dc.contributor | Gómez Jaramillo, Francisco | |
dc.contributor | Castellanos, Gabriel | |
dc.contributor | Grupo de Investigación en Modelado Computacional de Sistemas Biológicos (COMBIOS) | |
dc.creator | Rudas Castaño, Jorge Eliécer | |
dc.date.accessioned | 2021-09-08T04:23:48Z | |
dc.date.available | 2021-09-08T04:23:48Z | |
dc.date.created | 2021-09-08T04:23:48Z | |
dc.date.issued | 2021-10 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80127 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Después de una lesión cerebral severa algunos pacientes pueden presentar alteraciones graves de la conciencia. Estas lesiones limitan grandemente la calidad de vida de estos pacientes y en consecuencia la de su familia. Las ultimas dos décadas han suscitado especial interés el entendimiento, descripción y caracterización de forma objetiva de la dinámica cerebral en este grupo de pacientes. La consecuencia inmediata de este entendimiento es la construcción de herramientas que permitan mejorar la toma de decisiones para los médicos que asisten o intervienen a estos pacientes. Múltiples estrategias han sido exploradas para ello, desde la construcción de rigurosas pruebas comportamentales hasta el uso de novedosas técnicas de neuroimágenes. Estas ultimas han mostrado un futuro prometedor para el contexto de estudio, alcanzando transcendentales hallazgos en relación al entendimiento de la emergencia de la conciencia, su alteración en estados comatosos y hasta han derivado en potenciales herramientas diagnosticas. Sin embargo y muy a pesar de estos importantes logros, aún existen múltiples retos por resolver en él área. Uno de esos retos fundamentales es la definición de un marco experimental adecuado para modelar la dinámica cerebral dada su abrumadora complejidad. Diversas estrategias han sido propuestas, sin embargo, aún permanece la imposibilidad de unificar en una única representación los agentes más relevantes para la emergencia de la conciencia. Es así como, en esta tesis doctoral se explora una aproximación en la representación de la dinámica cerebral que generaliza la noción de conectividad funcional entre unidades cerebrales. Los resultados aquí descritos se discuten en el marco de la caracterización de la dinámica cerebral de pacientes con desordenes de la conciencia, y su potencial uso como biomarcadores se resaltan en los resultados de esta tesis doctoral. (texto tomado de la fuente) | |
dc.description.abstract | After a brain injury some patients may have severe disturbances in consciousness. These
injuries greatly limit the quality of life of these patients and their families. The last two
decades have raised special interest in the understanding, description and objective charac terization of brain dynamics in this group of patients. The immediate consequence of this
understanding is the construction of tools that allow better decision-making for the phy sicians who assist or intervene these patients. Multiple strategies have been explored for
this, from the construction of rigorous behavioral tests to the use of novel neuroimaging
techniques. Neuroimaging approach have shown a promising future in this context, reaching
transcendental findings in relation to the understanding of the emergence of consciousness,
its alteration in comatose states and have even led to potential diagnostic tools. However,
there are still many important challenges to overcome. One of these fundamental challenges
is the definition of a suitable experimental framework to model brain dynamics, because
the overwhelming complexity of this phenomena. Various strategies have been proposed, ho wever, the impossibility of unifying in a single representation the most relevant agents for
the emergence of consciousness still remains as an open problem. Thus, this doctoral thesis
explores an approach in the representation of brain dynamics that generalizes the notion of
functional connectivity between brain units. The results described here are discussed within
the framework of the characterization of the brain dynamics of patients with disorders of
consciousness, and their potential use as biomarkers is highlighted in the results of this doc toral thesis. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias - Doctorado en Biotecnología | |
dc.publisher | Instituto de Biotecnología (IBUN) | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | S Laureys, M Boly, G Moonen, and P Maquet. Coma.Encyclopedia of Neuroscience,2:1133–1142, 2009. | |
dc.relation | Davinia Fernandez-Espejo. Advances in the assessment of disorders of consciousness:The role of bedside assessment and neuroimaging techniques in the diagnostic process.Papeles del Psic ́ologo, 37(1):3–13, 2016. | |
dc.relation | F. E. Pisa, E. Biasutti, D. Drigo, and F. Barbone. The prevalence of vegetative andminimally conscious states: a systematic review and methodological appraisal. J HeadTrauma Rehabil, 29(4):23–30, 2014. | |
dc.relation | W. S. van Erp, J. C. Lavrijsen, F. A. van de Laar, P. E. Vos, S. Laureys, and R. T.Koopmans. The vegetative state/unresponsive wakefulness syndrome: a systematic review of prevalence studies. Eur. J. Neurol., 21(11):1361–1368, 2014. | |
dc.relation | Stacey L. Sheon JD. Severe disorders of consciousness: The evolution of care.J NeurolNeurophysiol, 4(4), 2013. | |
dc.relation | Caroline Schnakers and Steven Laureys.Coma and Disorders of Consciousness. Sprin-ger, 2012. | |
dc.relation | S. Laureys and N.D. Schiff. Coma and consciousness: Paradigms (re)framed by neu-roimaging.NeuroImage, 61(2):478–491, 2012. | |
dc.relation | Joseph T. et al. Giacino. The jfk coma recovery scale-revised: Measurement cha-racteristics and diagnostic utility.Archives of Physical Medicine and Rehabilitation,85(12):2020 – 2029, 2004. | |
dc.relation | Caroline Schnakers, Camille Chatelle, Steve Majerus, Olivia Gosseries, Marie De Val,and Steven Laureys. Assessment and detection of pain in noncommunicative severelybrain-injured patients.Expert Review of Neurotherapeutics, 10(11):1725–1731, 2010. | |
dc.relation | G. L. Sternbach. The Glasgow coma scale.J Emerg Med, 19(1):67–71, Jul 2000. | |
dc.relation | Caroline Schnakers, Audrey Vanhaudenhuyse, Joseph Giacino, Manfredi Ventura, Melanie Boly, Steve Majerus, Gustave Moonen, and Steven Laureys. Diagnostic accuracyof the vegetative and minimally conscious state: Clinical consensus versus standardizedneurobehavioral assessment.BMC Neurology, 9(1):35, 2009. | |
dc.relation | Olivia Gosseries, Audrey Vanhaudenhuyse, Marie-Aur ́elie Bruno, Athena Demertzi,Caroline Schnakers, M ́elanieM. Boly, Audrey Maudoux, Gustave Moonen, and StevenLaureys. Disorders of consciousness: Coma, vegetative and minimally conscious states.In Dean Cvetkovic and Irena Cosic, editors,States of Consciousness, The FrontiersCollection, pages 29–55. Springer Berlin Heidelberg, 2011. | |
dc.relation | A. Demertzi, F. Gomez, J. S. Crone, A. Vanhaudenhuyse, L. Tshibanda, Q. Noirhomme, M. Thonnard, V. Charland-Verville, M. Kirsch, S. Laureys, and A. Soddu. Multi-ple fMRI system-level baseline connectivity is disrupted in patients with consciousnessalterations.Cortex, 52:35–46, 2014. | |
dc.relation | J. Rudas, J. Guaje, A. Demertzi, L. Heine, L. Tshibanda, A. Soddu, S. Laureys, andF. Gomez. A method for functional network connectivity using distance correlation.Conf Proc IEEE Eng Med Biol Soc, 2014:2793–2796, 2014. | |
dc.relation | Athena Demertzi, Georgios Antonopoulos, Lizette Heine, Henning U. Voss, Julia Sophia Crone, Carlo de Los Angeles, Mohamed Ali Bahri, Carol Di Perri, Au-drey Vanhaudenhuyse, Vanessa Charland-Verville, Martin Kronbichler, Eugen Trinka,Christophe Phillips, Francisco Gomez, Luaba Tshibanda, Andrea Soddu, Nicholas DSchiff, Susan Whitfield-Gabrieli, and Steven Laureys. Intrinsic functional connectivitydifferentiates minimally conscious from unresponsive patients.Brain, 2015. | |
dc.relation | C. Di Perri, M. A. Bahri, E. Amico, A. Thibaut, L. Heine, G. Antonopoulos,V. Charland-Verville, S. Wannez, F. Gomez, R. Hustinx, L. Tshibanda, A. Demer-tzi, A. Soddu, and S. Laureys. Neural correlates of consciousness in patients who haveemerged from a minimally conscious state: a cross-sectional multimodal imaging study.Lancet Neurol, 15(8):830–842, Jul 2016. | |
dc.relation | R. S. Calabro and A. Naro. Diagnosing Disorder of Consciousness: The Opening of Pandora’s Box!Innov Clin Neurosci, 13(3-4):10–11, 2016. | |
dc.relation | Jorge Rudas, Darwin Mart ́ınez, Javier Guaje, Athena Demertzi, Lizette Heine, LuabaTshibanda, Andrea Soddu, Steven Laureys, and Francisco G ́omez. Reduction of restingstate network segregation is linked to disorders of consciousness. In Accepted for:Proceedings of 10th International Symposium on Medical Information Processing andAnalysis, page 1, 11 2015. | |
dc.relation | A. Demertzi, C. Schnakers, A. Soddu, M.-A. Bruno, O. Gosseries, A. Vanhaudenhuyse,and S. Laureys. Neural Plasticity Lessons from Disorders of Consciousness.Frontiersin Psychology, 1(245), 2010. | |
dc.relation | Sergio Bagnato, Cristina Boccagni, Antonino Sant’Angelo, Alexander A. Fingelkurts,Andrew A. Fingelkurts, and Giuseppe Galardi. Emerging from an unresponsive wakefulness syndrome: Brain plasticity has to cross a threshold level.Neuroscience and Biobehavioral Reviews, 37(10, Part 2):2721 – 2736, 2013. | |
dc.relation | M. M. Odinak, S. A. Zhivolupov, V. V. Panomarev, N. A. Rashidov, and I. N. Sa-martsev. [Recovery of consciousness as manifestation of neuroplasticity].Zh VoprNeirokhir Im N N Burdenko, 78(1):33–41, 2014. | |
dc.relation | Love Engstrom Nordin, Marika Christina M ̈oller, Per Julin, Aniko Bartfai, FaroukHashim, and Tie-Qiang Li. Post mtbi fatigue is associated with abnormal brain functional connectivity.Scientific Reports, 6, Feb 2016. | |
dc.relation | Biao Jie, Chong-Yaw Wee, Dinggang Shen, and Daoqiang Zhang. Hyper-connectivityof functional networks for brain disease diagnosis. Medical Image Analysis, 32:84–100,2016. | |
dc.relation | Douglass Godwin, Robert L. Barry, and Ren ́e Marois. Breakdown of the brain’s fun-ctional network modularity with awareness. Proceedings of the National Academy ofSciences, 2015. | |
dc.relation | Giulio Tononi, Melanie Boly, Marcello Massimini, and Christof Koch. Integrated information theory: from consciousness to its physical substrate. Nature Reviews Neu-roscience, 17(7):450–461, Jul 2016. | |
dc.relation | Matthias Michel, Stephen M. Fleming, Hakwan Lau, Alan L. F. Lee, Susana Martinez-Conde, Richard E. Passingham, Megan A. K. Peters, Dobromir Rahnev, Claire Sergent,and Kayuet Liu. An informal internet survey on the current state of consciousnessscience.Frontiers in Psychology, 9:2134, 2018. | |
dc.relation | G. A. Mashour, P. Roelfsema, J. P. Changeux, and S. Dehaene. Conscious Processingand the Global Neuronal Workspace Hypothesis.Neuron, 105(5):776–798, 03 2020. | |
dc.relation | T. E. Feinberg and J. Mallatt. Phenomenal Consciousness and Emergence: Eliminatingthe Explanatory Gap.Front Psychol, 11:1041, 2020. | |
dc.relation | S. Laureys, A. M. Owen, and N. D. Schiff. Brain function in coma, vegetative state,and related disorders.Lancet Neurol, 3(9):537–546, 2004. | |
dc.relation | Christopher W. Tyler. Ten testable properties of consciousness.Frontiers in Psycho-logy, 11:1144, 2020. | |
dc.relation | C. Di Perri, A. Thibaut, L. Heine, A. Soddu, A. Demertzi, and S. Laureys. Measuringconsciousness in coma and related states.World J Radiol, 6(8):589–597, Aug 2014. | |
dc.relation | R. S. Calabro, A. Cacciola, P. Bramanti, and D. Milardi. Neural correlates of cons-ciousness: what we know and what we have to learn!Neurol. Sci., 36(4):505–513, Apr2015. | |
dc.relation | T. A. Rummans, J. M. Evans, L. E. Krahn, and K. C. Fleming. Delirium in elderlypatients: evaluation and management.Mayo Clin Proc, 70(10):989–998, Oct 1995. | |
dc.relation | S. Grover and N. Kate. Assessment scales for delirium: A review.World J Psychiatry,2(4):58–70, Aug 2012. | |
dc.relation | L. Patti and M. Gupta. Change In Mental Status - StatPearls - NCBI Bookshelf. 012020. (Accessed on 12/21/2020). | |
dc.relation | Steven Laureys, Gastone G. Celesia, Francois Cohadon, Jan Lavrijsen, Jos ́e Le ́on-Carri ́on, Walter G. Sannita, Leon Sazbon, Erich Schmutzhard, Klaus R. von Wild,Adam Zeman, and Giuliano Dolce. Unresponsive wakefulness syndrome: a new namefor the vegetative state or apallic syndrome.BMC Medicine, 8(1):1–4, 2010. | |
dc.relation | A.M. Rosenbaum and J.T. Giacino. Clinical management of the minimally consciousstate.Handbook of Clinical Neurology, 127:395–410, 2015. | |
dc.relation | J. Giacino, J. Fins, S. Laureys, and N. Schiff. Disorders of consciousness after acquiredbrain injury: the state of the science.Nature Reviews Neurology, 10:99 – 114, 2014. | |
dc.relation | S.L. Hauger, C. Schnakers, S. Andersson, F. Becker, T. Moberget, J.T. Giacino, A.-K.Schanke, and M. Løvstad. Neurophysiological indicators of residual cognitive capacityin the minimally conscious state.Behavioural Neurology, 2015. | |
dc.relation | C.M. Smart and J.T. Giacino. Exploring caregivers’ knowledge of and receptivitytoward novel diagnostic tests and treatments for persons with post-traumatic disordersof consciousness.NeuroRehabilitation, 37(1):117–130, 2015. | |
dc.relation | Ya-Hong Li and Zhi-Peng Xu. Psychological crisis intervention for the family membersof patients in a vegetative state.Clinics (Sao Paulo), 67(4):341–345, 2012. | |
dc.relation | S. Wannez, L. Heine, M. Thonnard, O. Gosseries, and S. Laureys. The repetitionof behavioral assessments in diagnosis of disorders of consciousness.Ann Neurol,81(6):883–889, Jun 2017. | |
dc.relation | Y. Sun, J. Wang, L. Heine, W. Huang, J. Wang, N. Hu, X. Hu, X. Fang, S. Huang,S. Laureys, and H. Di. Personalized objects can optimize the diagnosis of EMCS in theassessment of functional object use in the CRS-R: a double blind, randomized clinicaltrial. BMC Neurol, 18(1):38, Apr 2018. | |
dc.relation | J. Stenberg, A. K. Godbolt, and M. C. Muller. The value of incorporating personallyrelevant stimuli into consciousness assessment with the Coma Recovery Scale - Revised:A pilot study.J Rehabil Med, 50(3):253–260, Feb 2018. | |
dc.relation | C. Aubinet, H. Cassol, O. Bodart, L. R. D. Sanz, S. Wannez, C. Martial, A. Thibaut,G. Martens, M. Carri?re, O. Gosseries, S. Laureys, and C. Chatelle. Simplified Evalua-tion of CONsciousness Disorders (SECONDs) in individuals with severe brain injury:a validation study.Ann Phys Rehabil Med, Sep 2020. | |
dc.relation | Samuel B. Snider and Brian L. Edlow. Mri in disorders of consciousness.CurrentOpinion in Neurology, 33(6), 2020. | |
dc.relation | Y. Hannawi, M.A. Lindquist, B.S. Caffo, H.I. Sair, and R.D. Stevens. Resting brain ac-tivity in disorders of consciousness: A systematic review and meta-analysis.Neurology,84(12):1272–1280, 2015. | |
dc.relation | Samuel B. Snider, Joey Hsu, R. Ryan Darby, Danielle Cooke, David Fischer, Alexan-der L. Cohen, Jordan H. Grafman, and Michael D. Fox. Cortical lesions causing lossof consciousness are anticorrelated with the dorsal brainstem.Human Brain Mapping, 41(6):1520–1531, 2020. | |
dc.relation | Andres M. Salazar, Jordan H. Grafman, Stephen C. Vance, Herb Weingartner, J. D.Dillon, and Christy Ludlow. Consciousness and amnesia after penetrating head injury.Neurology, 36(2):178–178, 1986. | |
dc.relation | Aileen Chau, Andres M. Salazar, Frank Krueger, Irene Cristofori, and Jordan Graf-man. The effect of claustrum lesions on human consciousness and recovery of function.Consciousness and Cognition, 36:256 – 264, 2015. | |
dc.relation | D. B. Fischer, A. D. Boes, A. Demertzi, H. C. Evrard, S. Laureys, B. L. Edlow, H. Liu,C. B. Saper, A. Pascual-Leone, M. D. Fox, and J. C. Geerling. A human brain networkderived from coma-causing brainstem lesions.Neurology, 87(23):2427–2434, Dec 2016. | |
dc.relation | Wlodzis law Duch and Dariusz Miko lajewski. Modelling effects of consciousness disor-ders in brainstem computational model – preliminary findings.Bio-Algorithms andMed-Systems, 16(2):20200018, 01 Jun. 2020. | |
dc.relation | Pieter Guldenmund, Andrea Soddu, Katherine Baquero, Audrey Vanhaudenhuyse,Marie-Aur ́elie Bruno, Olivia Gosseries, Steven Laureys, and Francisco G ́omez. Structu-ral brain injury in patients with disorders of consciousness: A voxel-based morphometrystudy.Brain Injury, 30(3):343–352, 2016. | |
dc.relation | J. Annen, G. Frasso, J. S. Crone, L. Heine, C. Di Perri, C. Martial, H. Cassol, A. De-mertzi, L. Naccache, and S. Laureys. Regional brain volumetry and brain function inseverely brain-injured patients.Ann Neurol, 83(4):842–853, 04 2018. | |
dc.relation | G. H. Glover. Overview of functional magnetic resonance imaging.Neurosurg Clin NAm, 22(2):133–139, Apr 2011. | |
dc.relation | O. Gosseries, A. Demertzi, Q. Noirhomme, J. Tshibanda, M. Boly, M. Op de Beeck,R. Hustinx, P. Maquet, E. Salmon, G. Moonen, A. Luxen, S. Laureys, and X. De Tiege. Functional neuroimaging (fMRI, PET and MEG): what do we measure?.Rev MedLiege, 63(5-6):231–237, 2008. | |
dc.relation | Peter Jezzard, Paul M Matthews, and Stephen M Smith.Functional Magnetic Reso-nance Imaging: An Introduction to Methods. Oxford University Press, 2001. | |
dc.relation | M. S. Chow, S. L. Wu, S. E. Webb, K. Gluskin, and D. T. Yew. Functional magneticresonance imaging and the brain: A brief review.World J Radiol, 9(1):5–9, Jan 2017. | |
dc.relation | Vigneshwaran Subbaraju, Mahanand Belathur Suresh, Suresh Sundaram, and Sunda-rarajan Narasimhan. Identifying differences in brain activities and an accurate de-tection of autism spectrum disorder using resting state functional-magnetic resonanceimaging : A spatial filtering approach.Medical Image Analysis, 35:375 – 389, 2017. | |
dc.relation | X. Di and B.B. Biswal. Characterizations of resting-state modulatory interactions inthe human brain.Journal of Neurophysiology, 114(5):2785–2796, 2015. | |
dc.relation | Bharat B. Biswal, Joel Van Kylen, and James S. Hyde. Simultaneous assessment of flowand bold signals in resting-state functional connectivity maps.NMR in Biomedicine,10(4-5):165–170, 1997. | |
dc.relation | Biswal BB. Resting state fmri: A personal history.NeuroImage, 62(2):938 – 944, 2012. | |
dc.relation | L. Heine, A. Soddu, F. G ́omez, A. Vanhaudenhuyse, L. Tshibanda, M. Thonnard,V. Charland-Verville, M. Kirsch, S. Laureys, and A. Demertzi. Resting state net-works and consciousness: alterations of multiple resting state network connectivityin physiological, pharmacological, and pathological consciousness states.Frontiers inpsychology, 3, 2012. | |
dc.relation | A. Reyes, T. Thesen, X. Wang, D. Hahn, D. Yoo, R. Kuzniecky, O. Devinsky, andK. Blackmon. Resting-state functional mri distinguishes temporal lobe epilepsy subty-pes.Epilepsia, 57(9):1475–1484, 2016. | |
dc.relation | L. Schilbach, F. Hoffstaedter, V. M ̈uller, E.C. Cieslik, R. Goya-Maldonado, S. Trost,C. Sorg, V. Riedl, R. Jardri, I. Sommer, L. Kogler, B. Derntl, O. Gruber, and S.B.Eickhoff. Transdiagnostic commonalities and differences in resting state functionalconnectivity of the default mode network in schizophrenia and major depression.Neu-roImage: Clinical, 10:326–335, 2016. | |
dc.relation | J. Chen, H. Shu, Z. Wang, Y. Zhan, D. Liu, W. Liao, L. Xu, Y. Liu, and Z. Zhang. Con-vergent and divergent intranetwork and internetwork connectivity patterns in patientswith remitted late-life depression and amnestic mild cognitive impairment.Cortex,83:194–211, 2016. | |
dc.relation | Y.B. Lee, J. Lee, S. Tak, K. Lee, D.L. Na, S.W. Seo, Y. Jeong, and J.C. Ye. Sparsespm: Group sparse-dictionary learning in spm framework for resting-state functionalconnectivity mri analysis.NeuroImage, 125:1032–1045, 2016. | |
dc.relation | J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M.Smith, and C. F. Beckmann. Consistent resting-state networks across healthy subjects.Proceedings of the National Academy of Sciences, 103(37):13848–13853, 2006. | |
dc.relation | Michael D. Fox and Marcus E. Raichle. Spontaneous fluctuations in brain activityobserved with functional magnetic resonance imaging.Nature Review Neuroscience,8:700–711, 2007. | |
dc.relation | C. Rosazza and L. Minati. Resting-state brain networks: Literature review and clinicalapplications.Neurological Sciences, 32:773–785, 2011. | |
dc.relation | A. Demertzi, A. Soddu, and S. Laureys. Consciousness supporting networks.CurrentOpinion in Neurobiology, 23(2):239–244, 2013. | |
dc.relation | M. J. McKeown, S. Makeig, G. G. Brown, T. Jung, S. S. Kindermann, A. J. Bell, andT. J. Sejnowski. Analysis of fmri data by blind separation into independent spatialcomponents.Human Brain Mapping, 6:160–188, 1998. | |
dc.relation | V.D. Calhoun, T. Adali, G.D. Pearlson, and J.J. Pekar. Group ica of functional mri da-ta: seperability, stationarity, and inference. InProceedings of International Conferenceon ICA and BSS, 2001. | |
dc.relation | Q.a Yu, J.a g h Sui, K.A.a b Kiehl, G.c d e Pearlson, and V.D.a c d f Calhoun.State-related functional integration and functional segregation brain networks in schi-zophrenia.Schizophrenia Research, 150(2-3):450–458, 2013. | |
dc.relation | P.J. Toussaint, S. Maiz, D. Coynel, J. Doyon, A. Mess ́e, L.C. de Souza, M. Sara-zin, V. Perlbarg, M.-O. Habert, and H. Benali. Characteristics of the default modefunctional connectivity in normal ageing and alzheimer’s disease using resting statefmri with a combined approach of entropy-based and graph theoretical measurements.NeuroImage, 101:778–786, 2014. | |
dc.relation | Linda J. Larson-Prior, John M. Zempel, Tracy S. Nolan, Fred W. Prior, Abraham Z.Snyder, and Marcus E. Raichle. Cortical network functional connectivity in the descentto sleep.Proceedings of the National Academy of Sciences, 106(11):4489–4494, 2009. | |
dc.relation | K. J. Friston, C. D. Frith, P. F. Liddle, and R. S. J. Frackowiak. Functional connec-tivity: The principal-component analysis of large (pet) data sets.J Cereb Blood FlowMetab, 13(1):5–14, 1993. | |
dc.relation | Martijn van den Heuvel, Rene Mandl, and Hilleke Hulshoff Pol. Normalized cut groupclustering of resting-state fmri data.PLoS ONE, 3(4):e2001, 04 2008. | |
dc.relation | Bharat B. Biswal. Resting state fmri: A personal history.NeuroImage, 62(2):938 –944, 2012. | |
dc.relation | M.R. Brier, J.B. Thomas, A.M. Fagan, J. Hassenstab, D.M. Holtzman, T.L. Benzinger,J.C. Morris, and B.M. Ances. Functional connectivity and graph theory in preclinicalalzheimer’s disease.Neurobiology of Aging, 35:757–768, 2014. | |
dc.relation | Q.a Yu, E.B.b Erhardt, J.a c Sui, Y.a d Du, H.a e He, D.a f Hjelm, M.S.a f Cetin,S.a Rachakonda, R.L.a Miller, G.g h i Pearlson, and V.D.a e g h Calhoun. Assessingdynamic brain graphs of time-varying connectivity in fmri data: Application to healthycontrols and patients with schizophrenia.NeuroImage, 107:345–355, 2015. | |
dc.relation | Marcus E. Raichle, Ann Mary MacLeod, Abraham Z. Snyder, William J. Powers, De-bra A. Gusnard, and Gordon L. Shulman. A default mode of brain function.Proceedingsof the National Academy of Sciences, 98(2):676–682, 2001. | |
dc.relation | Randy L. Buckner, Jessica R. Andrews-Hanna, and Daniel L. Schacter. The brain’sdefault network.Annals of the New York Academy of Sciences, 1124(1):1–38, 2008. | |
dc.relation | Audrey Vanhaudenhuyse, Quentin Noirhomme, Luaba J.-F. Tshibanda, Marie-AurelieBruno, Pierre Boveroux, Caroline Schnakers, Andrea Soddu, Vincent Perlbarg, DidierLedoux, Jean-Fran ̧cois Brichant, Gustave Moonen, Pierre Maquet, Michael D. Greicius,Steven Laureys, and Melanie Boly. Default network connectivity reflects the level ofconsciousness in non-communicative brain-damaged patients.Brain, 133(1):161–171,2010. | |
dc.relation | Davinia Fern ́andez-Espejo, Andrea Soddu, Damian Cruse, Eva M. Palacios, CarmeJunque, Audrey Vanhaudenhuyse, Eva Rivas, Virginia Newcombe, David K. Menon,John D. Pickard, Steven Laureys, and Adrian M. Owen. A role for the default modenetwork in the bases of disorders of consciousness.Annals of Neurology, 72(3):335–343,2012. | |
dc.relation | Karl J. Friston. Functional and effective connectivity: A review.Brain Connectivity,1(1):13–36, Jan 2011. | |
dc.relation | M. J. Jafri, G. D. Pearlson, M. Stevens, and V. D. Calhoun. A method for functionalnetwork connectivity among spatially independent resting-state components in schi-zophrenia.Neuroimage, 39(4):1666–1681, Feb 2008. | |
dc.relation | E. T. Bullmore and D. S. Bassett. Brain graphs: graphical models of the human brainconnectome.Annu Rev Clin Psychol, 7:113–140, 2011. | |
dc.relation | F. Vecchio, F. Miraglia, G. Curcio, R. Altavilla, F. Scrascia, F. Giambattistelli, C.C.Quattrocchi, F. Vernieri, and P.M. Rossini. 20. cortical brain connectivity evaluatedby graph theory in dementia: A correlation study between functional and structuraldata.Clinical Neurophysiology, 127(4):e137 –, 2016. | |
dc.relation | D. Mears and H.B. Pollard. Network science and the human brain: Using graph theoryto understand the brain and one of its hubs, the amygdala, in health and disease.Journal of Neuroscience Research, 94(6):590–605, 2016. | |
dc.relation | D. E. Martinez, J. Rudas, A. Demertzi, V. Charland-Verville, A. Soddu, S. Laureys,and F. Gomez. Reconfiguration of large-scale functional connectivity in patients withdisorders of consciousness.Brain Behav, 10(1):e1476, Jan 2020. | |
dc.relation | D. Vatansever, M. Schr ̈oter, R. M. Adapa, E. T. Bullmore, D. K. Menon, and E. A. Sta-matakis. Reorganisation of brain hubs across altered states of consciousness.ScientificReports, 10(1):3402, Feb 2020. | |
dc.relation | M P van den Heuvel and O Sporns. Rich-Club organization of the human connectome,2011. | |
dc.relation | A. Kolchinsky, M. P. van den Heuvel, A. Griffa, P. Hagmann, L. M. Rocha, O. Sporns,and J. Goni. Multi-scale integration and predictability in resting state brain activity.Front Neuroinform, 8:66, 2014. | |
dc.relation | A. Fujita, D. Yasumasa Takahashi, J. Bisol Balardin, and J. R. Sato. Correlationbetween graphs with an application to brain networks analysis.ArXiv e-prints, 2015. | |
dc.relation | Santo Fortunato. Community detection in graphs.Physics reports, 486(3):75–174,2010. | |
dc.relation | J. Rudas, J. Guaje, A. Demertzi, L. Heine, L. Tshibanda, A. Soddu, S. Laureys, andF. G ́omez. Dynamic functional network connectivity using distance correlation. InSPIE 9287, Proceedings of 10th International Symposium on Medical Information Pro-cessing and Analysis, page 9287, Jan 2015. | |
dc.relation | Teddy J. Akiki and Chadi G. Abdallah. Determining the hierarchical architectureof the human brain using subject-level clustering of functional networks.ScientificReports, 9(1):19290, Dec 2019. | |
dc.relation | Gustavo Deco, Giulio Tononi, Melanie Boly, and Morten L. Kringelbach. Rethinkingsegregation and integration: contributions of whole-brain modelling.Nat Rev Neurosci,16(7):430–439, 2015. | |
dc.relation | E. N. Davison, K. J. Schlesinger, D. S. Bassett, M. E. Lynall, M. B. Miller, S. T.Grafton, and J. M. Carlson. Brain network adaptability across task states.PLoSComput. Biol., 11(1):e1004029, Jan 2015. | |
dc.relation | Linda Geerligs, Cam-CAN, and Richard N. Henson. Functional connectivity and struc-tural covariance between regions of interest can be measured more accurately usingmultivariate distance correlation.NeuroImage, 135:16–31, 2016. | |
dc.relation | Jorge Rudas, Darwin Mart ́ınez, Athena Demertzi, Carol Di Perri, Lizette Heine, Lua-ba Tshibanda, Andrea Soddu, Steven Laureys, and Francisco G ́omez. Multivariatefunctional network connectivity for disorders of consciousness. InProgress in Pat-tern Recognition, Image Analysis, Computer Vision, and Applications, pages 434–442.Springer International Publishing, 2017. | |
dc.relation | G. Szekely, M. Rizzo, and N. Bakirov. Measuring and testing dependence by correlationof distances. The Annals of Statistics, 35(6):2769–2794, 2007. | |
dc.relation | J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M.Smith, and C. F. Beckmann. Consistent resting-state networks across healthy subjects.Proceedings of the National Academy of Sciences, 103(37):13848–13853, 2006. | |
dc.relation | Victor M. Vergara, Andrew R. Mayer, Kent A. Kiehl, and Vince D. Calhoun. Dynamicfunctional network connectivity discriminates mild traumatic brain injury throughmachine learning.NeuroImage: Clinical, 19:30 – 37, 2018. | |
dc.relation | Dmitry O. Sinitsyn, Liudmila A. Legostaeva, Elena I. Kremneva, Sofya N. Morozo-va, Alexandra G. Poydasheva, Elizaveta G. Mochalova, Oksana G. Chervyakova, Ju-lia V. Ryabinkina, Natalia A. Suponeva, and Michael A. Piradov. Degrees of functio-nal connectome abnormality in disorders of consciousness.Human Brain Mapping,39(7):2929–2940, 2018. | |
dc.relation | K. K. Lottman, T. J. Gawne, N. V. Kraguljac, J. F. Killen, M. A. Reid, and A. C.Lahti. Examining resting-state functional connectivity in first-episode schizophreniawith 7T fMRI and MEG.Neuroimage Clin, 24:101959, 2019. | |
dc.relation | Laura Sophie Imperatori, Monica Betta, Luca Cecchetti, Andr ́es Canales-Johnson,Emiliano Ricciardi, Francesca Siclari, Pietro Pietrini, Srivas Chennu, and Giulio Ber-nardi. Eeg functional connectivity metrics wpli and wsmi account for distinct types ofbrain functional interactions.Scientific Reports, 9(1):8894, 2019. | |
dc.relation | Alejandro Lopez Rincon and Shingo Shimoda. The inverse problem in electroencepha-lography using the bidomain model of electrical activity.Journal of NeuroscienceMethods, 274:94 – 105, 2016. | |
dc.relation | Martijn P. van den Heuvel and Hilleke E. Hulshoff Pol. Exploring the brain network:A review on resting-state fmri functional connectivity.European Neuropsychopharma-cology, 20(8):519 – 534, 2010. | |
dc.relation | Z.D. Threlkeld, Y.G. Bodien, E.S. Rosenthal, J.T. Giacino, A. Nieto-Castanon, O. Wu,S. Whitfield-Gabrieli, and B.L. Edlow. Functional networks reemerge during recoveryof consciousness after acute severe traumatic brain injury.Cortex, 106:299–308, 2018. | |
dc.relation | Varina L. Boerwinkle, Salvatore J. Torrisi, Stephen T. Foldes, Iris Marku, ManishRanjan, Angus A. Wilfong, and P. David Adelson. Resting-state fmri in disorders ofconsciousness to facilitate early therapeutic intervention.Neurology: Clinical Practice,2019. | |
dc.relation | R. Sitaram, T. Yu, U. Halsband, D. Vogel, F. M ̈uller, S. Lang, N. Birbaumer, andB. Kotchoubey. Spatial characteristics of spontaneous and stimulus-induced indivi-dual functional connectivity networks in severe disorders of consciousness.Brain andCognition, 131:10–21, 2019. | |
dc.relation | A. Demertzi, E. Tagliazucchi, S. Dehaene, G. Deco, P. Barttfeld, F. Raimondo, C. Mar-tial, D. Fern ́andez-Espejo, B. Rohaut, H. U. Voss, N. D. Schiff, A. M. Owen, S. Laureys,L. Naccache, and J. D. Sitt. Human consciousness is supported by dynamic complexpatterns of brain signal coordination.Science Advances, 5(2), 2019. | |
dc.relation | A. Mitra, A. Kraft, P. Wright, B. Acland, A. Z. Snyder, Z. Rosenthal, L. Czerniewski,A. Bauer, L. Snyder, J. Culver, J. M. Lee, and M. E. Raichle. Spontaneous Infra-slowBrain Activity Has Unique Spatiotemporal Dynamics and Laminar Structure.Neuron,98(2):297–305, 2018. | |
dc.relation | A. Mitra, A. Z. Snyder, E. Tagliazucchi, H. Laufs, and M. E. Raichle. Propagatedinfra-slow intrinsic brain activity reorganizes across wake and slow wave sleep.Elife,4, 2015. | |
dc.relation | A. Mitra and M. E. Raichle. Principles of cross-network communication in humanresting state fMRI.Scand J Psychol, 59(1):83–90, 2018. | |
dc.relation | W. Majeed, M. Magnuson, W. Hasenkamp, H. Schwarb, E. H. Schumacher, L. Barsalou,and S. D. Keilholz. Spatiotemporal dynamics of low frequency BOLD fluctuations inrats and humans.Neuroimage, 54(2):1140–1150, 2011. | |
dc.relation | A. Mitra, A. Z. Snyder, C. D. Hacker, and M. E. Raichle. Lag structure in resting-statefMRI.J. Neurophysiol., 111(11):2374–2391, 2014. | |
dc.relation | J. S. Siegel, A. Z. Snyder, L. Ramsey, G. L. Shulman, and M. Corbetta. The effectsof hemodynamic lag on functional connectivity and behavior after stroke.J. Cereb.Blood Flow Metab., 36(12):2162–2176, 2016. | |
dc.relation | R. J. Meszlenyi, P. Hermann, K. Buza, V. Gal, and Z. Vidnyanszky. Resting State fMRIFunctional Connectivity Analysis Using Dynamic Time Warping.Front Neurosci,11:75, 2017. | |
dc.relation | Majid H. Mohajerani, Allen W. Chan, Mostafa Mohsenvand, Jeffrey LeDue, Rui Liu,David A. McVea, Jamie D. Boyd, Yu Tian Wang, Mark Reimers, and Timothy H.Murphy. Spontaneous cortical activity alternates between motifs defined by regionalaxonal projections.Nature Neuroscience, 16, 2013. | |
dc.relation | A. Mitra, A. Z. Snyder, T. Blazey, and M. E. Raichle. Lag threads organize the brain’sintrinsic activity.Proc. Natl. Acad. Sci. U.S.A., 112(17):E2235–2244, 2015. | |
dc.relation | A. Mitra and M. E. Raichle. How networks communicate: propagation patterns inspontaneous brain activity.Philos. Trans. R. Soc. Lond., B, Biol. Sci., 371(1705),2016. | |
dc.relation | G. Deshpande, P. Santhanam, and X. Hu. Instantaneous and causal connectivity in res-ting state brain networks derived from functional MRI data.Neuroimage, 54(2):1043–1052, 2011. | |
dc.relation | Y. You, L. Bai, R. Dai, H. Cheng, Z. Liu, W. Wei, and J. Tian. Altered hub confi-gurations within default mode network following acupuncture at ST36: a multimodalinvestigation combining fMRI and MEG.PLoS ONE, 8(5), 2013. | |
dc.relation | Pan Lin, Yong Yang, Junfeng Gao, Nicola De Pisapia, Sheng Ge, Xiang Wang, Chun S.Zuo, James Jonathan Levitt, and Chen Niu. Dynamic default mode network acrossdifferent brain states.Scientific Reports, Nature, 7, 2017. | |
dc.relation | S. Casarotto, A. Comanducci, M. Rosanova, S. Sarasso, M. Fecchio, M. Napolitani,A. Pigorini, A. G Casali, P. D. Trimarchi, M. Boly, O. Gosseries, O. Bodart, F. Curto,C. Landi, M. Mariotti, G. Devalle, S. Laureys, G. Tononi, and M. Massimini. Stratifica-tion of unresponsive patients by an independently validated index of brain complexity.Ann. Neurol., 80(5):718–729, 2016. | |
dc.relation | Lorina Naci, Amelie Haugg, Alex MacDonald, Mimma Anello, Evan Houldin, Sha-kib Naqshbandi, Laura E. Gonzalez-Lara, Miguel Arango, Christopher Harle, RhodriCusack, and Adrian M. Owen. Functional diversity of brain networks supports cons-ciousness and verbal intelligence.Scientific Reportsvolume, 8(1), 2018. | |
dc.relation | Erol Basar and Aysel D ̈uzg ̈un. Links of consciousness, perception, and memory bymeans of delta oscillations of brain.Front Psychol, 7:275, 2016. | |
dc.relation | Marjan Persuh, Eric LaRock, and Jacob Berger. Working memory and consciousness:The current state of play.Frontiers in Human Neuroscience, 12:78, 2018. | |
dc.relation | M. Havlicek, D. Ivanov, A. Roebroeck, and K. Uluda ̆g. Determining Excitatory andInhibitory Neuronal Activity from Multimodal fMRI Data Using a Generative He-modynamic Model.Front Neurosci, 11:616, 2017. | |
dc.relation | Kiran Vodrahalli, Po-Hsuan Chen, Yingyu Liang, Christopher Baldassano, JaniceChen, Esther Yong, Christopher Honey, Uri Hasson, Peter Ramadge, Kenneth A. Nor-man, and Sanjeev Arora. Mapping between fmri responses to movies and their naturallanguage annotations.NeuroImage, 2017. | |
dc.relation | S. Wannez, L. Heine, M. Thonnard, O. Gosseries, and S. Laureys. The repetitionof behavioral assessments in diagnosis of disorders of consciousness.Ann. Neurol.,81(6):883–889, 2017. | |
dc.relation | J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, and S. E. Petersen. Spuriousbut systematic correlations in functional connectivity MRI networks arise from subjectmotion.Neuroimage, 59(3):2142–2154, Feb 2012. | |
dc.relation | Paul K. Mazaika, Fumiko Hoeft, Gary H. Glover, and Allan L. Reiss. Methods andsoftware for fmri analysis for clinical subjects. presentation at the 15th annual meetingof the organization for human brain mapping, 2009. | |
dc.relation | M. D. Fox, A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Rai-chle. The human brain is intrinsically organized into dynamic, anticorrelated functionalnetworks.Proc. Natl. Acad. Sci. U.S.A., 102(27):9673–9678, 2005. | |
dc.relation | A. Abrol, E. Damaraju, R. L. Miller, J. M. Stephen, E. D. Claus, A. R. Mayer, andV. D. Calhoun. Replicability of time-varying connectivity patterns in large restingstate fMRI samples.Neuroimage, 163:160–176, 2017. | |
dc.relation | K. H. Madsen, N. W. Churchill, and M. Mørup. Quantifying functional connectivity inmulti-subject fMRI data using component models.Hum Brain Mapp, 38(2):882–899,2017. | |
dc.relation | T. Eslami and F. Saeed. Fast-GPU-PCC: A GPU-Based Technique to Compute Pair-wise Pearson’s Correlation Coefficients for Time Series Data-fMRI Study.High Th-roughput, 7(2), 2018. | |
dc.relation | D. Nikolic. Non-parametric detection of temporal order across pairwise measurementsof time delays.J Comput Neurosci, 22(1):5–19, 2007. | |
dc.relation | Jorge Rudas, Darwin Mart ́ınez, Gabriel Castellanos, Athena Demertzi, Charlotte Mar-tial, Manon Carriére, Charlène Aubinet, Andrea Soddu, Steven Laureys, and FranciscoG ́omez. Time-delay latency of resting-state blood oxygen level-dependent signal re-lated to the level of consciousness in patients with severe consciousness impairment.Brain Connectivity, 10(2):83–94, 2020. | |
dc.relation | Yifei Weng, Rongfeng Qi, Feng Chen, Jun Ke, Qiang Xu, Yuan Zhong, Lida Chen,Jianjun Li, Zhiqiang Zhang, Li Zhang, and Guangming Lu. The temporal propagationof intrinsic brain activity associate with the occurrence of ptsd.Frontiers in Psychiatry,9:218, 2018. | |
dc.relation | M. Zimmermann, K. R ̈ossler, M. Kaltenh ̈auser, P. Grummich, N. Brandner, M. Buch-felder, A. D?rfler, K. K ̈olble, and A. Stadlbauer. Comparative fMRI and MEG lo-calization of cortical sensorimotor function: Bimodal mapping supports motor areareorganization in glioma patients.PLoS ONE, 14(3):e0213371, 2019. | |
dc.relation | C. Georgiopoulos, S. T. Witt, S. Haller, N. Dizdar, H. Zachrisson, M. Engstr ̈om, andE. M. Larsson. A study of neural activity and functional connectivity within theolfactory brain network in Parkinson’s disease.Neuroimage Clin, 23:101946, 2019. | |
dc.relation | B. A. Vogt, L. Vogt, and S. Laureys. Cytology and functionally correlated circuits ofhuman posterior cingulate areas.Neuroimage, 29(2):452–466, 2006. | |
dc.relation | Nicola Palomero-Gallagher, Brent A. Vogt, Axel Schleicher, Helen S. Mayberg, andKarl Zilles. Receptor architecture of human cingulate cortex: Evaluation of the four-region neurobiological model.Human Brain Mapping, 30(8):2336–2355, 2009. | |
dc.relation | D. J. Englot, P. F. D’Haese, P. E. Konrad, M. L. Jacobs, J. C. Gore, B. W. Abou-Khalil, and V. L. Morgan. Functional connectivity disturbances of the ascendingreticular activating system in temporal lobe epilepsy.J. Neurol. Neurosurg. Psychiatry,88(11):925–932, 2017. | |
dc.relation | R. B. Buxton. The physics of functional magnetic resonance imaging (fMRI).RepProg Phys, 76(9), 2013. | |
dc.relation | Nikos K. Logothetis, Jon Pauls, Mark Augath, Torsten Trinath, and Axel Oeltermann.Neurophysiological investigation of the basis of the fmri signal.Nature, 412, 2001. | |
dc.relation | Pierre J. Magistretti and Igor Allaman. A cellular perspective on brain energy meta-bolism and functional imaging.Neuron, 86(4):883 – 901, 2015. | |
dc.relation | S. N. Vaishnavi, A. G. Vlassenko, M. M. Rundle, A. Z. Snyder, M. A. Mintun, andM. E. Raichle. Regional aerobic glycolysis in the human brain.Proc. Natl. Acad. Sci.U.S.A., 107(41):17757–17762, 2010. | |
dc.relation | P. A. Bandettini, E. C. Wong, R. S. Hinks, R. S. Tikofsky, and J. S. Hyde. Time courseEPI of human brain function during task activation.Magn Reson Med, 25(2):390–397,1992. | |
dc.relation | P. Maquet, J. Peters, J. Aerts, G. Delfiore, C. Degueldre, A. Luxen, and G. Franck.Functional neuroanatomy of human rapid-eye-movement sleep and dreaming.Nature,383(6596):163–166, 1996. | |
dc.relation | A. R. Braun, T. J. Balkin, N. J. Wesenten, R. E. Carson, M. Varga, P. Baldwin,S. Selbie, G. Belenky, and P. Herscovitch. Regional cerebral blood flow throughout thesleep-wake cycle. An H2(15)O PET study.Brain, 120 ( Pt 7):1173–1197, 1997. | |
dc.relation | S. Laureys, C. Lemaire, P. Maquet, C. Phillips, and G. Franck. Cerebral metabolismduring vegetative state and after recovery to consciousness.J. Neurol. Neurosurg.Psychiatry, 67(1):121, 1999. | |
dc.relation | B. Beuthien-Baumann, W. Handrick, T. Schmidt, W. Burchert, L. Oehme, J. Kropp,G. Schackert, J. Pinkert, and W. G. Franke. Persistent vegetative state: evaluationof brain metabolism and brain perfusion with PET and SPECT.Nucl Med Commun,24(6):643–649, 2003. | |
dc.relation | N. Nakayama, A. Okumura, J. Shinoda, T. Nakashima, and T. Iwama. Relationshipbetween regional cerebral metabolism and consciousness disturbance in traumatic dif-fuse brain injury without large focal lesions: an FDG-PET study with statistical pa-rametric mapping analysis.J. Neurol. Neurosurg. Psychiatry, 77(7):856–862, 2006. | |
dc.relation | A. Demertzi, G. Antonopoulos, L. Heine, H.U. Voss, J.S. Crone, C. De Los Angeles,M.A. Bahri, C. Di Perri, A. Vanhaudenhuyse, V. Charland-Verville, M. Kronbichler,E. Trinka, C. Phillips, F. G ́omez, L. Tshibanda, A. Soddu, N.D. Schiff, S. Whitfield-Gabrieli, and S. Laureys. Intrinsic functional connectivity differentiates minimallyconscious from unresponsive patients.Brain, 138(9):2619–2631, 2015. | |
dc.relation | S. Marino, L. Bonanno, and A. Giorgio. Functional connectivity in disorders ofconsciousness: methodological aspects and clinical relevance.Brain Imaging Behav,10(2):604–608, 2016. | |
dc.relation | J. Rudas, J. Guaje, A. Demertzi, L. Heine, L. Tshibanda, A. Soddu, S. Laureys, andF. Gomez. A method for functional network connectivity using distance correlation.Annu Int Conf IEEE Eng Med Biol Soc, 2014:2793–2796, 2014. | |
dc.relation | Jonathan Schiefer, Alexander Niederb ̈uhl, Volker Pernice, Carolin Lennartz, J ̈urgenHennig, Pierre LeVan, and Stefan Rotter. From correlation to causation: Estimatingeffective connectivity from zero-lag covariances of brain signals.PLOS ComputationalBiology, 14(3):1–18, 2018. | |
dc.relation | Andrea Duggento, Luca Passamonti, Gaetano Valenza, Riccardo Barbieri, Maria Gue-rrisi, and Nicola Toschi. Multivariate granger causality unveils directed parietal toprefrontal cortex connectivity during task-free mri.Scientific Reports, 8(1), 2018. | |
dc.relation | S. Tak, J. Noh, C. Cheong, P. Zeidman, A. Razi, W. D. Penny, and K. J. Friston. Avalidation of dynamic causal modelling for 7T fMRI.J. Neurosci. Methods, 305:36–45,2018. | |
dc.relation | B. A. Vogt. Midcingulate cortex: Structure, connections, homologies, functions anddiseases.J. Chem. Neuroanat., 74:28–46, 2016. | |
dc.relation | C. Yu, Y. Zhou, Y. Liu, T. Jiang, H. Dong, Y. Zhang, and M. Walter. Functionalsegregation of the human cingulate cortex is confirmed by functional connectivity basedneuroanatomical parcellation.Neuroimage, 54(4):2571–2581, 2011. | |
dc.relation | F. Jin, P. Zheng, H. Liu, H. Guo, and Z. Sun. Functional and anatomical connectivity-based parcellation of human cingulate cortex.Brain Behav, 8(8), 2018. | |
dc.relation | G. Bush, P. Luu, and M. I. Posner. Cognitive and emotional influences in anteriorcingulate cortex.Trends Cogn. Sci., 4(6):215–222, 2000. | |
dc.relation | H. Braak. A primitive gigantopyramidal field buried in the depth of the cingulatesulcus of the human brain.Brain Res., 109(2):219–223, 1976. | |
dc.relation | H. H. Ehrsson, A. Fagergren, T. Jonsson, G. Westling, R. S. Johansson, and H. Forss-berg. Cortical activity in precision- versus power-grip tasks: an fMRI study.J. Neu-rophysiol., 83(1):528–536, 2000. | |
dc.relation | M. Martinez, M. Valencia, M. Vidorreta, E. O. Luis, G. Castellanos, F. Villagra, M. A.Fernandez-Seara, and M. A. Pastor. Trade-off between frequency and precision duringstepping movements: Kinematic and BOLD brain activation patterns.Hum BrainMapp, 37(5):1722–1737, 2016. | |
dc.relation | F. Caruana, M. Gerbella, P. Avanzini, F. Gozzo, V. Pelliccia, R. Mai, R. O. Abdo-llahi, F. Cardinale, I. Sartori, G. Lo Russo, and G. Rizzolatti. Motor and emotionalbehaviours elicited by electrical stimulation of the human cingulate cortex.Brain,141(10):3035–3051, 2018. | |
dc.relation | S. Laureys, M. E. Faymonville, P. Peigneux, P. Damas, B. Lambermont, G. Del Fiore,C. Degueldre, J. Aerts, A. Luxen, G. Franck, M. Lamy, G. Moonen, and P. Maquet.Cortical processing of noxious somatosensory stimuli in the persistent vegetative state.Neuroimage, 17(2):732–741, 2002. | |
dc.relation | F. Pistoia, S. Sacco, J. Stewart, M. Sara, and A. Carolei. Disorders of Consciousness:Painless or Painful Conditions?-Evidence from Neuroimaging Studies.Brain Sci, 6(4),2016. | |
dc.relation | W Seeley, V Menon, A Schatzberg, J Keller, G Glover, H Kenna, A Reiss, and M Grei-cius. Dissociable intrinsic connectivity networks for salience processing and executivecontrol.The Journal of Neuroscience, 27(9):2349–2356, 2007. | |
dc.relation | N. Goulden, A. Khusnulina, N. J. Davis, R. M. Bracewell, A. L. Bokde, J. P. McNulty,and P. G. Mullins. The salience network is responsible for switching between the defaultmode network and the central executive network: replication from DCM.Neuroimage,99:180–190, 2014. | |
dc.relation | C. G. Davey, J. Pujol, and B. J. Harrison. Mapping the self in the brain’s default modenetwork.Neuroimage, 132:390–397, 2016. | |
dc.relation | K. Krieger-Redwood, E. Jefferies, T. Karapanagiotidis, R. Seymour, A. Nunes, J. W. A.Ang, V. Majernikova, G. Mollo, and J. Smallwood. Down but not out in posteriorcingulate cortex: Deactivation yet functional coupling with prefrontal cortex duringdemanding semantic cognition.Neuroimage, 141:366–377, 2016. | |
dc.relation | M. Konishi, D. G. McLaren, H. Engen, and J. Smallwood. Shaped by the Past: The De-fault Mode Network Supports Cognition that Is Independent of Immediate PerceptualInput.PLoS ONE, 10(6), 2015. | |
dc.relation | R. E. Beaty, M. Benedek, P. J. Silvia, and D. L. Schacter. Creative Cognition andBrain Network Dynamics.Trends Cogn. Sci., 20(2):87–95, 2016. | |
dc.relation | K. D. Gerlach, R. N. Spreng, A. W. Gilmore, and D. L. Schacter. Solving futureproblems: default network and executive activity associated with goal-directed mentalsimulations.Neuroimage, 55(4):1816–1824, 2011. | |
dc.relation | J. S. Crone, M. Schurz, Y. Holler, J. Bergmann, M. Monti, E. Schmid, E. Trinka, andM. Kronbichler. Impaired consciousness is linked to changes in effective connectivity ofthe posterior cingulate cortex within the default mode network.Neuroimage, 110:101–109, 2015. | |
dc.relation | M. P. van den Heuvel and H. E. Hulshoff Pol. Exploring the brain network: a review onresting-state fMRI functional connectivity.Eur Neuropsychopharmacol, 20(8):519–534,Aug 2010. | |
dc.relation | Karunanithi Rajamanickam. A mini review on different methods of Functional-MRIdata analysis, 2020. | |
dc.relation | Rosaleena Mohanty, William A Sethares, Veena A Nair, and Vivek Prabhakaran.Rethinking measures of functional connectivity via feature extraction.Sci. Rep.,10(1):1298, January 2020. | |
dc.relation | Damion V. Demeter, Laura E. Engelhardt, Remington Mallett, Evan M. Gordon, Tehi-la Nugiel, K. Paige Harden, Elliot M. Tucker-Drob, Jarrod A. Lewis-Peacock, and Jes-sica A. Church. Functional connectivity fingerprints at rest are similar across youthsand adults and vary with genetic similarity.iScience, 23(1):100801, January 2020. | |
dc.relation | Anne Hafkemeijer, Christiane M ̈oller, Elise G P Dopper, Lize C Jiskoot, Annette Avan den Berg-Huysmans, John C van Swieten, Wiesje M van der Flier, Hugo Vrenken,Yolande A L Pijnenburg, Frederik Barkhof, Philip Scheltens, Jeroen van der Grond, andSerge A R B Rombouts. A longitudinal study on resting state functional connectivityin behavioral variant frontotemporal dementia and alzheimer’s disease.J. Alzheimers.Dis., 55(2):521–537, 2017. | |
dc.relation | Farzad V Farahani, Waldemar Karwowski, and Nichole R Lighthall. Application ofgraph theory for identifying connectivity patterns in human brain networks: A syste-matic review.Front. Neurosci., 13:585, June 2019. | |
dc.relation | Matthew J Weber, John A Detre, Sharon L Thompson-Schill, and Brian B Avants.Reproducibility of functional network metrics and network structure: a comparison oftask-related BOLD, resting ASL with BOLD contrast, and resting cerebral blood flow.Cogn. Affect. Behav. Neurosci., 13(3):627–640, September 2013. | |
dc.relation | Qian Ran, Tarik Jamoulle, Jolien Schaeverbeke, Karen Meersmans, Rik Vandenberghe,and Patrick Dupont. Reproducibility of graph measures at the subject level usingresting-state fMRI, 2020. | |
dc.relation | Emily S. Finn, Xilin Shen, Dustin Scheinost, Monica D. Rosenberg, Jessica Huang,Marvin M. Chun, Xenophon Papademetris, and R. Todd Constable. Functional con-nectome fingerprinting: identifying individuals using patterns of brain connectivity.Nat. Neurosci., 18(11):1664–1671, November 2015. | |
dc.relation | Kausar Abbas, Enrico Amico, Diana Otero Svaldi, Uttara Tipnis, Duy Anh Duong-Tran, Mintao Liu, Meenusree Rajapandian, Jaroslaw Harezlak, Beau M Ances, andJoaqu ́ın Go ̃ni. GEFF: Graph embedding for functional fingerprinting.Neuroimage,221:117181, July 2020. | |
dc.relation | André Fujita, Daniel Yasumasa Takahashi, Joana Bisol Balardin, Maciel Calebe Vidal,and Joao Ricardo Sato. Correlation between graphs with an application to brainnetwork analysis, 2017. | |
dc.relation | Federico Battiston, Giulia Cencetti, Iacopo Iacopini, Vito Latora, Maxime Lucas, AlicePatania, Jean-Gabriel Young, and Giovanni Petri. Networks beyond pairwise interac-tions: Structure and dynamics.Physics Reports, 874:1–92, 2020. | |
dc.relation | Kwangsun Yoo, Monica D. Rosenberg, Stephanie Noble, Dustin Scheinost, R. ToddConstable, and Marvin M. Chun. Multivariate approaches improve the reliability andvalidity of functional connectivity and prediction of individual behaviors.NeuroImage,197:212–223, 2019. | |
dc.relation | Maria Giulia Preti, Thomas AW Bolton, and Dimitri Van De Ville. The dynamicfunctional connectome: State-of-the-art and perspectives.NeuroImage, 160:41 – 54,2017. | |
dc.relation | Manish Saggar, Olaf Sporns, Javier Gonzalez-Castillo, Peter A Bandettini, GunnarCarlsson, Gary Glover, and Allan L Reiss. Towards a new approach to reveal dynamicalorganization of the brain using topological data analysis.Nat. Commun., 9(1):1399,April 2018. | |
dc.relation | Todd B Parrish, Darren R Gitelman, Kevin S LaBar, and M Marsel Mesulam. Impactof signal-to-noise on functional MRI, 2000. | |
dc.relation | John-Dylan Haynes and Geraint Rees. Predicting the orientation of invisible stimulifrom activity in human primary visual cortex.Nat. Neurosci., 8(5):686–691, May 2005. | |
dc.relation | B Sundermann, D Herr, W Schwindt, and B Pfleiderer. Multivariate classification ofblood oxygen level-dependent FMRI data with diagnostic intention: a clinical perspec-tive.AJNR Am. J. Neuroradiol., 35(5):848–855, May 2014. | |
dc.relation | James V Haxby, Andrew C Connolly, and J Swaroop Guntupalli. Decoding neuralrepresentational spaces using multivariate pattern analysis.Annu. Rev. Neurosci.,37:435–456, June 2014. | |
dc.relation | Ru Kong, Jingwei Li, Csaba Orban, Mert R Sabuncu, Hesheng Liu, Alexander Schaefer,Nanbo Sun, Xi-Nian Zuo, Avram J Holmes, Simon B Eickhoff, and B T Thomas Yeo.Spatial topography of Individual-Specific cortical networks predicts human cognition,personality, and emotion, 2019. | |
dc.relation | William S Sohn, Kwangsun Yoo, Young-Beom Lee, Sang W Seo, Duk L Na, and YongJeong. Influence of ROI selection on resting state functional connectivity: an indivi-dualized approach for resting state fMRI analysis, 2015. | |
dc.relation | S B Eickhoff, R T Constable, and B T T Yeo. Topographic organization of the cerebralcortex and brain cartography.Neuroimage, 170, April 2018. | |
dc.relation | Kevin George and Joe M Das. Neuroanatomy, thalamocortical radiations. InStatPearls[Internet]. StatPearls Publishing, July 2020. | |
dc.relation | M Jarvel̈a, V Raatikainen, A Kotila, J Kananen, V Korhonen, L Q Uddin, H An-sakorpi, and V Kiviniemi. Lag Analysis of Fast fMRI Reveals Delayed InformationFlow Between the Default Mode and Other Networks in Narcolepsy.Cerebral CortexCommunications, 1(1), 10 2020. | |
dc.relation | A. Soddu, A. Vanhaudenhuyse, M. A. Bahri, M. A. Bruno, M. Boly, A. Demertzi, J. F.Tshibanda, C. Phillips, M. Stanziano, S. Ovadia-Caro, Y. Nir, P. Maquet, M. Papa,R. Malach, S. Laureys, and Q. Noirhomme. Identifying the default-mode componentin spatial IC analyses of patients with disorders of consciousness.Hum Brain Mapp,33(4):778–796, Apr 2012. | |
dc.relation | X. N. Zuo, C. Kelly, J. S. Adelstein, D. F. Klein, F. X. Castellanos, and M. P. Milham.Reliable intrinsic connectivity networks: Test–retest evaluation using ica and dual re-gression approach.NeuroImage, 49(3):2163–2177, 2010. | |
dc.relation | Eleftherios Garyfallidis, Matthew Brett, Bagrat Amirbekian, Ariel Rokem, Stefan VanDer Walt, Maxime Descoteaux, and Ian Nimmo-Smith. Dipy, a library for the analysisof diffusion mri data.Frontiers in Neuroinformatics, 8:8, 2014. | |
dc.relation | E. T. Rolls, C. C. Huang, C. P. Lin, J. Feng, and M. Joliot. Automated anatomicallabelling atlas 3.Neuroimage, 206:116189, 02 2020. | |
dc.relation | R. S. Desikan, F. Ségonne, B. Fischl, B. T. Quinn, B. C. Dickerson, D. Blacker, R. L.Buckner, A. M. Dale, R. P. Maguire, B. T. Hyman, M. S. Albert, and R. J. Killiany. Anautomated labeling system for subdividing the human cerebral cortex on MRI scansinto gyral based regions of interest.Neuroimage, 31(3):968–980, Jul 2006. | |
dc.relation | B. Crespo-Facorro, J. J. Kim, N. C. Andreasen, D. S. O’Leary, A. K. Wiser, J. M. Bai-ley, G. Harris, and V. A. Magnotta. Human frontal cortex: an MRI-based parcellationmethod.Neuroimage, 10(5):500–519, Nov 1999. | |
dc.relation | Dejenerine Klumpke. Anatomie des centres nerveux.American Journal of Psychiatry,51(3):402–403, 1895. | |
dc.relation | G. Salamon, F. Gelbert, A. Alicherif, M. Poncet, R. Khalil, D. Sobel, O. Von Einseidel,M. Morel, and J. M. Corbaz. Le repérage in vivo des aires du langage.Rev. Neurol,143:580–587, 1987 | |
dc.relation | J. Rademacher, A. M. Galaburda, D. N. Kennedy, P. A. Filipek, and V. S. Caviness.Human cerebral cortex: localization, parcellation, and morphometry with magneticresonance imaging.J Cogn Neurosci, 4(4):352–374, 1992. | |
dc.relation | M. M. Chiavaras and M. Petrides. Orbitofrontal sulci of the human and macaquemonkey brain.J Comp Neurol, 422(1):35–54, Jun 2000. | |
dc.relation | E. T. Rolls, M. Joliot, and N. Tzourio-Mazoyer. Implementation of a new parcellationof the orbitofrontal cortex in the automated anatomical labeling atlas.Neuroimage,122:1–5, Nov 2015. | |
dc.relation | J. D. Power, A. L. Cohen, S. M. Nelson, G. S. Wig, K. A. Barnes, J. A. Church, A. C.Vogel, T. O. Laumann, F. M. Miezin, B. L. Schlaggar, and S. E. Petersen. Functionalnetwork organization of the human brain.Neuron, 72(4):665–678, Nov 2011. | |
dc.relation | E. M. Gordon, T. O. Laumann, A. W. Gilmore, D. J. Newbold, D. J. Greene, J. J.Berg, M. Ortega, C. Hoyt-Drazen, C. Gratton, H. Sun, J. M. Hampton, R. S. Coalson,A. L. Nguyen, K. B. McDermott, J. S. Shimony, A. Z. Snyder, B. L. Schlaggar, S. E.Petersen, S. M. Nelson, and N. U. F. Dosenbach. Precision Functional Mapping ofIndividual Human Brains.Neuron, 95(4):791–807, Aug 2017. | |
dc.relation | Z. Ma, P. Perez, Z. Ma, Y. Liu, C. Hamilton, Z. Liang, and N. Zhang. Functionalatlas of the awake rat brain: A neuroimaging study of rat brain specialization andintegration.Neuroimage, 170:95–112, 04 2018 | |
dc.relation | Hao Guo, Yao Li, Yong Xu, Yanyi Jin, Jie Xiang, and Junjie Chen. Resting-state brainfunctional hyper-network construction based on elastic net and group lasso methods.Frontiers in Neuroinformatics, 12:25, 2018. | |
dc.relation | P. Guo, F. Zeng, X. Hu, D. Zhang, S. Zhu, Y. Deng, and Y. Hao. Improved Varia-ble Selection Algorithm Using a LASSO-Type Penalty, with an Application to As-sessing Hepatitis B Infection Relevant Factors in Community Residents.PLoS One,10(7):e0134151, 2015. | |
dc.relation | J. Friedman, T. Hastie, and R. Tibshirani. Regularization Paths for Generalized Linear Models via Coordinate Descent.J Stat Softw, 33(1):1–22, 2010. | |
dc.relation | B. P. Rogers, V. L. Morgan, A. T. Newton, and J. C. Gore. Assessing functionalconnectivity in the human brain by fMRI.Magn Reson Imaging, 25(10):1347–1357,Dec 2007. | |
dc.relation | L. Mencarelli, M. C. Biagi, R. Salvador, S. Romanella, G. Ruffini, S. Rossi, and E. San-tarnecchi. Network Mapping of Connectivity Alterations in Disorder of Consciousness:Towards Targeted Neuromodulation.J Clin Med, 9(3), Mar 2020 | |
dc.relation | R. A. Armstrong. When to use the Bonferroni correction.Ophthalmic Physiol Opt,34(5):502–508, Sep 2014. | |
dc.relation | Elad Schneidman, Michael J. Berry, Ronen Segev, and William Bialek. Weak pairwisecorrelations imply strongly correlated network states in a neural population.Nature,440(7087):1007–1012, Apr 2006. | |
dc.relation | Elad Ganmor, Ronen Segev, and Elad Schneidman. Sparse low-order interaction net-work underlies a highly correlated and learnable neural population code.Proceedingsof the National Academy of Sciences, 108(23):9679–9684, 2011. | |
dc.relation | S. Huang, J. Li, L. Sun, J. Ye, A. Fleisher, T. Wu, K. Chen, and E. Reiman. Lear-ning brain connectivity of Alzheimer’s disease by sparse inverse covariance estimation.Neuroimage, 50(3):935–949, Apr 2010. | |
dc.relation | Zbigniew J. Kowalik, Andrzej Wrobel, and Andrzej Rydz. Why does the human brainneed to be a nonlinear system?Behavioral and Brain Sciences, 19(2):302–303, 1996. | |
dc.relation | Michael Breakspear, Stewart Heitmann, and Andreas Daffertshofer. Generative modelsof cortical oscillations: Neurobiological implications of the kuramoto model.Frontiersin Human Neuroscience, 4:190, 2010. | |
dc.relation | Per Sebastian Skardal and Alex Arenas. Higher order interactions in complex networksof phase oscillators promote abrupt synchronization switching.Communications Phy-sics, 3(1):218, Nov 2020. | |
dc.relation | Zhou Zhou. Measuring nonlinear dependence in time-series, a distance correlationapproach.Journal of Time Series Analysis, 33(3):438–457, 2012. | |
dc.relation | P. Qin, X. Wu, C. Wu, H. Wu, J. Zhang, Z. Huang, X. Weng, D. Zang, Z. Qi, W. Tang,T. Hiromi, J. Tan, S. Tanabe, S. Fogel, A. G. Hudetz, Y. Yang, E. A. Stamatakis,Y. Mao, and G. Northoff. Higher-order sensorimotor circuit of the brain’s globalnetwork supports human consciousness.Neuroimage, 231:117850, Feb 2021. | |
dc.relation | A. M. Parra-Morales, J. Rudas, J. A. Vargas, F. Gómez, C. O. Enciso-Olivera,D. Trujillo-Rodriguez, D. Martínez, J. Hernandez, E. G. Ordónez-Rubiano, and J. H.Mar ́ın-Mu ̃noz. Structural and functional connectivity of ascending reticular activatingsystem in a patient with impaired consciousness after a cardiac arrest: A case report.Medicine (Baltimore), 98(19):e15620, May 2019 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Multivariate characterization of brain dynamics for disorders of consciousness | |
dc.type | Trabajo de grado - Doctorado | |