dc.contributorBlázquez Sanz, David
dc.contributorCasale, Guy
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.creatorDíaz Arboleda, Juan Sebastián
dc.date.accessioned2020-05-07T22:23:43Z
dc.date.available2020-05-07T22:23:43Z
dc.date.created2020-05-07T22:23:43Z
dc.date.issued2019-10-13
dc.identifierDíaz Arboleda J. S. Isomonodromic deformations through differential Galois theory - phd Thesis
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77491
dc.description.abstractThe text begins with a brief description of differential Galois theory from a geometrical perspective. Then, parameterized Galois theory is developed by means of prolongation of partial connections to the jet bundles. The relation between the parameterized differential Galois groups and isomonodromic deformations is unfold as an application of Kiso-Cassidy theorem. It follows the computation of the parameterized Galois groups of the general fuchsian equation and Gauss hypergeometric equation. Finally, some non-linear applications are developed. By means of a non-linear analog, Kiso-Morimoto theorem, the Malgrange groupoid of Painlevé VI equation with variable parameters is calculated.
dc.description.abstractEl texto comienza con una breve descripción de la teoría de Galois diferencial desde una perspectiva geométrica. Luego la teoría de Galois con parámetros se presenta mediante las prolongaciones de conexiones parciales en los fibrados de jets. La relación entre el grupo de Galois con parámetros y las deformaciones isomonodrómicas se desarrolla como una aplicación del teorema de Kiso-Cassidy. Se calculan los grupos de Galois con parámetros de la ecuación fuchsiana general y de la ecuación hiper-geométrica de Gauss. Finalmente se desarrollan algunas aplicaciones no lineales. Mediante un análogo no lineal, a saber el teorema de Kiso–Morimoto, se calcula el grupoide de Malgrange de la ecuación de Painlevé VI con parámetros variables.
dc.languageeng
dc.publisherMedellín - Ciencias - Doctorado en Ciencias - Matemáticas
dc.publisherEscuela de matemáticas
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationYves Andr ́e. Diff ́erentielles non commutatives et th ́eorie de galois diff ́erentielle ou aux diff ́erences. Ann. Sci. Ecole Norm. Sup., 34(5):685–739, 2001.
dc.relationC. E. Arreche. On the computation of the parameterized di erential Galois group for a second-order linear di erential equation with di erential parameters. J. Symbolic Comput., 75:25{55, 2016.
dc.relationDaniel Bertrand. Book review: Lectures on di erential galois theory, by andy r. magid. Bull. Amer. Math. Soc., 33(2):289{294, 1996.
dc.relationDavid Bl azquez-Sanz and Guy Casale. Parallelisms & Lie connections. SIGMA, 13(86):1{28, 2017.
dc.relationPierre Cartier. Groupo des de Lie et leurs alg ebro des. S eminaire Bourbaki, 60:2007{2008, 2008
dc.relationPhyllis Joan Cassidy. The classi cation of the semisimple di erential algebraic groups and the linear semisimple di erential algebraic Lie algebras. Journal of Algebra, 121(1):169{238, 1989
dc.relationGuy Casale. Sur le groupo de de Galois d'un feuilletage. PhD thesis, Universit e Paul Sabatier-Toulouse III, 2004.
dc.relationGuy Casale. Une preuve galoisienne de l'irr eductibilit e au sens de nishiokaumemura de la 1 ere equation de painlev e. Ast erisque, 323:83{100, 2009.
dc.relationFelipe Cano, Dominique Cerveau, and Julie D eserti. Th eorie el ementaire des feuilletages holomorphes singuliers. Belin, 2013
dc.relationTeresa Crespo and Zbigniew Hajto. Algebraic groups and di erential Galois theory, volume 122. American Mathematical Soc., 2011.
dc.relationSerge Cantat and Frank Loray. Dynamics on character varieties and malgrange irreducibility of painlev e vi equation. In Annales de l'institut Fourier, volume 59, pages 2927{2978, 2009.
dc.relationPhyllis J Cassidy and Michael F Singer. Galois theory of parameterized di erential equations and linear di erential algebraic groups. In C. Mitschi C. Sabbah R. Schaefke D. Bertrand, B. Enriquez, editor, IRMA Lectures in Mathematics and Theoretical Physics, volume 9, pages 113{157. EMS Publishing house, 2005.
dc.relationDamien Davy. Sp ecialisation du pseudo-groupe de Malgrange et irr eductibilit e. PhD thesis, Universit e Rennes 1, 2016.
dc.relationMichel Demazure and Alexandre Grothendieck. Sch emas en groupes. Tome III, Structure des sch emas en groupes r eductifs: S eminaire du Bois Marie, 1962/64, SGA 3. Springer-Verlag, 1970.
dc.relationJules Drach. Essai sur une th eorie g en erale de l'int egration et sur la classi cation des transcendantes. In Annales scienti ques de l' Ecole Normale Sup erieure, volume 15, pages 243{384, 1898.
dc.relationT. Dreyfus. A density theorem in parametrized di erential Galois theory. Paci c J. Math., 271(1):87{141, 2014
dc.relationH. Gillet, S. Gorchinskiy, and A. Ovchinnikov. Parameterized Picard-Vessiot extensions and Atiyah extensions. Adv. Math., 238:322{411, 2013.
dc.relationXavier G omez-Mont. Integrals for holomorphic foliations with singularities having all leaves compact. Ann. Inst. Fourier (Grenoble), 39(2):451{458, 1989.
dc.relationS. Gorchinskiy and A. Ovchinnikov. Isomonodromic di erential equations and di erential categories. J. Math. Pures Appl., 102(1):48{78, 2014.
dc.relationHans Grauert. On meromorphic equivalence relations. In Contributions to several complex variables, pages 115{147. Springer, 1986.
dc.relationC. Hardouin, A. Minchenko, and A. Ovchinnikov. Calculating di erential Galois groups of parametrized di erential equations, with applications to hypertranscendence. Math. Ann., 368(1-2):587{632, 2017.
dc.relationKatsunori Iwasaki, Hironobu Kimura, Shun Shimemura, and Masaaki Yoshida. From Gauss to Painlev e: a modern theory of special functions, volume 16. Springer Science & Business Media, 2013.
dc.relationKatsunori Iwasaki. Finite branch solutions to painlev e vi around a xed singular point. Advances in Mathematics, 217(5):1889{1934, 2008.
dc.relationN. Katz. A conjecture in the arithmetic theory of di erential equations. Bull. Soc. Math. France, 110:203{239, 1982
dc.relationTosihusa Kimura. On riemann's equations which are solvable by quadratures. Funkcial. Ekvac, 12(269-281):1970, 1969.
dc.relationKazuhiro Kiso. Local properties of intransitive in nite Lie algebra sheaves. Japanese journal of mathematics. New series, 5(1):101{155, 1979.
dc.relationEllis Kolchin. Algebraic groups and algebraic dependence. Amer. J. Math., 90(4):1151{1164, 1968
dc.relationEllis Kolchin. Di erential algebra and algebraic groups. Academic press, 1973.
dc.relationEllis Kolchin. Di erential algebraic groups. Academic press, 1985.
dc.relationIvan Kol ar, Jan Slov ak, and Peter W Michor. Natural operations in di erential geometry. 1999.
dc.relationPeter Landesman. Generalized di erential galois theory. Transactions of the American Mathematical Society, 360(8):4441{4495, 2008.
dc.relationO. Le on S anchez and J. Nagloo. On parameterized di erential Galois extensions. J. Pure Appl. Algebra, 220(7):2549{2563, 2016.
dc.relationOleg Lisovyy and Yuriy Tykhyy. Algebraic solutions of the sixth painlev e equation. Journal of Geometry and Physics, 85:124{163, 2014.
dc.relationKirill C Mackenzie. General theory of Lie groupoids and Lie algebroids, volume 213. Cambridge University Press, 2005.
dc.relationA. R. Magid. Lectures on di erential Galois theory, volume 7 of University Lecture Series. American Mathematical Society, 1994.
dc.relationBernard Malgrange. Le groupo de de Galois d'un feuilletage. L'enseignement math ematique, 38(2):465{501, 2001.
dc.relationBernard Malgrange. Di erential algebraic groups. In Algebraic Approach to Di erential Equations (Ed. L^e, D~ung Tr ang), pages 292{312. World Scienti c, 2010.
dc.relationBernard Malgrange. Pseudogroupes de Lie et th eorie de Galois di erentielle. IHES, 2010.
dc.relationIeke Moerdijk and Janez Mrcun. Introduction to foliations and Lie groupoids, volume 91. Cambridge University Press, 2003
dc.relationJ Mu~noz, Josemar Rodr guez, and FJ Muriel. Weil bundles and jet spaces. Czechoslovak Mathematical Journal, 50(4):721{748, 2000.
dc.relationA. Minchenko, A. Ovchinnikov, and M. F. Singer. Reductive linear di erential algebraic groups and the Galois groups of parameterized linear di erential equations. Int. Math. Res. Not. IMRN, (7):1733{1793, 2015.
dc.relationA. Minchenko, A. Ovchinnikov and M. F. Singer. Unipotent di erential algebraic groups as parameterized di erential Galois groups. J. Inst. Math. Jussieu, 13(4):671{700, 2014.
dc.relationMasatoshi Noumi and Yasuhiko Yamada. A new lax pair for the sixth painlev e equation associated with. In Microlocal analysis and complex Fourier analysis, pages 238{252. World Scienti c, 2002.
dc.relationKazuo Okamoto et al. Polynomial hamiltonians associated with painlev e equations, i. Proceedings of the Japan Academy, Series A, Mathematical Sciences, 56(6):264{268, 1980.
dc.relationEmile Picard. Sur les equations di erentielles lin eaires et les groupes alg ebriques de transformations. In Annales de la Facult e des sciences de Toulouse: Math ematiques, volume 1, pages A1{A15, 1887.
dc.relationAnand Pillay. Algebraic D-groups and di erential Galois theory. Paci c J. of Math., 216(2):343{360, 2004.
dc.relationHA Schwartz. Uber diejenigen f alle in welchen die gaussische hypergeometrische reihe einer algebraische funktion iheres vierten elementes darstellit. Crelle J, 75:292{335, 1873.
dc.relationJ-P Serre. Espaces br es alg ebriques. S eminaire Claude Chevalley, 3:1{37, 1958.
dc.relationShlomo Sternberg. Lectures on di erential geometry, volume 316. American Mathematical Soc., 1999.
dc.relationHiroshi Umemura. Di erential galois theory of in nite dimension. Nagoya Mathematical Journal, 144:59{135, 1996.
dc.relationMarius Van der Put and Michael F Singer. Galois theory of linear di erential equations, volume 328. Springer Science & Business Media, 2012.
dc.relationErnest Vessiot. Sur la th eorie de galois et ses diverses g en eralisations. In Annales scienti ques de l' Ecole Normale Sup erieure, volume 21, pages 9{85, 1904.
dc.relationErnest Vessiot. Sur l'int egration des syst emes di erentiels qui admettent des groupes continus de transformations. Acta mathematica, 28(1):307{349, 1904
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleIsomonodromic deformations through differential Galois theory
dc.typeOtro


Este ítem pertenece a la siguiente institución