dc.contributor | Jimenez Builes, Jovani Alberto | |
dc.contributor | Acosta Amaya, Gustavo | |
dc.contributor | GIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial | |
dc.creator | Ramírez Bedoya, Diego León | |
dc.date.accessioned | 2021-01-18T15:51:17Z | |
dc.date.accessioned | 2022-09-21T17:11:49Z | |
dc.date.available | 2021-01-18T15:51:17Z | |
dc.date.available | 2022-09-21T17:11:49Z | |
dc.date.created | 2021-01-18T15:51:17Z | |
dc.date.issued | 2020-10-09 | |
dc.identifier | Ramírez, D. (2020) Diseño de una estrategia para la planeación de rutas de navegación autónoma de un robot móvil en entornos interiores usando un algoritmo de aprendizaje automático. Tesis de maestría en ingeniería de sistemas. Universidad Nacional de Colombia. | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78793 | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3398737 | |
dc.description.abstract | The problem of autonomous robot navigation in internal environments must overcome various difficulties such as the dimensionality of the data, the computational cost and the possible presence of mobile objects. This thesis is oriented to the design of a planning strategy of routes for autonomous navigation of robots in interior environments based on automatic learning, for which it characterizes some strategies that the literature reports, The DQN machine learning algorithm is specified, to be implemented on the Turtlebot robotic platform of the Gazebo simulator. In addition, a series of Experiments changing the parameters of the algorithm to validate the strategy that shows how the robotic platform through the exploration of the environment and the subsequent exploitation of knowledge makes effective route planning. Video of Experiment can be found at https://youtu.be/5ehdh-BvY7E. | |
dc.description.abstract | El problema de la navegación autónoma de los robots en entornos internos debe superar varias dificultades como la dimensionalidad de los datos, el costo computacional y la posible presencia de objetos móviles. Esta tesis se orienta al diseño de una estrategia de planeación de rutas para la navegación autónoma de robots en entornos interiores con base en el aprendizaje automático. Para lo cual se caracteriza algunas estrategias que reporta la literatura, se especifica el algoritmo de aprendizaje automático DQN, para luego ser implementado en la plataforma robótica Turtlebot del simulador Gazebo. Además, se realizó una serie de experimentos cambiando los parámetros del algoritmo para hacer la validación de la estrategia que muestra como la plataforma robótica por medio de la exploración del ambiente y la posterior explotación de conocimiento hace una planeación de la ruta eficaz. Vídeo del experimento puede ser encontrado en https://youtu.be/5ehdh-BvY7E. | |
dc.language | spa | |
dc.publisher | Medellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Niels Justesen y col. “Deep learning for video game playing”. En:IEEE Transactionson Games12.1 (2019), pags. 1-20 | |
dc.relation | Joohyun Woo y Nakwan Kim. “Vision based obstacle detection and collision risk esti-mation of an unmanned surface vehicle”. En:2016 13th International Conference onUbiquitous Robots and Ambient Intelligence (URAI). IEEE. 2016, p ́ags. 461-465 | |
dc.relation | Herke van Hoof. “Machine Learning through Exploration for Perception-Driven Robo-tics”. Tesis doct. Technische Universität Darmstadt, 2016 | |
dc.relation | Min Hyuk Woo, Soo-Hong Lee y Hye Min Cha. “A study on the optimal route de-sign considering time of mobile robot using recurrent neural network and reinfor-cement learning”. En:Journal of Mechanical Science and Technology 32.10 (2018), págs. 4933-4939 | |
dc.relation | Urcera I Martín y col. “Generación de trayectorias robóticas mediante aprendizaje profundo por refuerzo”. Tesis de maestría. Universitat Politècnica de Catalunya, 2018 | |
dc.relation | Gary G Yen y Travis W Hickey. “Reinforcement learning algorithms for robotic navi-gation in dynamic environments”. En: ISA transactions 43.2 (2004), págs. 217-230 | |
dc.relation | Timothy P Lillicrap y col. “Continuous control with deep reinforcement learning”. En: arXiv preprint arXiv:1509.02971(2015). | |
dc.relation | Anish Pandey, S Pandey y DR Parhi. “Mobile robot navigation and obstacle avoidance techniques: A review”. En: Int Rob Auto J 2.3 (2017), pág. 00022. | |
dc.relation | Samuel Chenatti y col. “Deep Reinforcement Learning in Robotics Logistic Task Coor-dination”. En: 2018 Latin American Robotic Symposium, 2018 Brazilian Symposiumon Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE). IEEE. 2018, págs. 326-332 | |
dc.relation | Pablo Quintía Vidal. “Robots capaces de aprender y adaptarse al entorno a partir de sus propias experiencias”. Tesis doct. Universidade de Santiago de Compostela, 2013. | |
dc.relation | Pablo Escandell Montero. “Aprendizaje por refuerzo en espacios continuos: algoritmos y aplicación al tratamiento de la anemia renal”. Tesis doct. Universitat de València,2014. | |
dc.relation | Marco Wiering y Martijn Van Otterlo. Reinforcement learning. Vol. 12. Springer, 2012. | |
dc.relation | Gregory Kahn y col. “Self-supervised deep reinforcement learning with generalizedcomputation graphs for robot navigation”. En: 2018 IEEE International Conferenceon Robotics and Automation (ICRA). IEEE. 2018, págs. 1-8 | |
dc.relation | Anis Koubâa y col.Robot Path Planning and Cooperation. Vol. 772. Springer, 2018. | |
dc.relation | O Khatib y JF Le Maitre. “Dynamic control of manipulators operating in a complex environment”. En: On Theory and Practice of Robots and Manipulators, 3rd CISM-IFToMM Symp. Vol. 267. 1978. | |
dc.relation | Nils J Nilsson.The quest for artificial intelligence. Cambridge University Press, 2009. | |
dc.relation | Ramon Gonzalez, Marius Kloetzer y Cristian Mahulea. “Comparative study of trajec-tories resulted from cell decomposition path planning approaches”. En: 2017 21st In-ternational Conference on System Theory, Control and Computing (ICSTCC). IEEE.2017, págs. 49-54. | |
dc.relation | Jan Rosell y Pedro Iniguez. “Path planning using harmonic functions and probabilistic cell decomposition”. En: Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE. 2005, págs. 1803-1808. | |
dc.relation | Neerendra Kumar, Zoltán V ́amossy y Zsolt Miklós Szabó-Resch. “Robot path pur-suit using probabilistic roadmap”. En: 2016 IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI). IEEE. 2016, pags. 000139-000144 | |
dc.relation | Mark Pfeiffer y col. “Reinforced imitation: Sample efficient deep reinforcement learning for mapless navigation by leveraging prior demonstrations”. En: IEEE Robotics and Automation Letters3.4 (2018), págs. 4423-4430. | |
dc.relation | Chen Xia y Abdelkader El Kamel. “Neural inverse reinforcement learning in autono-mous navigation”. En: Robotics and Autonomous Systems 84 (2016), págs. 1-14. | |
dc.relation | Billy Okal y Kai O Arras. “Learning socially normative robot navigation behaviors with bayesian inverse reinforcement learning”. En: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2016, págs. 2889-2895. | |
dc.relation | Devika S Nair y P Supriya. “Comparison of Temporal Difference Learning Algorithmand Dijkstra’s Algorithm for Robotic Path Planning”. En: 2018 Second InternationalConference on Intelligent Computing and Control Systems (ICICCS). IEEE. 2018, págs. 1619-1624. | |
dc.relation | Aleksandr I Panov, Konstantin S Yakovlev y Roman Suvorov. “Grid path planningwith deep reinforcement learning: Preliminary results”. En: Procedia computer science123 (2018), págs. 347-353. | |
dc.relation | Boyi Liu, Lujia Wang y Ming Liu. “Life long federated reinforcement learning: a learning architecture for navigation in cloud robotic systems”. En: IEEE Robotics and Automation Letters 4.4 (2019), págs. 4555-4562. | |
dc.relation | Somil Bansal y col. “Combining optimal control and learning for visual navigation in novel environments”. En: Conference on Robot Learning. 2020, págs. 420-429. | |
dc.relation | David Luviano Cruz y Wen Yu. “Path planning of multi-agent systems in unknown environment with neural kernel smoothing and reinforcement learning”. En: Neurocomputing 233 (2017), págs. 34-42. | |
dc.relation | Pinxin Long y col. “Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning”. En: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018, págs. 6252-6259. | |
dc.relation | Yue Jin y col. “Efficient multi-agent cooperative navigation in unknown environments with interlaced deep reinforcement learning”. En: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, págs. 2897-2901. | |
dc.relation | Lei Tai, Giuseppe Paolo y Ming Liu. “Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation”. En: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, págs. 31-36. | |
dc.relation | Ashwini Pokle y col. “Deep local trajectory replanning and control for robot navigation”. En: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019, págs. 5815-5822. | |
dc.relation | F Lachekhab y M Tadjine. “Goal seeking of mobile robot using fuzzy actor critic learning algorithm”. En:2015 7th International Conference on Modelling, Identificationand Control (ICMIC). IEEE. 2015, págs. 1-6 | |
dc.relation | Akram Adib y Behrooz Masoumi. “Mobile robots navigation in unknown environments by using fuzzy logic and learning automata”. En: 2017 Artificial Intelligence and Robotics (IRANOPEN). IEEE. 2017, págs. 58-63. | |
dc.relation | Chia-Feng Juang y Trong Bac Bui. “Reinforcement Neural Fuzzy Surrogate-Assisted Multiobjective Evolutionary Fuzzy Systems With Robot Learning Control Application”. En: IEEE Transactions on Fuzzy Systems28.3 (2019), págs. 434-446. | |
dc.relation | Fatemeh Fathinezhad, Vali Derhami y Mehdi Rezaeian. “Supervised fuzzy reinforce-ment learning for robot navigation”. En: Applied Soft Computing40 (2016), págs. 33-41. | |
dc.relation | Alma Y Alanis y col. “Integration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic Environments”. En:Computación y Sistemas19.3 (2015), págs. 445-456. | |
dc.relation | Vignesh Prasad y col. “Learning to Prevent Monocular SLAM Failure using Reinforce-ment Learning”. En: Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing. 2018, págs. 1-9. | |
dc.relation | Beril Sirmaçek y col. “Reinforcement learning and slam based approach for mobile robot navigation in unknown environments”. En: ISPRS Workshop Indoor 3D 2019.2019. | |
dc.relation | Siti Sendari y col. “Exploration of genetic network programming with two-stage rein-forcement learning for mobile robot”. En: Telkomnika 17.3 (2019), págs. 1447-1454. | |
dc.relation | Alexander B Filimonov y Nikolay B Filimonov. “The peculiarities of application of the potential fields method for the problems of local navigation of mobile robots”. En: 2018XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE. 2018, págs. 208-211. | |
dc.relation | Rajat Kumar Panda y BB Choudhury. “An effective path planning of mobile robot using genetic algorithm”. En: 2015 IEEE International Conference on Computational Intelligence & Communication Technology. IEEE. 2015, págs. 287-291. | |
dc.relation | Michel Aractingi y col. “Improving the Generalization of Visual Navigation Policies using Invariance Regularization”. En: (2019). | |
dc.relation | Xiangyun Meng y col. “Neural autonomous navigation with riemannian motion policy”. En: 2019 International Conference on Robotics and Automation (ICRA). IEEE.2019, págs. 8860-8866. | |
dc.relation | Ramon Gonzalez, Marius Kloetzer y Cristian Mahulea. “Comparative study of trajectories resulted from cell decomposition path planning approaches”. En: 2017 21st International Conference on System Theory, Control and Computing (ICSTCC). IEEE.2017, págs. 49-54. | |
dc.relation | Yuki Kato, Koji Kamiyama y Kazuyuki Morioka. “Autonomous robot navigation system with learning based on deep Q-network and topological maps”. En: 2017IEEE/SICE International Symposium on System Integration (SII). IEEE. 2017, págs. 1040-1046. | |
dc.relation | Colin Greatwood y Arthur G Richards. “Reinforcement learning and model predictive control for robust embedded quadrotor guidance and control”. En: Autonomous Robots 43.7 (2019), págs. 1681-1693. | |
dc.relation | Haobin Shi y col. “End-to-end navigation strategy with deep reinforcement learningfor mobile robots”. En: IEEE Transactions on Industrial Informatics 16.4 (2019), págs. 2393-2402. | |
dc.relation | Jake Bruce y col. “One-shot reinforcement learning for robot navigation with interactive replay”. En: arXiv preprint arXiv:1711.10137(2017). | |
dc.relation | Carlos Celemin, Javier Ruiz-del Solar y Jens Kober. “A fast hybrid reinforcement learning framework with human corrective feedback”. En: Autonomous Robots43.5(2019), págs. 1173-1186. | |
dc.relation | Seung-Ho Han y col. “Sensor-Based Mobile Robot Navigation via Deep Reinforcement Learning”. En: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE. 2018, págs. 147-154. | |
dc.relation | Liulong Ma y col. “Learning to Navigate in Indoor Environments: from Memorizing to Reasoning”. En: arXiv preprint arXiv:1904.06933(2019). | |
dc.relation | Dmytro Mishkin, Alexey Dosovitskiy y Vladlen Koltun. “Benchmarking classic and learned navigation in complex 3D environments”. En: arXiv preprint arXiv:1901.10915(2019). | |
dc.relation | Ye Zhou, Erik-Jan van Kampen y Qiping Chu. “Hybrid Hierarchical Reinforcement Learning for online guidance and navigation with partial observability”. En: Neuro-computing 331 (2019), págs. 443-457. | |
dc.relation | Lv Qiang y col. “A model-free mapless navigation method for mobile robot using reinforcement learning”. En: 2018 Chinese Control And Decision Conference (CCDC).IEEE. 2018, págs. 3410-3415. | |
dc.relation | Mihai Duguleana y Gheorghe Mogan. “Neural networks based reinforcement learning for mobile robots obstacle avoidance”. En: Expert Systems with Applications 62 (2016), págs. 104-115. | |
dc.relation | Fidel Aznar Gregori, Mar Pujol, Ramón Rizo y col. “Obtaining fault tolerance avoidance behavior using deep reinforcement learning”. En: (2019). | |
dc.relation | T Tongloy y col. “Asynchronous deep reinforcement learning for the mobile robot navigation with supervised auxiliary tasks”. En: 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE). IEEE. 2017, págs. 68-72. | |
dc.relation | Xingyu Zhao y col. “Asynchronous reinforcement learning algorithms for solving discrete space path planning problems”. En: Applied Intelligence 48.12 (2018), págs. 4889-4904. | |
dc.relation | Hongjie Geng y col. “Reinforcement extreme learning machine for mobile robot navigation”. En: Proceedings of ELM-2016. Springer, 2018, págs. 61-73. | |
dc.relation | Xingyu Zhao y col. “Asynchronous reinforcement learning algorithms for solving discrete space path planning problems”. En: Applied Intelligence 48.12 (2018), págs. 4889-4904. | |
dc.relation | Baochang Zhang y col. “Cooperative and geometric learning for path planning of UAVs”. En: 2013 International Conference on Unmanned Aircraft Systems (ICUAS).IEEE. 2013, págs. 69-78. | |
dc.relation | Rushikesh Kamalapurkar y col. Reinforcement learning for optimal feedback control. Springer, 2018. | |
dc.relation | Christopher Gatti. Design of experiments for reinforcement learning. Springer, 2014. | |
dc.relation | Todd Hester. TEXPLORE: Temporal Difference Reinforcement Learning for Robotsand Time-Constrained Domains. Springer, 2013. | |
dc.relation | Wen Wu y col. “Deep Deterministic Policy Gradient with Clustered Prioritized Sampling”. En: International Conference on Neural Information Processing. Springer. 2018, págs. 645-654. | |
dc.relation | Shauharda Khadka y col. “Collaborative evolutionary reinforcement learning”. En: arXiv preprint arXiv:1905.00976 (2019). | |
dc.relation | Yoko Sasaki y col. “A3C Based Motion Learning for an Autonomous Mobile Robot in Crowds”. En: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE. 2019, págs. 1036-1042. | |
dc.relation | Alfonso B Labao, Mygel Andrei M Martija y Prospero C Naval. “A3C-GS: Adaptive Moment Gradient Sharing With Locks for Asynchronous Actor-Critic Agents”. En: IEEE Transactions on Neural Networks and Learning Systems (2020). | |
dc.relation | Paul Christiano y col. “Transfer from simulation to real world through learning deep inverse dynamics model”. En: arXiv preprint arXiv:1610.03518 (2016). | |
dc.relation | Joohyun Woo y Nakwan Kim. “Vision based obstacle detection and collision risk esti-mation of an unmanned surface vehicle”. En:2016 13th International Conference onUbiquitous Robots and Ambient Intelligence (URAI). IEEE. 2016, p ́ags. 461-465 | |
dc.relation | Bedoya, D. L. R., Builes, J. A. J., & Bedoya, J. W. B. (2019). Metodología de desarrollo de software para plataformas educativas robóticas usando ROS-XP. Revista Politécnica, 15(30), 55-69. | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Diseño de una estrategia para la planeación de rutas de navegación autónoma de un robot móvil en entornos interiores usando un algoritmo de aprendizaje automático | |
dc.type | Otros | |