dc.contributor | Rodriguez Niño, Gerardo | |
dc.contributor | Orjuela Londoño, Alvaro | |
dc.contributor | Grupo de Investigación en Procesos Químicos y Bioquímicos | |
dc.creator | Diaz Ortiz, Hector Dario | |
dc.date.accessioned | 2022-09-15T21:17:10Z | |
dc.date.accessioned | 2022-09-21T17:12:34Z | |
dc.date.available | 2022-09-15T21:17:10Z | |
dc.date.available | 2022-09-21T17:12:34Z | |
dc.date.created | 2022-09-15T21:17:10Z | |
dc.date.issued | 2021 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/82293 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3398843 | |
dc.description.abstract | Los procesos industriales actuales para la obtención de olefinas de alta pureza generalmente involucran el uso de destilación criogénica a alta presión en la separación de olefinas y parafinas. Sin embargo, este proceso consume una gran cantidad energía y requiere grandes costos de capital y operativos. Para reducir el consumo de energía y mejorar el potencial económico del proceso, se requieren nuevas técnicas de separación. Entre las diferentes alternativas con potencial para implementar en la industria se destaca la adsorción selectiva con variación de presión, la cual permite la remoción selectiva de etileno de la mezcla de gases. A pesar de que el proceso es bien conocido, es necesario el desarrollo de materiales cada vez más selectivos y adecuados para la operación industrial. La mayoría de los esfuerzos de investigación en este tema se han centrado en el uso de carbones activados y silicatos cristalinos (zeolitas).
Teniendo en cuenta lo anterior, se sintetizó una zeolita tipo Na-X mediante tratamiento hidrotermal. La síntesis se llevó a cabo en reactores discontinuos a diferentes composiciones de gel, temperaturas y tiempos de cristalización. El diseño experimental siguió un método Box Behnken utilizando como meta la cristalinidad del material adsorbente (caracterizado por XRD). Posteriormente, el material sintetizado se sometió a un proceso de intercambio iónico con calcio, con el fin de mejorar el rendimiento y la selectividad para la adsorción de etileno. Una vez obtenida, la zeolita Ca-X, se sometió a un proceso de aglomeración para obtener tamices moleculares granulados (aprox. 3 mm de diámetro). Las partículas obtenidas se caracterizaron midiendo el área superficial, distribución de poros, capacidad de adsorción e isotermas de adsorción con gases OCM. Los resultados indican que el material es adecuado para ser utilizado como adsorbente en sistemas de separación por oscilación de presión para gases OCM. (Texto tomado de la fuente) | |
dc.description.abstract | Current industrial processes for the isolation of high purity olefins generally involve high pressure cryogenic distillation of olefins and paraffins. This process consumes a large amount of energy and requires large capital and operating costs. To reduce energy consumption and improve the economic potential of the process, new separation techniques are required. Among the different alternatives, selective adsorption and pressure variation can be used for the selective removal of ethylene from the gas mixture. Although the process is well known, it is necessary to develop more selective materials suitable for industrial operation. Most research efforts on this topic have focused on the use of activated carbons and crystalline silicates (zeolites).
Considering the above, a Na-X type zeolite was synthesized by hydrothermal treatment. The synthesis was carried out in batch reactors at different gel compositions, temperatures, and crystallization times. The experimental design followed a Box Behnken method using the crystallinity of the adsorbent material (characterized by XRD) as a goal. Subsequently, the synthesized material was subjected to an ion exchange process with calcium, to improve the performance and selectivity for the adsorption of ethylene. Once obtained, the Ca-X zeolite was subjected to an agglomeration process to obtain granulated molecular sieves (approx. 3 mm in diameter). The particles obtained were characterized by measuring the surface area, pore distribution, adsorption capacity and adsorption isotherms with OCM gases. The results indicate that the material is suitable for use as an adsorbent in pressure swing separation systems for OCM gases. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Química | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | British Petroleum Co, “Statistical Review of World Energy 2017,” bp.com. 2017, Accessed: Feb. 26, 2018. [Online]. Available: http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. | |
dc.relation | H. K. Abdel-Aal, M. A. Aggour, and M. A. Fahim, Petroleum and Gas Field Processing, Segunda ed. CRC Press, 2015. | |
dc.relation | K. M. Sundaram, M. M. Shreehan, and E. F. Olszewski, “Ethylene,” in Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Inc., 2000. | |
dc.relation | X. S. Nghiem, “Ethylene Production by Oxidative Coupling of Methane : New Process Flow Diagram Based on Adsorptive Separation.” p. 142, 2014. | |
dc.relation | P. Magnussen, “Ethylene-Keystone to the Petrochemical Industry.,” Chemie Ing. Tech., vol. 53, no. 2, pp. 116–116, Jan. 1981, doi: 10.1002/cite.330530212. | |
dc.relation | ICIS, Ethylene Production and Manufacturing Process. 2007. | |
dc.relation | H. Zimmermann, R. Walzl, H. Zimmermann, and R. Walzl, “Ethylene,” in Ullmann’s Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2009. | |
dc.relation | W. L. Leffler, in Nontechnical Language Fourth Edition. PennWell Corp, 2010. | |
dc.relation | D. Salerno, H. Arellano-Garcia, and G. Wozny, “Ethylene separation by feed-splitting from light gases,” Energy, vol. 36, no. 7, pp. 4518–4523, 2011, doi: 10.1016/j.energy.2011.03.064. | |
dc.relation | Y. Gambo, A. A. Jalil, S. Triwahyono, and A. A. Abdulrasheed, “Recent advances and future prospect in catalysts for oxidative coupling of methane to ethylene: A review,” J. Ind. Eng. Chem., vol. 59, pp. 218–229, Mar. 2018, doi: 10.1016/J.JIEC.2017.10.027 | |
dc.relation | H. R. Godini, A. Gili, O. Görke, U. Simon, K. Hou, and G. Wozny, “Performance Analysis of a Porous Packed Bed Membrane Reactor for Oxidative Coupling of Methane: Structural and Operational Characteristics,” Energy & Fuels, vol. 28, no. 2, pp. 877–890, Feb. 2014, doi: 10.1021/ef402041b. | |
dc.relation | H. R. Godini et al., “Concurrent reactor engineering, separation enhancement and process intensification; comprehensive UniCat approach for Oxidative Coupling of Methane (OCM),” Czas. Tech. Mech., vol. R. 109, z., 2012, Accessed: Mar. 02, 2018. [Online]. Available: http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-6174cdc6-59d6-45c1-a3af-f802183e8f83. | |
dc.relation | C. W. Skarstrom, Method and apparatus for fractionating gaseous mixtures by adsorption, no. US2944627 A. 1960. | |
dc.relation | D. M. Ruthven, Principles of Adsorption and Adsorption Processes, First. New York: Wiley-Interscience, 1984. | |
dc.relation | A. Garcia, “Síntesis , Caracterización y Evaluación de un Tamiz Molecular para la Deshidratación de Etanol Azeotrópico,” Universidad Nacional de Colombia, Bogotá, 2012. | |
dc.relation | R. T. Yang, Adsorbents: Fundamentals and Applications, Segunda ed. Michigan: Wiley, 2003. | |
dc.relation | R. W. W. Triebe, F. H. H. Tezel, and K. C. C. Khulbe, “Adsorption of methane, ethane and ethylene on molecular sieve zeolites,” Gas Sep. Purif., vol. 10, no. 1, pp. 81–84, Jan. 1996, doi: 10.1016/0950-4214(95)00016-X. | |
dc.relation | J. M. Gomez Martin, “Síntesis, Caracterización Y Aplicaciones Catalíticas De Zeolitas Básicas,” Tesis Doctoral, UNIVERSIDAD COMPLUTENSE DE MADRID, Madrid, 2001. | |
dc.relation | “Gas Separation by Zeolites,” in handbook of zeolite science and technology, Michigan: CRC Press, 2003, p. 1204. | |
dc.relation | F. Jendoubi, A. Mgaidi, and M. El Maaoui, “Kinetics of the dissolution of silica in aqueous sodium hydroxide solutions at high pressure and temperature,” Can. J. Chem. Eng., vol. 75, no. 4, pp. 721–727, Aug. 1997, doi: 10.1002/cjce.5450750409. | |
dc.relation | H. Lechert and H. Kacirek, “Investigations on the crystallization of X-type zeolites,” Zeolites, vol. 11, no. 7, pp. 720–728, Sep. 1991, doi: 10.1016/S0144-2449(05)80178-2. | |
dc.relation | D. Breck, E. F.-M. sieves, and undefined 1968, “Synthesis and properties of Union Carbide zeolites L, X and Y,” Soc. Chem. Ind. London. | |
dc.relation | G. H. Kühl, “Crystallization of low-silica faujasite ( SiO2 Al2O3∼2.0),” Zeolites, vol. 7, no. 5, pp. 451–457, Sep. 1987, doi: 10.1016/0144-2449(87)90014-5. | |
dc.relation | H. Lechert, “The mechanism of faujasite growth studied by crystallization kinetics,” Zeolites, vol. 17, no. 5–6, pp. 473–482, Nov. 1996, doi: 10.1016/S0144-2449(96)00041-3. | |
dc.relation | P. Recovery, C. Size, and G. H. Kiihl, “Low-silica Type X ( LSX ),” vol. 7, no. 1987, pp. 3–5, 2001. | |
dc.relation | ASTM, “ASTM D3906-03. Standard Test Method for Determination of Relative X-ray Diffraction Intensities of Faujasite-Type Zeolite-Containing Materials,” vol. i, no. Reapproved 2008. pp. 1–7, 2008, doi: 10.1520/D3906-03R08.2 | |
dc.relation | K. Jansen, H. E. Robson, and K. P. C. N.-R. Lillerud, “Characterization of zeolites by SEM,” Verif. Synth. Zeolitic Mater., vol. 2nd Revise, pp. 55-57 ST-Characterization of zeolites by SEM, 2001, doi: http://dx.doi.org/10.1016/B978-044450703-7/50109-5. | |
dc.relation | “Chapter 44 - FAU Linde Type X Si(55), Al (45),” in Verified Syntheses of Zeolitic Materials, Amsterdam: Elsevier Science, 2001, pp. 150–152. | |
dc.relation | A. Van Miltenburg, W. Zhu, F. Kapteijn, and J. A. Moulijn, “Adsorptive Separation of Light Olefin/Paraffin Mixtures,” Chem. Eng. Res. Des., vol. 84, no. 5, pp. 350–354, May 2006, Accessed: Jul. 18, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0263876206729045?via%3Dihub | |
dc.relation | D. M. Ruthven and S. C. Reyes, “Adsorptive separation of light olefins from paraffins,” Microporous Mesoporous Mater., vol. 104, no. 1–3, pp. 59–66, Aug. 2007, doi: 10.1016/j.micromeso.2007.01.005. | |
dc.relation | H. Ramírez et al., “Synthesis of coal fly ash zeolite for the catalytic wet peroxide oxidation of Orange II,” Environ. Sci. Pollut. Res., vol. 26, no. 5, pp. 4277–4287, Feb. 2019, doi: 10.1007/s11356-018-3315-1. | |
dc.relation | H. de la Hoz, Evaluacion Hidraulica de torres empacadas, 1st ed. Universidad Nacional de Colombia, 2008. | |
dc.relation | S. Liu, N. Liu, and J. Li, “Silicosis caused by rice husk ashes,” J. Occup. Health, vol. 38, no. 2, pp. 57–62, Apr. 1996, doi: 10.1539/joh.38.57. | |
dc.relation | A. M. Yusof, N. A. Nizam, and N. A. A. Rashid, “Hydrothermal conversion of rice husk ash to faujasite-types and NaA-type of zeolites,” J. Porous Mater., vol. 17, no. 1, pp. 39–47, Feb. 2010, doi: 10.1007/s10934-009-9262-y. | |
dc.relation | C. A. Arcos, D. Macíaz Pinto, and J. E. Rodríguez Páez, “La cascarilla de arroz como fuente de SiO2,” Rev. Fac. Ing. Univ. Antioquia, no. 47, pp. 7–20, 2007. | |
dc.relation | P. R. dos Santos de Castroa, A. Á. B. Maia, and R. S. Angélica, “Study of the thermal stability of faujasite zeolite synthesized from kaolin waste from the Amazon,” Mater. Res., vol. 22, no. 5, p. 20190321, Mar. 2019, doi: 10.1590/1980-5373-mr-2019-0321. | |
dc.relation | N. M. Musyoka, L. F. Petrik, E. Hums, A. Kuhnt, and W. Schwieger, “Thermal stability studies of zeolites A and X synthesized from South African coal fly ash,” Res. Chem. Intermed., vol. 41, no. 2, pp. 575–582, May 2015, doi: 10.1007/s11164-013-1211-3. | |
dc.relation | L. Garcı́a et al., “Synthesis and Granulation of a 5A Zeolite-Based Molecular Sieve and Adsorption Equilibrium of the Oxidative Coupling of Methane Gases,” J. Chem. Eng. Data, vol. 62, no. 4, pp. 1550–1557, Apr. 2017, doi: 10.1021/acs.jced.7b00061. | |
dc.relation | J. A. C. Silva, A. F. Cunha, K. Schumann, and A. E. Rodrigues, “Binary adsorption of CO2/CH4 in binderless beads of 13X zeolite,” Microporous Mesoporous Mater., vol. 187, pp. 100–107, Mar. 2014, doi: 10.1016/j.micromeso.2013.12.017. | |
dc.relation | C. W. Purnomo, C. Salim, and H. Hinode, “Synthesis of pure Na-X and Na-A zeolite from bagasse fly ash,” Microporous Mesoporous Mater., vol. 162, pp. 6–13, 2012, doi: 10.1016/j.micromeso.2012.06.007. | |
dc.relation | V. P. Mulgundmath, F. H. Tezel, T. Saatcioglu, and T. C. Golden, “Adsorption and separation of CO2/N2 and CO2/CH4 by 13X zeolite,” Can. J. Chem. Eng., vol. 90, no. 3, pp. 730–738, Jun. 2012, doi: 10.1002/cjce.20592. | |
dc.relation | Y. Li and R. T. Yang, “Hydrogen storage in low silica type X zeolites,” J. Phys. Chem. B, vol. 110, no. 34, pp. 17175–17181, 2006, doi: 10.1021/jp0634508. | |
dc.relation | S. Hosseinpour, S. Fatemi, Y. Mortazavi, M. Gholamhoseini, and M. T. Ravanchi, “Performance of CaX Zeolite for Separation of C2H6 , C2H4, and CH4 by Adsorption Process; Capacity, Selectivity, and Dynamic Adsorption Measurements,” Sep. Sci. Technol., vol. 46, no. 2, pp. 349–355, Dec. 2010, doi: 10.1080/01496395.2010.508478. | |
dc.relation | G. Narin et al., “Light olefins/paraffins separation with 13X zeolite binderless beads,” Sep. Purif. Technol., vol. 133, pp. 452–475, Sep. 2014, doi: 10.1016/j.seppur.2014.06.060. | |
dc.relation | P. A. P. Mendes, A. M. Ribeiro, K. Gleichmann, A. F. P. Ferreira, and A. E. Rodrigues, “Separation of CO 2 /N 2 on binderless 5A zeolite,” J. CO2 Util., vol. 20, pp. 224–233, Jul. 2017, doi: 10.1016/j.jcou.2017.05.003. | |
dc.relation | D. D. Do, Adsorption Analysis: Equilibria and Kinetics, vol. 2. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 1998. | |
dc.relation | T. Montanari et al., “CO2 separation and landfill biogas upgrading: A comparison of 4A and 13X zeolite adsorbents,” Energy, vol. 36, no. 1, pp. 314–319, Jan. 2011, doi: 10.1016/j.energy.2010.10.038. | |
dc.relation | R. V. Siriwardane, M.-S. Shen, E. P. Fisher, and J. Losch, “Adsorption of CO 2 on Zeolites at Moderate Temperatures,” Energy & Fuels, vol. 19, no. 3, pp. 1153–1159, May 2005, doi: 10.1021/ef040059h. | |
dc.relation | S. Oddy, J. Poupore, and F. H. Tezel, “Separation of CO2 and CH4 on CaX zeolite for use in Landfill gas separation,” Can. J. Chem. Eng., vol. 91, no. 6, pp. 1031–1039, Jun. 2013, doi: 10.1002/cjce.21756. | |
dc.relation | H. Ahn, J.-H. Moon, S.-H. Hyun, and C.-H. Lee, “Diffusion Mechanism of Carbon Dioxide in Zeolite 4A and CaX Pellets,” Adsorption, vol. 10, no. 2, pp. 111–128, Jun. 2004, doi: 10.1023/B:ADSO.0000039867.14756.ac. | |
dc.rights | Atribución-NoComercial-CompartirIgual 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-sa/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Evaluación de tamices moleculares en base zeolita X para la separación de un efluente del proceso de Acoplamiento Oxidativo de Metano (OCM) | |
dc.type | Tesis | |