dc.contributor | Blázquez Sanz, David | |
dc.contributor | Casale, Guy | |
dc.contributor | Universidad Nacional de Colombia - Sede Medellín | |
dc.creator | Díaz Arboleda, Juan Sebastián | |
dc.date.accessioned | 2020-05-07T22:23:43Z | |
dc.date.available | 2020-05-07T22:23:43Z | |
dc.date.created | 2020-05-07T22:23:43Z | |
dc.date.issued | 2019-10-13 | |
dc.identifier | Díaz Arboleda J. S. Isomonodromic deformations through differential Galois theory - phd Thesis | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/77491 | |
dc.description.abstract | The text begins with a brief description of differential Galois theory from a geometrical perspective. Then, parameterized Galois theory is developed by means of prolongation of partial connections to the jet bundles. The relation between the parameterized differential Galois groups and isomonodromic deformations is unfold as an application of Kiso-Cassidy theorem. It follows the computation of the parameterized Galois groups of the general fuchsian equation and Gauss hypergeometric equation. Finally, some non-linear applications are developed. By means of a non-linear analog, Kiso-Morimoto theorem, the Malgrange groupoid of Painlevé VI equation with variable parameters is calculated. | |
dc.description.abstract | El texto comienza con una breve descripción de la teoría de Galois diferencial desde una perspectiva geométrica. Luego la teoría de Galois con parámetros se presenta mediante las prolongaciones de conexiones parciales en los fibrados de jets. La relación entre el grupo de Galois con parámetros y las deformaciones isomonodrómicas se desarrolla como una aplicación del teorema de Kiso-Cassidy. Se calculan los grupos de Galois con parámetros de la ecuación fuchsiana general y de la ecuación hiper-geométrica de Gauss. Finalmente se desarrollan algunas aplicaciones no lineales. Mediante un análogo no lineal, a saber el teorema de Kiso–Morimoto, se calcula el grupoide de Malgrange de la ecuación de Painlevé VI con parámetros variables. | |
dc.language | eng | |
dc.publisher | Medellín - Ciencias - Doctorado en Ciencias - Matemáticas | |
dc.publisher | Escuela de matemáticas | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Yves Andr ́e. Diff ́erentielles non commutatives et th ́eorie de galois diff ́erentielle ou aux diff ́erences. Ann. Sci. Ecole Norm. Sup., 34(5):685–739, 2001. | |
dc.relation | C. E. Arreche. On the computation of the parameterized di erential Galois
group for a second-order linear di erential equation with di erential parameters.
J. Symbolic Comput., 75:25{55, 2016. | |
dc.relation | Daniel Bertrand. Book review: Lectures on di erential galois theory, by andy r.
magid. Bull. Amer. Math. Soc., 33(2):289{294, 1996. | |
dc.relation | David Bl azquez-Sanz and Guy Casale. Parallelisms & Lie connections. SIGMA,
13(86):1{28, 2017. | |
dc.relation | Pierre Cartier. Groupo des de Lie et leurs alg ebro des. S eminaire Bourbaki,
60:2007{2008, 2008 | |
dc.relation | Phyllis Joan Cassidy. The classi cation of the semisimple di erential algebraic
groups and the linear semisimple di erential algebraic Lie algebras. Journal of
Algebra, 121(1):169{238, 1989 | |
dc.relation | Guy Casale. Sur le groupo de de Galois d'un feuilletage. PhD thesis, Universit e
Paul Sabatier-Toulouse III, 2004. | |
dc.relation | Guy Casale. Une preuve galoisienne de l'irr eductibilit e au sens de nishiokaumemura
de la 1 ere equation de painlev e. Ast erisque, 323:83{100, 2009. | |
dc.relation | Felipe Cano, Dominique Cerveau, and Julie D eserti. Th eorie el ementaire des
feuilletages holomorphes singuliers. Belin, 2013 | |
dc.relation | Teresa Crespo and Zbigniew Hajto. Algebraic groups and di erential Galois
theory, volume 122. American Mathematical Soc., 2011. | |
dc.relation | Serge Cantat and Frank Loray. Dynamics on character varieties and malgrange
irreducibility of painlev e vi equation. In Annales de l'institut Fourier, volume 59,
pages 2927{2978, 2009. | |
dc.relation | Phyllis J Cassidy and Michael F Singer. Galois theory of parameterized di erential
equations and linear di erential algebraic groups. In C. Mitschi C. Sabbah
R. Schaefke D. Bertrand, B. Enriquez, editor, IRMA Lectures in Mathematics
and Theoretical Physics, volume 9, pages 113{157. EMS Publishing house, 2005. | |
dc.relation | Damien Davy. Sp ecialisation du pseudo-groupe de Malgrange et irr eductibilit e.
PhD thesis, Universit e Rennes 1, 2016. | |
dc.relation | Michel Demazure and Alexandre Grothendieck. Sch emas en groupes. Tome III,
Structure des sch emas en groupes r eductifs: S eminaire du Bois Marie, 1962/64,
SGA 3. Springer-Verlag, 1970. | |
dc.relation | Jules Drach. Essai sur une th eorie g en erale de l'int egration et sur la classi cation
des transcendantes. In Annales scienti ques de l' Ecole Normale Sup erieure,
volume 15, pages 243{384, 1898. | |
dc.relation | T. Dreyfus. A density theorem in parametrized di erential Galois theory. Paci c
J. Math., 271(1):87{141, 2014 | |
dc.relation | H. Gillet, S. Gorchinskiy, and A. Ovchinnikov. Parameterized Picard-Vessiot
extensions and Atiyah extensions. Adv. Math., 238:322{411, 2013. | |
dc.relation | Xavier G omez-Mont. Integrals for holomorphic foliations with singularities having
all leaves compact. Ann. Inst. Fourier (Grenoble), 39(2):451{458, 1989. | |
dc.relation | S. Gorchinskiy and A. Ovchinnikov. Isomonodromic di erential equations and
di erential categories. J. Math. Pures Appl., 102(1):48{78, 2014. | |
dc.relation | Hans Grauert. On meromorphic equivalence relations. In Contributions to several
complex variables, pages 115{147. Springer, 1986. | |
dc.relation | C. Hardouin, A. Minchenko, and A. Ovchinnikov. Calculating di erential Galois
groups of parametrized di erential equations, with applications to hypertranscendence.
Math. Ann., 368(1-2):587{632, 2017. | |
dc.relation | Katsunori Iwasaki, Hironobu Kimura, Shun Shimemura, and Masaaki Yoshida.
From Gauss to Painlev e: a modern theory of special functions, volume 16.
Springer Science & Business Media, 2013. | |
dc.relation | Katsunori Iwasaki. Finite branch solutions to painlev e vi around a xed singular
point. Advances in Mathematics, 217(5):1889{1934, 2008. | |
dc.relation | N. Katz. A conjecture in the arithmetic theory of di erential equations. Bull.
Soc. Math. France, 110:203{239, 1982 | |
dc.relation | Tosihusa Kimura. On riemann's equations which are solvable by quadratures.
Funkcial. Ekvac, 12(269-281):1970, 1969. | |
dc.relation | Kazuhiro Kiso. Local properties of intransitive in nite Lie algebra sheaves.
Japanese journal of mathematics. New series, 5(1):101{155, 1979. | |
dc.relation | Ellis Kolchin. Algebraic groups and algebraic dependence. Amer. J. Math.,
90(4):1151{1164, 1968 | |
dc.relation | Ellis Kolchin. Di erential algebra and algebraic groups. Academic press, 1973. | |
dc.relation | Ellis Kolchin. Di erential algebraic groups. Academic press, 1985. | |
dc.relation | Ivan Kol ar, Jan Slov ak, and Peter W Michor. Natural operations in di erential
geometry. 1999. | |
dc.relation | Peter Landesman. Generalized di erential galois theory. Transactions of the
American Mathematical Society, 360(8):4441{4495, 2008. | |
dc.relation | O. Le on S anchez and J. Nagloo. On parameterized di erential Galois extensions.
J. Pure Appl. Algebra, 220(7):2549{2563, 2016. | |
dc.relation | Oleg Lisovyy and Yuriy Tykhyy. Algebraic solutions of the sixth painlev e equation.
Journal of Geometry and Physics, 85:124{163, 2014. | |
dc.relation | Kirill C Mackenzie. General theory of Lie groupoids and Lie algebroids, volume
213. Cambridge University Press, 2005. | |
dc.relation | A. R. Magid. Lectures on di erential Galois theory, volume 7 of University
Lecture Series. American Mathematical Society, 1994. | |
dc.relation | Bernard Malgrange. Le groupo de de Galois d'un feuilletage. L'enseignement
math ematique, 38(2):465{501, 2001. | |
dc.relation | Bernard Malgrange. Di erential algebraic groups. In Algebraic Approach to
Di erential Equations (Ed. L^e, D~ung Tr ang), pages 292{312. World Scienti c,
2010. | |
dc.relation | Bernard Malgrange. Pseudogroupes de Lie et th eorie de Galois di erentielle.
IHES, 2010. | |
dc.relation | Ieke Moerdijk and Janez Mrcun. Introduction to foliations and Lie groupoids,
volume 91. Cambridge University Press, 2003 | |
dc.relation | J Mu~noz, Josemar Rodr guez, and FJ Muriel. Weil bundles and jet spaces.
Czechoslovak Mathematical Journal, 50(4):721{748, 2000. | |
dc.relation | A. Minchenko, A. Ovchinnikov, and M. F. Singer. Reductive linear di erential
algebraic groups and the Galois groups of parameterized linear di erential
equations. Int. Math. Res. Not. IMRN, (7):1733{1793, 2015. | |
dc.relation | A. Minchenko, A. Ovchinnikov and M. F. Singer. Unipotent di erential algebraic
groups as parameterized di erential Galois groups. J. Inst. Math. Jussieu,
13(4):671{700, 2014. | |
dc.relation | Masatoshi Noumi and Yasuhiko Yamada. A new lax pair for the sixth painlev e
equation associated with. In Microlocal analysis and complex Fourier analysis,
pages 238{252. World Scienti c, 2002. | |
dc.relation | Kazuo Okamoto et al. Polynomial hamiltonians associated with painlev e equations,
i. Proceedings of the Japan Academy, Series A, Mathematical Sciences,
56(6):264{268, 1980. | |
dc.relation | Emile Picard. Sur les equations di erentielles lin eaires et les groupes alg ebriques
de transformations. In Annales de la Facult e des sciences de Toulouse:
Math ematiques, volume 1, pages A1{A15, 1887. | |
dc.relation | Anand Pillay. Algebraic D-groups and di erential Galois theory. Paci c J. of
Math., 216(2):343{360, 2004. | |
dc.relation | HA Schwartz. Uber diejenigen f alle in welchen die gaussische hypergeometrische
reihe einer algebraische funktion iheres vierten elementes darstellit. Crelle J,
75:292{335, 1873. | |
dc.relation | J-P Serre. Espaces br es alg ebriques. S eminaire Claude Chevalley, 3:1{37, 1958. | |
dc.relation | Shlomo Sternberg. Lectures on di erential geometry, volume 316. American
Mathematical Soc., 1999. | |
dc.relation | Hiroshi Umemura. Di erential galois theory of in nite dimension. Nagoya Mathematical
Journal, 144:59{135, 1996. | |
dc.relation | Marius Van der Put and Michael F Singer. Galois theory of linear di erential
equations, volume 328. Springer Science & Business Media, 2012. | |
dc.relation | Ernest Vessiot. Sur la th eorie de galois et ses diverses g en eralisations. In Annales
scienti ques de l' Ecole Normale Sup erieure, volume 21, pages 9{85, 1904. | |
dc.relation | Ernest Vessiot. Sur l'int egration des syst emes di erentiels qui admettent des
groupes continus de transformations. Acta mathematica, 28(1):307{349, 1904 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Isomonodromic deformations through differential Galois theory | |
dc.type | Otro | |