dc.contributorMolina Herrera, Maritzabel
dc.contributorVillalba Morales, Jesús Daniel
dc.contributorAnálisis, Diseño y Materiales Gies
dc.creatorGualavisí Limaico, Mario Steven
dc.date.accessioned2022-02-04T20:30:49Z
dc.date.available2022-02-04T20:30:49Z
dc.date.created2022-02-04T20:30:49Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80880
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractEn los últimos años han sido múltiples las técnicas de control de respuesta sísmica propuestas con base en disipadores histeréticos metálicos. En varias investigaciones se ha demostrado las ventajas del uso de estos sistemas de control en edificaciones con respecto a la reducción de daño estructural y a la mejor respuesta sísmica de las estructuras. La facilidad de instalación, la relativa economía que proveen en su manufactura y la importante influencia que tienen los disipadores histeréticos sobre la respuesta dinámica de la edificación son las principales razones para su frecuente implementación. En el presente trabajo se propone una metodología guía para el análisis y diseño de pórticos metálicos con disipadores, buscando promover el uso de estos sistemas de protección sísmica en la práctica del diseñador estructural en Colombia. En primer lugar, se estableció un procedimiento para definir el modelo constitutivo para el material. La definición de los parámetros del modelo constitutivo del acero se basó en la calibración inicial de varios modelos numéricos con respecto a ensayos experimentales de otras investigaciones. Posteriormente se detallan los procedimientos que permiten dimensionar, diseñar y construir modelos numéricos tanto para disipadores aislados como para pórticos con disipadores. Con la metodología propuesta se analizó la influencia del disipador Comb-Teeth (CTD) en la respuesta mecánica de pórticos metálicos resistentes a momentos (PRM) de un piso y una luz. El análisis se hizo a través del método de los elementos finitos y consideró cuatro relaciones distintas de aspecto, altura/luz (H/L), para los pórticos. Para cada relación de aspecto se analizaron tres tipos de estructuras. La primera estructura consistió únicamente en el pórtico PRM mientras que las otras dos estructuras consideraban adicionalmente la integración de un disipador CTD de diferente capacidad cada una. Todos los pórticos analizados consideraron conexiones totalmente restringidas en los nudos diseñadas de acuerdo con los requisitos de AISC. Con los resultados obtenidos fue posible cuantificar la participación en la disipación de energía del dispositivo CTD y su influencia en la respuesta global de cada una de las estructuras. (Texto tomado de la fuente).
dc.description.abstractSeveral seismic response control techniques have been proposed in recent years based on metallic hysteretic dampers. Previous investigations have shown the advantages of using these control systems to reduce building damage and increase the structural capacity during seismic events. The main reasons for their frequent use are the ease of installation, the relative economy they provide in their manufacture, and the important influence that hysteretic dampers have on the dynamic response of the building. A guiding method for the analysis and design of steel frames with metallic dampers is proposed in this work to promote the use of these seismic protection systems in the practice of structural engineers in Colombia. First, a procedure was established to define the constitutive model for the material. The selection of the constitutive model parameters for structural steel was based on an initial calibration of different finite element models that was compared with experimental data from other researches. Subsequently, several detailed pre-dimensioning, design, and numerical modeling procedures were developed for both individual dampers and steel frames with dampers. The influence of the Comb-Teeth damper (CTD) on the mechanical response of one story one span special moment frame (SMF) was analyzed under this methodology. The analysis was made by the finite element method and considered four different aspect ratios for the frames. Three types structures were analyzed for each aspect ratio. The first structure consisted only of the SMF frame, while each of the other two structures also considered a CTD damper with a specific capacity in the frame. All the frames were designed with pre-qualified connections according to AISC requirements. With the results obtained, it was possible to quantify the participation of the CTD device in the energy and its influence on the global response of the structures.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Estructuras
dc.publisherDepartamento de Ingeniería Civil y Agrícola
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAIS, “Reglamento Colombiano de Construcción Sismo Resistente NSR 10,” 2010.
dc.relationC. López, R. Retamales, and T. Kannegiesser, Protección Sísmica de Estructuras, 29th ed. Corporación de desarrollo tecnológico, 2011.
dc.relationL. Di Sarno and A. S. Elnashai, “Innovative strategies for seismic retrofitting of steel and composite structures,” Prog. Struct. Eng. Mater., vol. 7, no. 3, pp. 115–135, 2005.
dc.relationFederal Emergency Management Agency - FEMA, “NEHRP Commentary on the Guidelines for the Seismic Rehabilitation of Buildings,” 1997.
dc.relationJ. Marko, D. Thambiratnam, and N. Perera, “Influence of damping systems on building structures subject to seismic effects,” Eng. Struct., no. 13, 2004.
dc.relationA. Javanmardi, Z. Ibrahim, K. Ghaedi, H. Benisi Ghadim, and M. U. Hanif, “State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation,” Arch. Comput. Methods Eng., vol. 27, no. 2, pp. 455–478, 2020.
dc.relationJ. A. Oviedo and M. P. Duque, “Situación de las técnicas de control de respuesta sísmica en Colombia,” Rev. EIA, vol. 12, pp. 113–124, 2009.
dc.relationJ. Pimiento, A. Salas, and D. Ruiz, “Desempeño sísmico de un pórtico con disipadores de energía pasivos de placas ranuradas de acero,” Rev. Ing. Constr., vol. 29, no. 3, pp. 283–298, 2014.
dc.relationS. Garivani, A. A. Aghakouchak, and S. Shahbeyk, “Seismic Behavior of Steel Frames Equipped with Comb-Teeth Metallic Yielding Dampers,” Int. J. Steel Struct., vol. 19, no. 4, pp. 1070–1083, 2019.
dc.relationS. Garivani, A. A. Aghakouchak, and S. Shahbeyk, “Numerical and experimental study of comb-teeth metallic yielding dampers,” Int. J. Steel Struct., vol. 16, no. 1, pp. 177–196, 2016.
dc.relationV. Budaházy, “Uniaxial cyclic steel behavior and model for dissipative structures Theses of the PhD Dissertation Supervisor,” 2015.
dc.relationR. K. Mohammadi, A. Nasri, and A. Ghaffary, “TADAS dampers in very large deformations,” Int. J. Steel Struct., vol. 17, no. 2, pp. 515–524, 2017.
dc.relationT. Paulay and M. J. N. Priestley, “Seismic Design Of Reinforced Concrete And Masonry Buildings.” Wiley,New York, 1992.
dc.relationM. J. N. Priestley, G. M. Calvi, and M. J. Kowalsky, “Displacement-Based Seismic Design of Structures. IUSS Press.” 2007.
dc.relationC. Christopoulos and A. Filiatrault, “Principles of Passive Supplemental Damping and Seismic Isolation.” IUSS Press, 2006.
dc.relationM. Mahmoudi and M. Zaree, “Determination the response modification factors of buckling restrained braced frames,” Procedia Eng., vol. 54, no. 2005, pp. 222–231, 2013.
dc.relationM. C. Constantinou, T. T. Soong, and G. F. Dargush, Passive Energy Dissipation Systems for Structural Design and Retrofit. Multidisciplinary Center for Earthquake Engineering Research, 1998.
dc.relationKeh-Chyuan Tsai, Huan-Wei Chen, Ching-Ping Hong, and Yung-Feng Su, “Design of steel triangular plate energy absorbers for seismic-resistant construction,” Earthquake Spectra, vol. 9, no. 3. pp. 505–528, 1993.
dc.relationS. Garivani, “Experimental and numerical study of metallic yielding damper with appropriate characteristics for application in simple steel frames,” Tarbiat Modares University (In persian), 2015.
dc.relationD. R. Teruna, T. A. Majid, and B. Budiono, “Experimental study of hysteretic steel damper for energy dissipation capacity,” Adv. Civ. Eng., vol. 2015, no. Figure 2, 2015.
dc.relationV. Budaházy and L. Dunai, “Parameter-refreshed Chaboche model for mild steel cyclic plasticity behavior,” Period. Polytech. Civ. Eng., vol. 57, no. 2, pp. 139–155, 2013.
dc.relationG. Cailletaud, K. Saï, and L. Taleb, Multi-mechanism Modeling of Inelastic Material Behavior, vol. 11, no. 19. London: John Wiley & Sons, Inc., 2018.
dc.relationM. G. Lee and F. Barlat, Modeling of Plastic Yielding, Anisotropic Flow, and the Bauschinger Effect, vol. 2. Elsevier, 2014.
dc.relationJ. L. Chaboche and G. Rousselier, “On the plastic and viscoplastic constitutive equations, Parts I and II,” J. Press. Vessel Technol. Trans. ASME, vol. 105, no. 2, pp. 153–158, 1983.
dc.relationJ. L. J.-L. Chaboche, Mechanics of solid materials, vol. 19, no. 1. Cambridge University Press, 1994.
dc.relationM. Ottosen, N. S., Ristinmaa, “The mechanics of constitutive modeling,” Elsevier, 2005.
dc.relationG. R. Bhashyam, “ANSYS Mechanical — A Powerful Nonlinear Simulation Tool,” ANSYS, Inc., 2002.
dc.relationAnsys Inc., “Mechanical APDL Element Reference,” no. November. Ansys Inc., Canonsburg, PA, 2010.
dc.relationM. K. Thompson and J. M. Thompson, ANSYS Mechanical APDL for Finite Element Analysis. 2017.
dc.relationV. Budaházy and L. Dunai, “Chaboche-based cyclic material model for steel and its numerical application,” Proc. 9th fib Int. PhD Symp. Civ. Eng., pp. 555–560, 2012.
dc.relationS. F. Jacques Besson, Georges Cailletaud, Jean-Louis Chaboche, Non-Linear Mechanics of Materials. Netherlands: Springer, 2010.
dc.relationJ. L. Chaboche and D. Nouailhas, “Constitutive modeling of ratchetting effects-part I: Experimental facts and properties of the classical models,” J. Eng. Mater. Technol. Trans. ASME, vol. 111, no. 4, pp. 384–392, 1989.
dc.relationY. Huang, “Simulating the Inelastic Seismic Behavior of Steel Braced Frames Including the Effects of Low-Cycle Fatigue,” University of California, Berkeley, 2009.
dc.relationS. Ahn, T., Kim, Y., Park, J., Kim H., Jang, D., Oh, “Development of New Steel Damper for Seismic Retrofit of Existing Structures,” 15th World Conf. Earthq. Eng., 2012.
dc.relationK. Ghabraie, R. Chan, X. Huang, and Y. M. Xie, “Shape optimization of metallic yielding devices for passive mitigation of seismic energy,” Eng. Struct., vol. 32, no. 8, pp. 2258–2267, 2010.
dc.relationH. Hernandez Ramirez and A. Tena Colunga, “Evaluación Del Diseño Sísmico Resiliente Conforme Al Método De Las Fuerzas De Marcos Dúctiles De Acero Con Disipadores De Energía Histeréticos,” Rev. Ing. Sísmica, vol. 76, no. 98, p. 45, 2018.
dc.relationAISC, Steel Construction Manual, 15 th. American Institute of Steel Construction, 2017.
dc.relationAISC, “Specification for Structural Steel Buildings, ANSI / AISC 360-16,” Am. Inst. Steel Constr., p. 676, 2016.
dc.relationAISC, “Seismic Provisions for Structural Steel Buildings, ANSI/AISC 341-16,” Am. Inst. Steel Constr., pp. 355–410, 2016.
dc.relationANSI/AISC 358-16, “Prequalified connections for pecial and intermediate steel moment frames for seismic applications,” Am. Inst. Steel Constr., no. 1, p. 284, 2016.
dc.relationAmerican Institute of Steel Construction, Steel Design Guide 29: Vertical Bracing Connections — Analysis and Design. AISC, 2014.
dc.relationZ. Li, G. Shu, and Z. Huang, “Development and cyclic testing of an innovative shear-bending combined metallic damper,” J. Constr. Steel Res., vol. 158, pp. 28–40, 2019.
dc.relationM. Seif, J. Main, J. Weigand, T. P. McAllister, and W. Luecke, “Finite element modeling of structural steel component failure at elevated temperatures,” Structures, vol. 6, pp. 134–145, 2016.
dc.relationJ. Montgomery, “Methods for Modeling Bolts in the Bolted Joint,” ANSYS User’s Conf., no. Figure 2, p. 15, 2002.
dc.relationAmerican Society of Civil Engineers, ASCE standard, ASCE/SEI, 41-17, seismic evaluation and retrofit of existing buildings, no. June. 2017.
dc.relationEN1993-1-5, “Eurocode 3: Design of steel structures - Part 1-5: General rules - Plated structural elements,” CEN, Brussels, vol. 5, no. 2006, p. 53, 2006.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleAnálisis no lineal mediante el método de los elementos finitos del comportamiento estructural de pórticos metálicos con disipadores tipo Comb-teeth bajo la acción de carga cíclica
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución