Technology, 64(2), 1278–1282. https://doi.org/10.1016/j.lwt.2015.07.043
dc.relationShulgin, I., & Ruckenstein, E. (1999a). Kirkwood−Buff Integrals in Aqueous Alcohol Systems: Comparison between Thermodynamic Calculations and X-Ray Scattering Experiments. The Journal of Physical Chemistry B, 103(13), 2496–2503. https://doi.org/10.1021/jp983387p
dc.relationShulgin, I., & Ruckenstein, E. (1999b). Kirkwood−Buff Integrals in Aqueous Alcohol Systems: Aggregation, Correlation Volume, and Local Composition. The Journal of Physical Chemistry B, 103(5), 872–877. https://doi.org/10.1021/jp983690q
dc.relationSingh, S. and. (2011). Martins Physical pharmacy and Pharmaceutical Science- Physical chemical and Biopharmaceutical Principle in the Pharmaceutical science 6th edition. Philadelphia: Lippincot Williams & Wilkins , a Wolters Kluwer bussines. In Thyroid. https://doi.org/10.1201/9780203644478.ch8
dc.relationSoltanpour, S., & Jouyban, A. (2011). Solubility of acetaminophen and ibuprofen in polyethylene glycol 600, N-methyl pyrrolidone and water mixtures. Journal of Solution Chemistry, 40(12), 2032–2045. https://doi.org/10.1007/s10953-011-9767-2
dc.relationSoltanpour, S., & Jouyban, A. (2013). Solubility of lamotrigine in binary and ternary mixtures of N-methyl pyrrolidone and water with polyethylene glycols 200, 400, and 600 at 298.2 K. Journal of Molecular Liquids, 180, 1–6. https://doi.org/10.1016/j.molliq.2012.12.029
dc.relationStella, V. J., & Nti-Addae, K. W. (2007, July 30). Prodrug strategies to overcome poor water solubility. Advanced Drug Delivery Reviews, Vol. 59, pp. 677–694. https://doi.org/10.1016/j.addr.2007.05.013
dc.relationStrickley, R. G. (2004, February). Solubilizing Excipients in Oral and Injectable Formulations. Pharmaceutical Research, Vol. 21, pp. 201–230. https://doi.org/10.1023/B:PHAM.0000016235.32639.23
dc.relationSullivan, D. W., Gad, S. C., & Julien, M. (2014). A review of the nonclinical safety of Transcutol®, a highly purified form of diethylene glycol monoethyl ether (DEGEE) used as a pharmaceutical excipient. Food and Chemical Toxicology, Vol. 72, pp. 40–50. https://doi.org/10.1016/j.fct.2014.06.028
dc.relationSweetman, S. C. (2009a). Sulfadiazine. In S. C. Sweetman (Ed.), Martindale. The Complete Drug Reference (Thirty-six, p. 336). London: Pharmaceutical Press.
dc.relationSweetman, S. C. (2009b). Sulfonamides and diaminopyrimidines. In S. C. Sweetman (Ed.), Martindale. The Complete Drug Reference (Thirty-six, pp. 161–162). London: Pharmaceutical Press.
dc.relationTakagi, T., Ramachandran, C., Bermejo, M., Yamashita, S., Yu, L. X., & Amidon, G. L. (2006). A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Molecular Pharmaceutics, 3(6), 631–643. https://doi.org/10.1021/mp0600182
dc.relationUSP-NF. (2016). Solubility Measurements. Retrieved November 15, 2019, from https://www.uspnf.com/notices/solubility-measurements
dc.relationWilliams, N. A., & Amidon, G. L. (1984). Excess free energy approach to the estimation of solubility in mixed solvent systems I: Theory. Journal of Pharmaceutical Sciences. https://doi.org/10.1002/jps.2600730104
dc.relationYalkowsky, S. H. (1999). Solubility and partial Miscibility. In Solubility and Solubilization in Aqueous Media (pp. 49–76). New York: Oxford University Press.
dc.relationYalkowsky, S.H., Flynn, G. L., & Amidon, G. L. (1972). Solubility of Nonelectrolytes in Polar Solvents. Journal of Pharmaceutical Sciences, 61(6), 983–984. https://doi.org/10.1002/jps.2600610643
dc.relationYalkowsky, Samuel H. (1999). Solubilization by Cosolvents. In Solubility and Solubilization in Aqueous Media (pp. 180–235). New York: Oxford.
dc.relationZhang, C. L., Li, B. Y., & Wang, Y. (2010). Solubilities of sulfadiazine in methanol, ethanol, 1-propanol, 2-propanol, acetone, and chloroform from (294.15 to 318.15) K. Journal of Chemical and Engineering Data, 55(6), 2338–2339. https://doi.org/10.1021/je900742p
dc.relationZhang, C. L., Wang, F. A., & Wang, Y. (2007). Solubilities of sulfadiazine, sulfamethazine, sulfadimethoxine, sulfamethoxydiazine, sulfamonomethoxine, sulfamethoxazole, and sulfachloropyrazine in water from (298.15 to 333.15) K. Journal of Chemical and Engineering Data, 52(5), 1563–1566. https://doi.org/10.1021/je0603978
dc.relationZhao, X., Farajtabar, A., Han, G., & Zhao, H. (2020). Griseofulvin dissolved in binary aqueous co-solvent mixtures of N,N-dimethylformamide, methanol, ethanol, acetonitrile and N-methylpyrrolidone: Solubility determination and thermodynamic studies. Journal of Chemical Thermodynamics, 151, 106250. https://doi.org/10.1016/j.jct.2020.106250
dc.relationZhu, C., Xu, R., Zhou, Y., & Zhao, H. (2020). Biapenem in binary aqueous mixtures of N,N-dimethylformamide, N-methyl-2-pyrrolidone, isopropanol and ethanol: Solute-solvent and solvent-solvent interactions, solubility determination and preferential solvation. Journal of Chemical Thermodynamics, 149, 106190. https://doi.org/10.1016/j.jct.2020.106190
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstudio termodinámico de la solubilidad de sulfadiazina en mezclas acuosas de Carbitol y N-Metil-Pirrolidona
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución