dc.creatorZúñiga Galindo, Wilson Alvaro
dc.date.accessioned2019-06-28T12:17:40Z
dc.date.accessioned2022-09-21T17:21:51Z
dc.date.available2019-06-28T12:17:40Z
dc.date.available2022-09-21T17:21:51Z
dc.date.created2019-06-28T12:17:40Z
dc.date.issued1997
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/43675
dc.identifierhttp://bdigital.unal.edu.co/33773/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3400047
dc.description.abstractLet X be a complete, geometrically irreducible, algebraic curve defined over a finite field Fq and let ς (X,t) be its zeta function [Ser1], If X is a singular curve, two other zeta functions exist. The first is the Dirichlet series Z(Ca(X), t) associated to the effective Cartier divisors on X; the second is the Dirichlet series Z(Div(X),t) associated to the effective divisors on X, In this paper we generalize F. K. Schmidt's results on the rationality and functional equation of the zeta function ς(X, t) of a non-singular curve to the functions Z(Ca(X), t) and Z(Div(X), t) by means ofthe singular Riemann-Roch theorem.
dc.languagespa
dc.publisherUniversidad Nacuional de Colombia; Sociedad Colombiana de matemáticas
dc.relationUniversidad Nacional de Colombia Revistas electrónicas UN Revista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas
dc.relationRevista Colombiana de Matemáticas; Vol. 31, núm. 2 (1997); 115-124 0034-7426
dc.relationZúñiga Galindo, Wilson Alvaro (1997) Zeta functions of singular curves over finite fields. Revista Colombiana de Matemáticas; Vol. 31, núm. 2 (1997); 115-124 0034-7426 .
dc.relationhttp://revistas.unal.edu.co/index.php/recolma/article/view/33674
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleZeta functions of singular curves over finite fields
dc.typeArtículos de revistas


Este ítem pertenece a la siguiente institución