dc.contributor | Baena Aristizábal, Yolima | |
dc.contributor | Grupo de Investigación en Tecnología de Productos Naturales Tecprona | |
dc.creator | Ojeda Gómez, Sandra Xilena | |
dc.date.accessioned | 2022-08-24T17:48:34Z | |
dc.date.available | 2022-08-24T17:48:34Z | |
dc.date.created | 2022-08-24T17:48:34Z | |
dc.date.issued | 2021 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82076 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | El aceite esencial de tomillo (AET) ha sido propuesto y respaldado por diversas investigaciones para su uso como promotor de crecimiento en pollos de engorde, sin embargo, su aplicación directa se dificulta debido a su inestabilidad asociada a su alta volatilización y oxidación. El objetivo de esta investigación fue microencapsularlo mediante secado por aspersión para mejorar sus propiedades farmacotécnicas y de estabilidad, empleando como biopolímeros de recubrimiento a la goma arábiga (G), la maltodextrina (M) y al almidón de ñame succinatado (AÑS). Se establecieron las condiciones de emulsificación y, mediante la aplicación de un diseño estadístico experimental (DEE), las de microencapsulación. El AET fue identificado y cuantificado por cromatografía de gases acoplada a espectroscopia de masas, sus componentes mayoritarios fueron D-limoneno (45,65%), timol (18,26%) y p-cimeno (15,30%). El quimiotipo identificado no coincidió con los reportados de Thymus Vulgaris, por lo cual se nombró como quimiotipo D-limoneno. Las condiciones de obtención de las micropartículas fueron: relación aceite/biopolímeros 1:6, biopolímeros G/M/AÑS, flujo de nitrógeno 601 L/h, flujo de aspiración 32 m3/h, flujo de alimentación 3 mL/min y temperatura de inyección 138°C. Se caracterizaron las micropartículas obtenidas en cuanto a propiedades organolépticas, rendimiento del proceso (48,5%), eficiencia de encapsulación (87,47%), eficiencia de carga (78,83%), tamaño de partícula (74,50 µm), span (2,36), fluidez (baja) y morfología (entre esférica y ovalada). El ensayo de estabilidad evidenció la protección física que proporcionó la cubierta polimérica al AET para disminuir su volatilización y las pérdidas presentadas podrían estar relacionadas con la porosidad de la matriz y la posible degradación de los componentes que hacen parte del aceite. Se sugiere que estas micropartículas cumplen con las propiedades farmacotécnicas básicas para evaluar su posible aplicación como promotor de crecimiento en la producción de pollos de engorde. (Texto tomado de la fuente) | |
dc.description.abstract | Thyme essential oil (TEO) has been proposed and supported in different researchs for its use as a growth promoter in broilers. However, its direct application is difficult due to its instability related to its high volatilization and oxidation. The aim of this research was to microencapsulate it by spray drying to improve its pharmacotechnical and stability properties, using gum arabic (G), maltodextrin (M) and succinated yam starch (SYS) as coating biopolymers. The emulsification conditions were established and, through the application of an experimental statistical design (ESD), the microencapsulation conditions. TEO was identified and quantified by gas chromatography coupled to mass spectroscopy; its main components were D-limonene (45.65%), thymol (18.26%) and p-cymene (15.30%). The identified chemotype did not coincide with those reported for Thymus Vulgaris, and for that reason it was named the D-limonene chemotype. The conditions for obtaining the microparticles were: oil/biopolymers ratio 1:6, G/M/SYS biopolymers, nitrogen flow 601 L/h, aspiration flow 32 m3/h, feeding flow 3 mL/min and temperature of injection 138°C. The microparticles obtained were characterized in terms of organoleptic properties, process yield (48,5%), encapsulation efficiency (87,47%), loading capacity (78,83%), particle size (74,50 µm), span (2,36), fluidity (low) and morphology (between spherical and oval). The stability test evidenced the physical protection provided by the polymeric coating to the TEO to reduce its volatilization and the losses presented could be related to the porosity of the matrix and the possible degradation of the components that are part of the oil. It is suggested that this microencapsulate meets the basic pharmacotechnical properties to evaluate its possible application as a growth promoter in the production of broilers. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas | |
dc.publisher | Departamento de Farmacia | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Moore PR, Evenson A, Luckey TD, Mccoy E, Elvehjem CA, Hart EB. Use of sulfasuxidine, streptothricin, and streptomycin in nutritional studies with the chick. J Biol Chem. 946;165:437–41. | |
dc.relation | Rosen GD. Antibacterials in poultry and pig nutrition. Biotech Anim Feeds Anim Feed. 1995:143–72. | |
dc.relation | Cepero Briz R. Retirada de los antibióticos promotores del crecimiento en la Unión Europea: Causas y consecuencias. XII Congr Bien la Asoc Mex Espec en Nutr Avícola. 2005. | |
dc.relation | Franz C, Baser K, Windisch W. Essential oils and aromatic plants in animal feeding - a European perspective. A review. Flavour Fragr J. 2010;25:327–340. | |
dc.relation | Organización Mundial de la Salud (OMS). Plan de acción mundial sobre la resistencia a los antimicrobianos. 2016. | |
dc.relation | Instituto Colombiano Agropecuario ICA. Resolución 1966 del 5 de septiembre de 1984. | |
dc.relation | Congreso de la República. Proyecto de Ley 104 de 2008. | |
dc.relation | Roldán Forero LP. Evaluación del uso de los aceites esenciales como alternativa al uso de los antibióticos promotores de crecimiento en pollos de engorde. Universidad Nacional de Colombia; 2010. | |
dc.relation | Silva Vazquez R, Dunford N. Bioactive components of mexican oregano oil as affected by moisture and plant maturity. J Essent Oil Res. 2005;17:668–71. | |
dc.relation | Sokmen A, Gulluce M, Akpulat HA, Daferera D, Tepe B, Polissiou M, et al. The in vitro antimicrobial and antioxidant activities of the essential oils and methanol extracts of endemic Thymus spathulifolius. Food Control. 2004;15:627–634. | |
dc.relation | Viuda-Martos M, Ruiz-Navajas Y, Fernández-López J, Pérez-Álvarez JA. Antifungal activities of thyme, clove and oregano essential oils. J Food Saf. 2007;27:91–101. | |
dc.relation | Popovic S, Puvaca N, Kostadinovic L, Dzinic N, Jasna B, Vasiljevic M, et al. Effects of dietary essential oils on productive performance, blood lipid profile, enzyme activity and immunological response of broiler chickens. Eur Poult Sci. 2016;80:1–12. | |
dc.relation | Del Toro-Sánchez CL, Ayala-Zavala JF, Machi L, Santacruz H, Villegas-Ochoa MA, Alvarez-Parrilla E, et al. Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules. J Incl Phenom Macrocycl Chem. 2010;67(issue 3):431–41. | |
dc.relation | FUDE F. ¿Qué es la producción avícola? [Internet]. Available from: http://www.educativo.net/articulos/que-es-la-produccion-avicola-876.html | |
dc.relation | Aguilera M. Determinantes del desarrollo en la avicultura en Colombia: instituciones, organizaciones y tecnología. [Internet]. Cartagena, Colombia; 2014. (Documentos de Trabajo Sobre Economía Regional; vol. 214). Available from: https://repositorio.banrep.gov.co/handle/20.500.12134/3177 | |
dc.relation | Revista Dinero. ¿Por qué la industria avícola colombiana está volando alto? [Internet]. 2017. Available from: https://www.semana.com/edicion-impresa/negocios/articulo/como-va-la-industria-avicola-en-colombia/242959/ | |
dc.relation | Barroeta AC, Izquierdo D, Pérez JF. Manual de Avicultura. | |
dc.relation | Angulo E. Fisiología Aviar. Edicions de la Universitat de Lleida. 2009. | |
dc.relation | Angel R, Kim SW, Li W, Jimenez-Moreno E. Velocidad de paso y pH intestinal en aves. In: XXIX Curso de Especialización FEDNA, University of Maryland College Park. 2013. | |
dc.relation | Moran ET. Comparative nutrition of fowl and swine: the gastrointestinal systems. Guelph, Ontario, Canadá: University of Guelph; 1982. | |
dc.relation | Lott BD, Day EJ, Deaton JW, May JD. The effect of temperature, dietary energy level, and corn particle size on broiler performance. Poult Sci. 1992;71(4):618-24. | |
dc.relation | Nir I, Shefet G, Aaroni Y. Effect of particle size on performance. 1. Corn. Poult Sci. 1994;73(1:45-9). | |
dc.relation | Nir I, Hillel R, Shefet G, Nitsan Z. Effect of grain particle size on performance. 2. Grain texture interactions. Poult Sci. 1994;73(6):781-91. | |
dc.relation | Huang K, De Beer M. Influence of feed form on intake preference and performance of young broilers. In: Proc Aust Poult Sci Symp 21. 2010;103–6. | |
dc.relation | Hamilton RMG, Proudfoot FG. Ingredient particle size and feed texture: effects on the performance of broiler chickens. Anim Feed Sci Technol. 1995;51(3–4):203-210. | |
dc.relation | Svihus B, Kløvstad KH, Perez V, Zimonja O, Sahlström S, Schüller RB, et al. Physical and nutritional effects of pelleting of broiler chicken diets made from wheat ground to different coarsenesses by the use of roller mill and hammer mill. Anim Feed Sci Technol. 2004;117(3–4):281-293. | |
dc.relation | Borja E. Alimentación de broilers: aspectos prácticos (I). Jor prof Avic. 2010. | |
dc.relation | Mateos GG, García Valencia D, Vicente Piqueras B. Influencia del procesado de ingredientes y piensos terminados sobre la productividad en monogástricos. XXI Curso de Especialización FEDNA, Universidad Politécnica de Madrid. 2005. | |
dc.relation | Reyes E, Morales E, Ávila E. Evaluación de promotores de crecimiento en pollos de engorda, en un sistema de alimentación restringida y a libre acceso*. Vet Méx. 2000;31(1):1–9. | |
dc.relation | Sumano López H, Gutierrez Olvera L. Consideraciones farmacológicas de la antibioticoterapia en aves. V Simp Bras Sul Avic. 2004;1:86–106. | |
dc.relation | Michiels J, Missotten J, Dierick N, Fremaut D, Maene P, De Smet S. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. J Sci Food Agric. 2008;88(13):2371–2381. | |
dc.relation | Oceľová V, Chizzola R, Battelli G, Pisarcikova J, Faix S, Gai F, et al. Thymol in the intestinal tract of broiler chickens after sustained administration of thyme essential oil in feed. J Anim Physiol Anim Nutr (Berl). 2019;103(1):204-209. | |
dc.relation | Sumano H, Ocampo L. Promotores del crecimiento. In: McGraw-Hill, editor. Farmacología Veterinaria. 3era edici. 2006. p. 361–84. | |
dc.relation | Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: Effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev. 2003;16:175–88. | |
dc.relation | Bywater R. Benefits and microbiological risks of feed additive antibiotics. Cahiers Options Méditerranéennes. 1999;37:77–82. | |
dc.relation | Feighner SD, Dashkevicz MP. Subtherapeutic levels of antibiotics in poultry feeds and their effects on weight gain, feed efficiency, and bacterial cholyltaurine hydrolase activity. Appl Environ Microbiol. 1987;53:331–336. | |
dc.relation | Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Vol. 7, Infect Drug Resist. 2014(7):167-176. | |
dc.relation | Klümper U, Riber L, Dechesne A, Sannazzarro A, Hansen LH, Sørensen SJ, et al. Broad host range plasmids can invade an unexpectedly diverse fraction of a soil bacterial community. ISME J. 2015;9:934-945. | |
dc.relation | Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol. 2019;65(1):34-44. | |
dc.relation | Li J. Current status and prospects for in-feed antibiotics in the different stages of pork production - A review. Asian-Australasian J Anim Sci. 2017;30(12):1667–73. | |
dc.relation | Garofalo C, Vignaroli C, Zandri G, Aquilanti L, Bordoni D, Osimani A, et al. Direct detection of antibiotic resistance genes in specimens of chicken and pork meat. Int J Food Microbiol. 2007;113(1):75–83. | |
dc.relation | Gundogan N, Citak S, Yucel N, Devren A. A note on the incidence and antibiotic resistance of Staphylococcus aureus isolated from meat and chicken samples. Meat Sci. 2005;69(4):807–10. | |
dc.relation | Cui S, Ge B, Zheng J, Meng J. Prevalence and antimicrobial resistance of Campylobacter spp. and Salmonella serovars in organic chickens from Maryland retail stores. Appl Environ Microbiol. 2005;71(7):4108–4111. | |
dc.relation | Ramchandani M, Manges AR, DebRoy C, Smith SP, Johnson JR, Riley LW. Possible animal origin of human-associated, multidrug-resistant, uropathogenic Escherichia coli. Clin Infect Dis. 2005;40(2):251–257. | |
dc.relation | Kim S-H, Wei C-I, Tzou Y-M, An H. Multidrug-resistant Klebsiella pneumoniae isolated from farm environments and retail products in Oklahoma. J Food Prot. 2005;68(10):2022–9. | |
dc.relation | Parveen S, Taabodi M, Schwarz JG, Oscar TP, Harter-Dennis J, White DG. Prevalence and Antimicrobial Resistance of Salmonella Recovered from Processed Poultry. J Food Prot. 2007;70(11):2466–72. | |
dc.relation | Mena C, Rodrigues D, Silva J, Gibbs P, Teixeira P. Occurrence, identification, and characterization of Campylobacter species isolated from Portuguese poultry samples collected from retail establishments. Poult Sci. 2008;87(1):187–90. | |
dc.relation | Diarrassouba F, Diarra MS, Bach S, Delaquis P, Pritchard J, Topp E, et al. Antibiotic resistance and virulence genes in commensal Escherichia coli and Salmonella isolates from commercial broiler chicken farms. J Food Prot. 2007;70(6):1316–27. | |
dc.relation | Campagnolo ER, Johnson KR, Karpati A, Rubin CS, Kolpin DW, Meyer MT, et al. Antimicrobial residues in animal waste and water resources proximal to large-scale swine and poultry feeding operations. Sci Total Environ. 2002;299(1–3):89–95. | |
dc.relation | Ma F, Xu S, Tang Z, Li Z, Zhang L. Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosafety and Health. 2021;3(1):32-38. | |
dc.relation | Castanon JIR. History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci. 2007;86(11):2466–71. | |
dc.relation | The White House Administration. National Action Plan for Combating Antibiotic-Resistant Bacteria. Open Gov Natl Action Plans. 2015. | |
dc.relation | Hashemi SR, Davoodi H. Herbal plants and their derivatives as growth and health promoters in animal nutrition. Vet Res Commun. 2011(3):169-80. | |
dc.relation | Castillo-López RI, Gutiérrez-Grijalva EP, Leyva-Lópe N, López-Martínez LX, Heredia JB. Natural alternatives to growth-promoting antibiotics (GPA) in animal production. J Anim Plant Sci. 2017;27(2):349. | |
dc.relation | Griggs JP, Jacob JP. Alternatives to antibiotics for organic poultry production. J Appl Poult Res. 2005;14(4):750-756. | |
dc.relation | Vieco-Saiz N, Belguesmia Y, Raspoet R, Auclair E, Gancel F, Kempf I, et al. Benefits and inputs from lactic acid bacteria and their bacteriocins as alternatives to antibiotic growth promoters during food-animal production. Vol. 10, Front Microbiol. 2019;10:57. | |
dc.relation | Pournazari M, Qotbi AA, Seidavi A, Corazzin M. Prebiotics, probiotics and thyme (Thymus vulgaris) for broilers: performance, carcass traits and blood variables. Rev Colomb Cienc Pecu. 2017;30(1):3–10. | |
dc.relation | Ferrándiz M. Encapsulación de aceites esenciales funcionales para su aplicación en agricultura. Universitat Politécnica de Valencia; 2015. | |
dc.relation | Briskin DP. Medicinal Plants and Phytomedicines. Linking Plant Biochemistry and Physiology to Human Health. Plant Physiol. 2000;124(2):507–514. | |
dc.relation | Surburg H, Panten J. Common Fragance and Flavors materials: preparation, properties and uses. 5ta ed. Wiley-VCH Verlag GmbH & Co; 2006. | |
dc.relation | Croteau R, Kutchan TM, Lewis NG. Natural products (Secondary Metabolites). Biochem Mol Biol Plants. 2000;24:1250–1319. | |
dc.relation | Garcia C, Martínez A, Ortega J, Castro F. Componentes químicos y su relación con las actividades biológicas de algunos extractos vegetales. Rev QuímicaViva. 2010;9(2):86–96. | |
dc.relation | Martinez A. Aceites Esenciales. Universidad de Antioquia; 2003. | |
dc.relation | Morales A. Efecto Antimicrobiano del Aceite Esencial del Tomillo (Thymus vulgaris) sobre la contaminación de Listeria monocytogenes en queso Ricotta. Universidad Nacional de Colombia; 2015. | |
dc.relation | Burt S. Essential oils: their antibacterial properties and potential applications in foods—a review. Int J Food Microbiol. 2004;94(3):223–53. | |
dc.relation | Carson CF, Mee BJ, Riley T V. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother. 2002;46(6):1914–20. | |
dc.relation | Giannenas I, Florou-Paneri P, Papazahariadou M, Christaki E, Botsoglou NA, Spais AB. Effect of dietary supplementation with oregano essential oil on performance of broilers after experimental infection with Eimeria tenella. Arch Anim Nutr. 2003;57(2):99–106. | |
dc.relation | Lira C. Microencapsulación de aceite de orégano mexicano (Lippia graveolens Kunth), determinación de su actividad y antimicrobiana y antioxidante y su aplicación en carne cruda de cerdo. Universidad Autónoma de Querétaro; 2015. | |
dc.relation | Lambert RJ, Skandamis PN, Coote PJ, Nychas GJ. A study of the minimum inhibitory concentration and mode of action of oregano essential oil, thymol and carvacrol. J Appl Microbiol. 2001;91(3):453–62. | |
dc.relation | Ultee A, Kets EP, Smid EJ. Mechanisms of action of carvacrol on the food-borne pathogen. Appl Environ Microbiol. 1999;65(10):4606-10. | |
dc.relation | Veldhuizen EJA, Tjeerdsma-Van Bokhoven JLM, Zweijtzer C, Burt SA, Haagsman HP. Structural requirements for the antimicrobial activity of carvacrol. J Agric Food Chem. 2006;54(5):1874-9. | |
dc.relation | Di Pasqua R, Hoskins N, Betts G, Mauriello G. Changes in membrane fatty acids composition of microbial cells induced by addiction of thymol, carvacrol, limonene, cinnamaldehyde, and eugenol in the growing media. J Agric Food Chem. 2006;54(7): 2745-9. | |
dc.relation | Burt SA, Van Der Zee R, Koets AP, De Graaff AM, Van Knapen F, Gaastra W, et al. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl Environ Microbiol. 2007;73(14):4484-90. | |
dc.relation | Lee KW, Everts H, Kappert HJ, Frehner M, Losa R, Beynen AC. Effects of dietary essential oil components on growth performance, digestive enzymes and lipid metabolism in female broiler chickens. Br Poult Sci. 2003;44(3):450–7. | |
dc.relation | Jang IS, Ko YH, Yang HY, Ha JS, Kim JY, Kim JY, et al. Influence of essential oil components on growth performance and the functional activity of the pancreas and small intestine in broiler chickens. Asian-Australasian J Anim Sci. 2004;17(3):394-400. | |
dc.relation | Jang IS, Ko YH, Kang SY, Lee CY. Effect of a commercial essential oil on growth performance, digestive enzyme activity and intestinal microflora population in broiler chickens. Anim Feed Sci Technol. 2007;134(3–4):304-315. | |
dc.relation | Youdim KA, Deans SG. Effect of thyme oil and thymol dietary supplementation on the antioxidant status and fatty acid composition of the ageing rat brain. Br J Nutr. 2000;83(1):87-93. | |
dc.relation | Puertas-Mejía M, Hillebrand S, Stashenko E, Winterhalter P. In vitro radical scavenging activity of essential oils from Colombian plants and fractions from oregano (Origanum vulgare L.) essential oil. Flavour Fragr J. 2002;17(5):380–384. | |
dc.relation | Gortzi O, Lalas S, Chinou I, Tsaknis J. Reevaluation of antimicrobial and antioxidant activity of Thymus spp. extracts before and after encapsulation in liposomes. J Food Prot. 2006;69(12):2998–3005. | |
dc.relation | Hernández F, Madrid J, García V, Orengo J, Megías MD. Influence of two plant extracts on broilers performance, digestibility, and digestive organ size. Poult Sci. 2004;83(2):169–174. | |
dc.relation | El-Ghousein S, Al-beitawi N. The Effect of Feeding of Crushed Thyme (Thymus valgaris L) on Growth, Blood Constituents, Gastrointestinal Tract and Carcass Characteristics of Broiler Chickens. J Poult Sci. 2009;46:100–104. | |
dc.relation | Dapkevicius A, Van Beek TA, Lelyveld GP, Van Veldhuizen A, De Groot A, Linssen JPH, et al. Isolation and structure elucidation of radical scavengers from Thymus vulgaris leaves. J Nat Prod. 2002;65(6):892-6. | |
dc.relation | Chun H, Jun WJ, Shin DH, Hong BS, Cho HY, Yang HC. Purification and characterization of anti-complementary polysaccharide from leaves of Thymus vulgaris L. Chem Pharm Bull (Tokyo). 2001;49(6):762–4. | |
dc.relation | Khan RU, Naz S, Nikousefat Z, Tufarelli V, Laudadio V. Thymus vulgaris: Alternative to antibiotics in poultry feed. Worlds Poult Sci J. 2012;68(3):401–8. | |
dc.relation | Stojanovic R, Belscak-Cvitanovic A, Manojlovic V, Komes D, Nedovic V, Bugarski B. Encapsulation of thyme (Thymus serpyllum L.) aqueous extract in calcium alginate beads. J Sci Food Agric. 2012;92(3):685–96. | |
dc.relation | Attia YA, Bakhashwain AA, Bertu NK. Thyme oil (Thyme vulgaris L.) as a natural growth promoter for broiler chickens reared under hot climate. Ital J Anim Sci. 2017;16(2):275–282. | |
dc.relation | Mohsenzadeh M. Evaluation of antibacterial activity of selected Iranian essential oils against Staphylococcus aureus and Escherichia coli in nutrient broth medium. Paki J Biol Sci. 2007;10(20):3693–7. | |
dc.relation | Snoussi M, Hajlaoui H, Noumi E, Usai D, Sechi LA, Zanetti S, et al. In-vitro anti-Vibrio spp. activity and chemical composition of some Tunisian aromatic plants. World J Microbiol Biotechnol. 2008;24(12):3071–3076. | |
dc.relation | Zu Y, Yu H, Liang L, Fu Y, Efferth T, Liu X, et al. Activities of ten essential oils towards Propionibacterium acnes and PC-3, A-549 and MCF-7 cancer cells. Molecules. 2010;15(5):3200–10. | |
dc.relation | Rojas J, Ortiz J, Jáuregui J, Ruiz J, Almonacid R. Aceite esencial de Thymus vulgaris L (tomillo), su combinación con EDTA contra Cándida albicans y formulación de una crema. An la Fac Med. 2015;76(3):235–40. | |
dc.relation | Chizzola R, Michitsch H, Franz C. Antioxidative properties of Thymus vulgaris leaves: Comparison of different extracts and essential oil chemotypes. J Agric Food Chem. 2008;56(16):6897–904. | |
dc.relation | Allen PC, Danforth HD, Augustine PC. Dietary modulation of avian coccidiosis. Int J Parasitol. 1998;28(7):1131–1140. | |
dc.relation | Denli M, Okan F, Uluocak AN. Effect of dietary supplementation of herb essential oils on the growth performance, carcass and intestinal characteristics of quail (Coturnix coturnix japonica). S Afr J Anim Sci. 2004;34(3):174–9. | |
dc.relation | Langhout P. New additives for broiler chickens. Wourld Poult. 2000;16(3):22–27. | |
dc.relation | Zeweil H. Effect of spices as feed additives on the performance and egg quality of Japanese quail. In: The 68th Scient Conf of Polish Animl Prod Soc, 9-12 September. 2003. | |
dc.relation | Zhang KY, Yan F, Keen CA, Waldroup PW. Evaluation of microencapsulated essential oils and organic acids in diets for broiler chickens. Int J Poult Sci. 2005;4(9):612–619. | |
dc.relation | Bölükbaşi ŞC, Erhan MK, Özkan A. Effect of dietary thyme oil and vitamin E on growth, lipid oxidation, meat fatty acid composition and serum lipoproteins of broilers. South African J Anim Sci. 2006;36(3). | |
dc.relation | Cross DE, McDevitt RM, Hillman K, Acamovic T. The effect of herbs and their associated essential oils on performance, dietary digestibility and gut microflora in chickens from 7 to 28 days of age. Br Poult Sci. 2007;48(4):496–506. | |
dc.relation | Ocak N, Erener G, Burak Ak F, Sungu M, Altop A, Ozmen A. Performance of broilers fed diets supplemented with dry peppermint (Mentha piperita L.) or thyme (Thymus vulgaris L.) leaves as growth promoter source. Czech J Anim Sci. 2008;53(4):169.175. | |
dc.relation | Al-Kassie G. Influence of two plant extracts derived from thyme and cinnamon on broiler performance. Pak Vet J. 2009;29(4). | |
dc.relation | Toghyani M, Tohidi M, Gheisari AA, Tabeidian SA. Performance, immunity, serum biochemical and hematological parameters in broiler chicks fed dietary thyme as alternative for an antibiotic growth promoter. African J Biotechnol. 2010;9(40). | |
dc.relation | Mansoub NH. Comparison of effects of using thyme and probiotic on performance and serum composition of broiler chickens. Adv Enviromental Biol. 2011;5(7):2012–2015. | |
dc.relation | Al-Mashhadani E, Farah K, Farhan Y, Al-Mashhadani H. Effect of anise, thyme essential oils and their mixture on broiler performance and some on physiological traits. Egypt Poult Sci. 2011;31(2):481–489. | |
dc.relation | Fallah R, Mirzaei E. Effect of Dietary Inclusion of Turmeric and Thyme powders on performance, blood parameters and immune system of broiler chickens. J Livest Sci. 2016;7(7):180–186. | |
dc.relation | Sarica S, Ciftci A, Demir E, Kilinc K, Yildirim Y. Use of an antibiotic growth promoter and two herbal natural feed additives with and without exogenous enzymes in wheat based broiler diets. South African J Anim Sci. 2005;35(1):61–72. | |
dc.relation | Haselmeyer A, Zentek J, Chizzola R. Effects of thyme as a feed additive in broiler chickens on thymol in gut contents, blood plasma, liver and muscle. J Sci Food Agric. 2014;95(3):504–8. | |
dc.relation | Stashenko EE. Aceites esenciales. Universidad Industrial de Santander; 2009. | |
dc.relation | Turek C, Stintzing FC. Stability of essential oils: A review. Compr Rev Food Sci Food Saf. 2013;12(1):40–53. | |
dc.relation | Nguyen H, Campi EM, Roy Jackson W, Patti AF. Effect of oxidative deterioration on flavour and aroma components of lemon oil. Food Chem. 2009;112(2):388–93. | |
dc.relation | Choe E, Min DB. Mechanisms and factors for edible oil oxidation. Compr Rev Food Sci Food Saf. 2006;5(4):169–186. | |
dc.relation | Bäcktorp C, Wass JR, Panas I, Sköld M, Börje A, Nyman G. Theoretical investigation of linalool oxidation. J Phys Chem A. 2006;110(44):12204–12. | |
dc.relation | Bernhard RA, Marr AG. The oxidation of terpenes. I. Mechanism and reaction products of D-Limonene autoxidation. J Food Sci. 1960;25(4):517–530. | |
dc.relation | Turek C, Stintzing FC. Impact of different storage conditions on the quality of selected essential oils. Food Res Int. 2012;46(1):341–353. | |
dc.relation | Herrero AM, Carmona P, Jiménez-Colmenero F, Ruiz-Capillas C. Polysaccharide gels as oil bulking agents: Technological and structural properties. Food Hydrocoll. 2014;36:374–381. | |
dc.relation | Marques HMC. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Fragr J. 2010;25(5):313–326. | |
dc.relation | Dubey R, Shami TC, Bhasker Rao KU. Microencapsulation technology and applications. Def Sci J. 2009;59(1):82–95. | |
dc.relation | Parra Huertas RA. Revisión: Microencapsulación de alimentos. Rev Fac Nac de Agron Med. 2010; 63(2)5669–5684. | |
dc.relation | Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R. Applications of spray-drying in microencapsulation of food ingredients: An overview. Food Res Int. 2007;40(9):1107–21. | |
dc.relation | Peña B, Panisello C, Aresté G, Garcia-Valls R, Gumí T. Preparation and characterization of polysulfone microcapsules for perfume release. Chem Eng J. 2012;179:394–403. | |
dc.relation | Trojanowska A, Nogalska A, Valls R, Giamberini M, Tylkowski B. Technological solutions for encapsulation. Phys Sci Rev. 2017;2:1515. | |
dc.relation | Bernal C. Desarrollo de un sistema de liberación modificada de un extracto estandarizado de Physalis peruviana L. aplicando el método de secado por aspersión. Universidad Nacional de Colombia. 2018. | |
dc.relation | García-Gutiérrez C, González-Maldonado MB, Ochoa-Martínez LA, Medrano-Roldán H. Microencapsulación del jugo de cebada verde mediante secado por aspersión. Cienc y Tecnol Aliment. 2004;4(4):262–266. | |
dc.relation | Maury M, Murphy K, Kumar S, Shi L, Lee G. Effects of process variables on the powder yield of spray-dried trehalose on a laboratory spray-dryer. Eur J Pharm Biopharm. 2005;59(3):565–73. | |
dc.relation | Badee A, El-Kader E, Aly M. Microencapsulation Of Peppermint Oil By Spray Drying. Aust J Basic Appl Sci. 2012;6(12):499–504. | |
dc.relation | López Hernández OD, Gómez Carril M. Preparación de microesferas mediante secado por aspersión. Rev Cub de Farm. 2008;42(3). | |
dc.relation | Ré M-I. Formulating Drug Delivery Systems by Spray Drying. Dry Technol. 2006;24(4):433–446. | |
dc.relation | Gouin S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends Food Sci Technol. 2004;15(7–8):330–347. | |
dc.relation | Fernandes RVDB, Borges SV, Botrel DA. Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydr Polym. 2014;101(1):524–532. | |
dc.relation | Camacho JE, Villamizar LF, Gómez MI. Selección de un sistema de atomización para la formación de micropartículas de Eudragit ® S100 en lecho fluido. NOVA. 2010;8(13):87–100. | |
dc.relation | Murúa-Págola B, Beristain-Guevara CI, Martínez-Bustos F. Preparation of starch derivatives using reactive extrusion and evaluation of modified starches as shell materials for encapsulation of flavoring agents by spray drying. J Food Eng. 2009;91(3):380–386. | |
dc.relation | Madene A, Jacquot M, Scher J, Desobry S. Flavour encapsulation and controlled release - A review. Int J Food Sci Technol. 2006;41(1):1–21. | |
dc.relation | Yáñez J, Salazar J., Chaires L, Jiménez J, Márquez M, Ramos EG. Aplicaciones biotecnológicas de la microencapsulación. Av y Perspect. 2002;21(1):313–9. | |
dc.relation | Fuchs M, Turchiuli C, Bohin M, Cuvelier ME, Ordonnaud C, Peyrat-Maillard MN, et al. Encapsulation of oil in powder using spray drying and fluidised bed agglomeration. J Food Eng. 2006;75(1):27–35. | |
dc.relation | Loksuwan J. Characteristics of microencapsulated β-carotene formed by spray drying with modified tapioca starch, native tapioca starch and maltodextrin. Food Hydrocoll. 2007;21(5–6):928–35. | |
dc.relation | Zuluaga MF. Evaluación de la aplicación de almidón obtenido a partir del ñame (Dioscorea rotundata) en el sector farmacéutico, cosmético o alimentario. Universidad Nacional de Colombia; 2005. | |
dc.relation | Zuluaga MF, Baena Y, Mora CE, D’León LFP. Physicochemical characterization and application of yam (Dioscorea cayenensis-rotundata) starch as a pharmaceutical excipient. Starch/Staerke. 2007;59(7):307–317. | |
dc.relation | Torrenegra M, Méndez G, Matíz G, Gomez J. Lipofilización del almidón de Dioscorea rotundata P. y su posible uso como agente emulsificante. Rev Cuba Farm. 2015;49(4):605–17. | |
dc.relation | Contreras OIP, Perilla JEP, Enciso NAA. Revisión de la modificación química del almidón con ácidos orgánicos. Ing e Investig. 2008;28(3):47–52. | |
dc.relation | Jeon Y-S, Lowell AV, Gross RA. Studies of Starch Esterification: Reactions with Alkenylsuccinates in Aqueous Slurry Systems. Starch - Stärke. 1999;51(2–3):90–3. | |
dc.relation | Almeida AP, Rodríguez-Rojo S, Serra AT, Vila-Real H, Simplicio AL, Delgadilho I, et al. Microencapsulation of oregano essential oil in starch-based materials using supercritical fluid technology. Innov Food Sci Emerg Technol. 2013;20:140–5. | |
dc.relation | Garti N. Hydrocolloids as emulsifying agents for oil-in-water emulsions. J Dispers Sci Technol. 1999;20(1–2). | |
dc.relation | Dickinson E. Hydrocolloids as emulsifiers and emulsion stabilizers. Food Hydrocoll. 2009;23(6):1473-1482. | |
dc.relation | Bertolini AC, Siani AG, Grosso CRF. Stability of monoterpenes encapsulated in gum arabic by spray-drying. J Agric Food Chem. 2001;49(2):780–5. | |
dc.relation | Ruiz A. Efecto de una mezcla de extractos de plantas sobre indicadores de integridad intestinal y parámetros productivos en pollos de engorde. Universidad Nacional de Colombia; 2020. | |
dc.relation | Jaramillo Á. Evaluación del extracto de Ajo (Allium sativum) y Tomillo (Thymus vulgaris) en el agua de bebida y su efecto en los parámetros productivos y salud intestinal de conejos, pollos de engorde y cerdos. SENA. Colección Libros de Investigación CBA. 2019. | |
dc.relation | Suarez O, Caicedo A, Galán J. Efecto de dos concentraciones de Extracto etanólico de Tomillo (Thymus Vulgaris) y Orégano (Oreganum Vulgare) suministrado en el agua de bebida de Pollos de Engorde. Universidad de Cundinamarca; 2007. | |
dc.relation | Moreno E, Arango G, Galán J. Evaluación In Vitro de la acción antibacterial de los Aceites Esenciales de: Orégano (Origanum Vulgare), Tomillo (Thymus Vulgaris) y Limonaria (Cymbopogon Citratus) frente a: Escherichia Coli, Salmonella Gallinarum y Estreptococcus Faecalis, bacterias. Universidad de Cundinamarca; 2004. | |
dc.relation | Valdés E. Microencapsulación de aceite esencial de tomillo por el método de secado por aspersión. Universidad Autónoma del Estado de México; 2020. | |
dc.relation | Tomazelli Junior O, Kuhn F, Padilha PJM, Vicente LRM, Costa SW, Boligon AA, et al. Microencapsulation of essential thyme oil by spray drying and its antimicrobial evaluation against Vibrio alginolyticus and Vibrio parahaemolyticus. Brazilian J Biol. 2017;78(2):311–7. | |
dc.relation | Matiz G, Fuentes K, León G. Microencapsulación de aceite esencial de tomillo (Thymus vulgaris) en matrices poliméricas de almidón de ñame (Dioscorea rotundata) modificado. Rev Colomb Ciencias Químico Farm. 2015;44(2):189–207. | |
dc.relation | Soliman EA, El-Moghazy AY, El-Din MSM, Massoud MA. Microencapsulation of Essential Oils within Alginate: Formulation and in Vitro Evaluation of Antifungal Activity. J Encaps Adsorpt Sci. 2013;3(1). | |
dc.relation | Benavides S, Cortés P, Parada J, Franco W. Development of alginate microspheres containing thyme essential oil using ionic gelation. Food Chem. 2016;240:77-83. | |
dc.relation | Khalili ST, Mohsenifar A, Beyki M, Zhaveh S, Rahmani-Cherati T, Abdollahi A, et al. Encapsulation of Thyme essential oils in chitosan-benzoic acid nanogel with enhanced antimicrobial activity against Aspergillus flavus. LWT - Food Sci Technol. 2015;60(1):502–8. | |
dc.relation | Martins IM, Rodrigues SN, Barreiro F, Rodrigues AE. Microencapsulation of thyme oil by coacervation. J Microencapsul. 2009;26(8):667-675. | |
dc.relation | Maia JD, La Corte R, Martinez J, Ubbink J, Prata AS. Improved activity of thyme essential oil (Thymus vulgaris) against Aedes aegypti larvae using a biodegradable controlled release system. Ind Crops Prod. 2019;136:110-120. | |
dc.relation | Gonçalves ND, Pena F de L, Sartoratto A, Derlamelina C, Duarte MCT, Antunes AEC, et al. Encapsulated thyme (Thymus vulgaris) essential oil used as a natural preservative in bakery product. Food Res Int. 2017;96:154-160. | |
dc.relation | Kim JR, Sharma S. Acaricidal activities of clove bud oil and red thyme oil using microencapsulation against HDMs. J Microencapsul. 2011;28(1):82–91. | |
dc.relation | De Barros R, Marques G, Borges S, Botrel D. Effect of solids content and oil load on the microencapsulation process of rosemary essential oil. Ind Crops Prod. 2014;58:173–181. | |
dc.relation | Carneiro HCF, Tonon RV, Grosso CRF, Hubinger MD. Encapsulation efficiency and oxidative stability of flaxseed oil microencapsulated by spray drying using different combinations of wall materials. J Food Eng. 2013;115(4):443–451. | |
dc.relation | Silva VM, Vieira GS, Hubinger MD. Influence of different combinations of wall materials and homogenisation pressure on the microencapsulation of green coffee oil by spray drying. Food Res Int. 2014;61:132–143. | |
dc.relation | Soottitantawat A, Bigeard F, Yoshii H, Furuta T, Ohkawara M, Linko P. Influence of emulsion and powder size on the stability of encapsulated D-limonene by spray drying. Innov Food Sci Emerg Technol. 2005;6(1):107–114. | |
dc.relation | Aristizábal J, Sanchez T. Guía técnica para producción y análisis de almidón de Yuca, Capitulo 7 Extracción del almidon de yuca. Bol Serv Agríc FAO. 2007. | |
dc.relation | Zambrano F, Camargo C. Otimização das condições de hidrólise ácida de amido de mandioca para obtenção de substituto de gordura. Brazilian J Food Technol. 2001;4:147–54. | |
dc.relation | Chi H, Xu K, Xue D, Song C, Zhang W, Wang P. Synthesis of dodecenyl succinic anhydride (DDSA) corn starch. Food Res Int. 2007;40(2):232-238. | |
dc.relation | Fernandes R, Borges S, Botrel D, Keven E, Costa J, Queiroz F. Microencapsulation of Rosemary Essential Oil: Characterization of Particles. Dry Technol. 2013;31(11):1245–1254. | |
dc.relation | Song X, He G, Ruan H, Chen Q. Preparation and Properties of Octenyl Succinic Anhydride Modified Early Indica Rice Starch. Starch/Staerke. 2006;58(2):109–17. | |
dc.relation | United States Pharmacopeia and National Formulary. 2021. | |
dc.relation | Song X, Pei Y, Qiao M, Ma F, Ren H, Zhao Q. Preparation and characterizations of Pickering emulsions stabilized by hydrophobic starch particles. Food Hydrocoll. 2015;45:256–263. | |
dc.relation | Chevalier Y, Bolzinger MA. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf A Physicochem Eng Asp. 2013;439:23–34. | |
dc.relation | Kusonwiriyawong C, Lipipun V, Vardhanabhuti N, Zhang Q, Ritthidej GC. Spray-dried chitosan microparticles for cellular delivery of an antigenic protein: Physico-chemical properties and cellular uptake by dendritic cells and macrophages. Pharm Res. 2013;30(6):1677–97. | |
dc.relation | Harvey D. Analytical Chemistry 2.0. 2016. | |
dc.relation | Kausadikar S, Gadhave AD, Waghmare J. Microencapsulation of lemon oil by spray drying and its application in flavour tea. Adv Appl Sci Res. 2015;6(4):69–78. | |
dc.relation | Jafari SM, He Y, Bhandari B. Production of sub-micron emulsions by ultrasound and microfluidization techniques. J Food Eng. 2007;82(4):478-488. | |
dc.relation | Kowalska M, Ziomek M, Zbikowska A. Stability of cosmetic emulsion containing different amount of hemp oil. Int J Cosmet Sci. 2015;37(4), 408-416. | |
dc.relation | Sinko PJ, Singh Y. Martin’s physical pharmacy and pharmaceutical sciences: Physical chemical and biopharmaceutical principles in the pharmaceutical sciences: Sixth edition. 2011. | |
dc.relation | György Z, Incze N, Pluhár Z. Differentiating Thymus vulgaris chemotypes with ISSR molecular markers. Biochem Syst Ecol. 2020;92, 104118. | |
dc.relation | Thompson JD, Chalchat JC, Michet A, Linhart YB, Ehlers B. Qualitative and quantitative variation in monoterpene co-occurrence and composition in the essential oil of Thymus vulgaris chemotypes. J Chem Ecol. 2003;29(4), 859-880. | |
dc.relation | Trindade H, Pedro LG, Figueiredo AC, Barroso JG. Chemotypes and terpene synthase genes in Thymus genus: State of the art. Industrial Crops and Products. 2018; 124, 530-547. | |
dc.relation | Satyal P, Murray BL, McFeeters RL, Setzer WN. Essential oil characterization of thymus vulgaris from various geographical locations. Foods. 2016;5(4), 70. | |
dc.relation | Gouyon PH, Vernet P, Guillerm JL, Valdeyron G. Polymorphisms and environment: The adaptive value of the oil polymorphisms in thymus vulgaris L. Heredity (Edinb). 1986;57(1), 59-66. | |
dc.relation | Parra Sepúlveda SF. Estudio de la composición química y actividad biológica de aceites esenciales de Cardamomo (Elettaria cardamomum) y Tomillo (Thymus vulgaris). Univ St Tomás, Bucaramanga. 1993. | |
dc.relation | Coy Barrera CA, Acosta EG. Actividad antibacteriana y determinación de la composición química de los aceites esenciales de romero (Rosmarinus officinalis), tomillo (Thymus vulgaris) y cúrcuma (Curcuma longa) de Colombia. Rev Cuba Plant Med. 2013;18(2)237-246. | |
dc.relation | Gallegos-Flores PI, Bañuelos-Valenzuela R, Delgadillo-Ruiz L, Meza-López C, Echavarría-Cháirez F. Actividad Antibacteriana De Cinco Compuestos Terpenoides: Carvacrol, Limoneno, Linalool, Α-Terpineno Y Timol. Trop Subtrop Agroecosystems. 2019;22(2), 241-246. | |
dc.relation | Lis-Balchin M, Ochocka RJ, Deans S, Asztemborska M, Hart S. Bioactivity of the enantiomers of limonene. Med Sci Res. 1996;24(5):309-310. | |
dc.relation | Zhang Z, Vriesekoop F, Yuan Q, Liang H. Effects of nisin on the antimicrobial activity of d-limonene and its nanoemulsion. Food Chem. 2014;150:307-312. | |
dc.relation | Zahi MR, Liang H, Yuan Q. Improving the antimicrobial activity of D-limonene using a novel organogel-based nanoemulsion. Food Control. 2015;50:554-559. | |
dc.relation | Filipowicz N, Kamiński M, Kurlenda J, Asztemborska M, Ochocka JR. Antibacterial and antifungal activity of juniper berry oil and its selected components. Phyther Res. 2003;17(3):227-231. | |
dc.relation | Roberto D, Micucci P, Sebastian T, Graciela F, Anesini C. Antioxidant activity of limonene on normal murine lymphocytes: Relation to H2O2 modulation and cell proliferation. Basic Clin Pharmacol Toxicol. 2010;106(1):38-44. | |
dc.relation | Wattenberg LW, Coccia JB. Inhibition of 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone carcinogenesis in mice by D-limonene and citrus fruit oils. Carcinogenesis. 1991;12(1):115-117. | |
dc.relation | Crowell PL, Gould MN. Chemoprevention and therapy of cancer by d-limonene. Vol. 5, Critical Reviews in Oncogenesis. 1994;5(1):1-22. | |
dc.relation | Murali R, Saravanan R. Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats. Biomed Prev Nutr. 2012;2(4), 269-275. | |
dc.relation | Sikkema J, De Bont JA, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J Biol Chem. 1994;269(11), 8022-8028. | |
dc.relation | Olasupo NA, Fitzgerald DJ, Gasson MJ, Narbad A. Activity of natural antimicrobial compounds against Escherichia coli and Salmonella enterica serovar Typhimurium. Lett Appl Microbiol. 2003;37(6), 448-451. | |
dc.relation | Du E, Gan L, Li Z, Wang W, Liu D, Guo Y. In vitro antibacterial activity of thymol and carvacrol and their effects on broiler chickens challenged with Clostridium perfringens. J Anim Sci Biotechnol. 2015;6(1):58. | |
dc.relation | Nostro A, Blanco AR, Cannatelli MA, Enea V, Flamini G, Morelli I, et al. Susceptibility of methicillin-resistant staphylococci to oregano essential oil, carvacrol and thymol. FEMS Microbiol Lett. 2004;230(2):191-195. | |
dc.relation | Yanishlieva NV, Marinova EM, Gordon MH, Raneva VG. Antioxidant activity and mechanism of action of thymol and carvacrol in two lipid systems. Food Chem. 1999;64(1):59-66. | |
dc.relation | Braga PC, Dal Sasso M, Culici M, Bianchi T, Bordoni L, Marabini L. Anti-inflammatory activity of thymol: Inhibitory effect on the release of human neutrophil Elastase. Pharmac. 2006;77(3).130-136. | |
dc.relation | Kang SH, Kim YS, Kim EK, Hwang JW, Jeong JH, Dong X, et al. Anticancer effect of thymol on AGS human gastric carcinoma cells. J Microbiol Biotechnol. 2016;26(1):28-37. | |
dc.relation | Marchese A, Orhan IE, Daglia M, Barbieri R, Di Lorenzo A, Nabavi SF, et al. Antibacterial and antifungal activities of thymol: A brief review of the literature. Food Chem. 2016;210:402-414. | |
dc.relation | Di Pasqua R, Mamone G, Ferranti P, Ercolini D, Mauriello G. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics. 2010;10(5), 1040-1049. | |
dc.relation | Cristani M, D’Arrigo M, Mandalari G, Castelli F, Sarpietro MG, Micieli D, et al. Interaction of four monoterpenes contained in essential oils with model membranes: Implications for their antibacterial activity. J Agric Food Chem. 2007;55(15):6300-6308. | |
dc.relation | Li L, Chaofeng S, Zhongqiong Y, Renyong J, Lianci P, et al. Antibacterial activity of α-terpineol may induce morphostructural alterations in Escherichia coli. Brazilian J Microbiol. 2014;45(4):1409-1413. | |
dc.relation | Zhou H, Tao N, Jia L. Antifungal activity of citral, octanal and α-terpineol against Geotrichum citri-aurantii. Food Control. 2014;37(1):277-283. | |
dc.relation | Queiroga CL, Teixeira Duarte MC, Ribeiro BB, de Magalhães PM. Linalool production from the leaves of Bursera aloexylon and its antimicrobial activity. Fitot. 2007;78(4):327-328. | |
dc.relation | Hsu CC, Lai WL, Chuang KC, Lee MH, Tsai YC. The inhibitory activity of linalool against the filamentous growth and biofilm formation in Candida albicans. Med Mycol. 2013;51(5):473-482. | |
dc.relation | Rivas-da Silva AC, Lopes PM, Barros-de Azevedo MM, Costa DC, Alviano CS, Alviano DS. Biological activities of α-pinene and β-pinene enantiomers. Molecules. 2012;17(6):6305-6316. | |
dc.relation | Soto Mendívil EA, Moreno Rodríguez JF, Estarrón Espinosa M, et al. Chemical composition and fungicidal activity of the essential oil of Thymus vulgaris against Alternaria citri. e-Gnosis. 2006;(4). | |
dc.relation | Moorthy SN, Nair SG. Studies on Dioscorea rotundata Starch Properties. Starch ‐ Stärke. 1989;41(3):81-83. | |
dc.relation | Daiuto E, Cereda M, Sarmento S, Vilpoux O. Effects of extraction methods on Yam (Dioscorea alata) starch characteristics. Starch-Stärke. 2005;57(3–4):153-160. | |
dc.relation | Bello-Pérez LA, Contreras-Ramos SM, Romero-Manilla R, Solorza-Feria J, Jiménez-Aparicio A. Propiedades químicas y funcionales del almidón modificado de plátano musa paradisiaca L. (Var. Macho). Agrocencia. 2002; 36(2):169-180. | |
dc.relation | Jimenez S. Contribución al estudio fisicoquímico de un complejo interpolielectrolítico y su aplicación como excipiente en una matriz de liberación modificada con Dexibuprofeno. Universidad Nacional de Colombia. 2017. | |
dc.relation | Zhu Z, Zhang L, Li M, Zhou Y. Effects of starch alkenylsuccinylation on the grafting efficiency, paste viscosity, and film properties of alkenylsuccinylated starch-g-poly(acrylic acid). Starch-Stärke. 2012;64(9):704–712. | |
dc.relation | Wu X, Liu P, Ren L, Tong J, Zhou J. Optimization of corn starch succinylation using response surface methodology. Starch-Stärke. 2014;66(5–6):508–514. | |
dc.relation | Dos Santos R, Da Silva-Buzanello RA, Corso MP, Canan C. Essential oils microencapsulated obtained by spray drying: a review. Journal of Essential Oil Research. 2019; 31(3):1-17. | |
dc.relation | Shahidi Noghabi M, Molaveisi M. The effect of wall formulation on storage stability and physicochemical properties of cinnamon essential oil microencapsulated by spray drying. Chem Pap. 2020;74(10):3455–3465. | |
dc.relation | Jimenez M, García HS, Beristain CI. Spray-dried encapsulation of Conjugated Linoleic Acid (CLA) with polymeric matrices. J Sci Food Agric. 2006;86(14):2431-2437. | |
dc.relation | Rosenberg M, Kopelman IJ, Talmon Y. A Scanning Electron Microscopy Study of Microencapsulation. J Food Sci. 1985;50(1):139-144. | |
dc.relation | Wagner LA, Warthesen JJ. Stability of Spray‐Dried Encapsulated Carrot Carotenes. J Food Sci. 1995;60(5):1048-1053. | |
dc.relation | Drusch S, Rätzke K, Shaikh MQ, Serfert Y, Steckel H, Scampicchio M, et al. Differences in free volume elements of the carrier matrix affect the stability of microencapsulated lipophilic food ingredients. Food Biophys. 2009;4(1):42-48. | |
dc.relation | Campelo PH, Sanches EA, Fernandes RVB, Botrel DA, Borges SV. Stability of lime essential oil microparticles produced with protein-carbohydrate blends. Food Res Int. 2018;105:936-944. | |
dc.relation | Carrillo-Navas H, González-Rodea DA, Cruz-Olivares J, Barrera-Pichardo JF, Román-Guerrero A, Pérez-Alonso C. Storage stability and physicochemical properties of passion fruit juice microcapsules by spray-drying. Rev Mex Ing Quim. 2011;10(3):421-430. | |
dc.relation | Andersen AB, Risbo J, Andersen ML, Skibsted LH. Oxygen permeation through an oil-encapsulating glassy food matrix studied by ESR line broadening using a nitroxyl spin probe. Food Chem. 2000;70(4):499-508. | |
dc.relation | Charve J, Reineccius GA. Encapsulation performance of proteins and traditional materials for spray dried flavors. J Agric Food Chem. 2009;57(6):2486-2492. | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Aportes al desarrollo de un producto microencapsulado a base de aceite esencial de tomillo con posible aplicación en producción avícola | |
dc.type | Trabajo de grado - Maestría | |