dc.contributorJimenez Builes, Jovani Alberto
dc.contributorAcosta Amaya, Gustavo
dc.contributorGIDIA: Grupo de Investigación y Desarrollo en Inteligencia Artificial
dc.creatorRamírez Bedoya, Diego León
dc.date.accessioned2021-01-18T15:51:17Z
dc.date.accessioned2022-09-21T17:11:49Z
dc.date.available2021-01-18T15:51:17Z
dc.date.available2022-09-21T17:11:49Z
dc.date.created2021-01-18T15:51:17Z
dc.date.issued2020-10-09
dc.identifierRamírez, D. (2020) Diseño de una estrategia para la planeación de rutas de navegación autónoma de un robot móvil en entornos interiores usando un algoritmo de aprendizaje automático. Tesis de maestría en ingeniería de sistemas. Universidad Nacional de Colombia.
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78793
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3398737
dc.description.abstractThe problem of autonomous robot navigation in internal environments must overcome various difficulties such as the dimensionality of the data, the computational cost and the possible presence of mobile objects. This thesis is oriented to the design of a planning strategy of routes for autonomous navigation of robots in interior environments based on automatic learning, for which it characterizes some strategies that the literature reports, The DQN machine learning algorithm is specified, to be implemented on the Turtlebot robotic platform of the Gazebo simulator. In addition, a series of Experiments changing the parameters of the algorithm to validate the strategy that shows how the robotic platform through the exploration of the environment and the subsequent exploitation of knowledge makes effective route planning. Video of Experiment can be found at https://youtu.be/5ehdh-BvY7E.
dc.description.abstractEl problema de la navegación autónoma de los robots en entornos internos debe superar varias dificultades como la dimensionalidad de los datos, el costo computacional y la posible presencia de objetos móviles. Esta tesis se orienta al diseño de una estrategia de planeación de rutas para la navegación autónoma de robots en entornos interiores con base en el aprendizaje automático. Para lo cual se caracteriza algunas estrategias que reporta la literatura, se especifica el algoritmo de aprendizaje automático DQN, para luego ser implementado en la plataforma robótica Turtlebot del simulador Gazebo. Además, se realizó una serie de experimentos cambiando los parámetros del algoritmo para hacer la validación de la estrategia que muestra como la plataforma robótica por medio de la exploración del ambiente y la posterior explotación de conocimiento hace una planeación de la ruta eficaz. Vídeo del experimento puede ser encontrado en https://youtu.be/5ehdh-BvY7E.
dc.languagespa
dc.publisherMedellín - Minas - Maestría en Ingeniería - Ingeniería de Sistemas
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationNiels Justesen y col. “Deep learning for video game playing”. En:IEEE Transactionson Games12.1 (2019), pags. 1-20
dc.relationJoohyun Woo y Nakwan Kim. “Vision based obstacle detection and collision risk esti-mation of an unmanned surface vehicle”. En:2016 13th International Conference onUbiquitous Robots and Ambient Intelligence (URAI). IEEE. 2016, p ́ags. 461-465
dc.relationHerke van Hoof. “Machine Learning through Exploration for Perception-Driven Robo-tics”. Tesis doct. Technische Universität Darmstadt, 2016
dc.relationMin Hyuk Woo, Soo-Hong Lee y Hye Min Cha. “A study on the optimal route de-sign considering time of mobile robot using recurrent neural network and reinfor-cement learning”. En:Journal of Mechanical Science and Technology 32.10 (2018), págs. 4933-4939
dc.relationUrcera I Martín y col. “Generación de trayectorias robóticas mediante aprendizaje profundo por refuerzo”. Tesis de maestría. Universitat Politècnica de Catalunya, 2018
dc.relationGary G Yen y Travis W Hickey. “Reinforcement learning algorithms for robotic navi-gation in dynamic environments”. En: ISA transactions 43.2 (2004), págs. 217-230
dc.relationTimothy P Lillicrap y col. “Continuous control with deep reinforcement learning”. En: arXiv preprint arXiv:1509.02971(2015).
dc.relationAnish Pandey, S Pandey y DR Parhi. “Mobile robot navigation and obstacle avoidance techniques: A review”. En: Int Rob Auto J 2.3 (2017), pág. 00022.
dc.relationSamuel Chenatti y col. “Deep Reinforcement Learning in Robotics Logistic Task Coor-dination”. En: 2018 Latin American Robotic Symposium, 2018 Brazilian Symposiumon Robotics (SBR) and 2018 Workshop on Robotics in Education (WRE). IEEE. 2018, págs. 326-332
dc.relationPablo Quintía Vidal. “Robots capaces de aprender y adaptarse al entorno a partir de sus propias experiencias”. Tesis doct. Universidade de Santiago de Compostela, 2013.
dc.relationPablo Escandell Montero. “Aprendizaje por refuerzo en espacios continuos: algoritmos y aplicación al tratamiento de la anemia renal”. Tesis doct. Universitat de València,2014.
dc.relationMarco Wiering y Martijn Van Otterlo. Reinforcement learning. Vol. 12. Springer, 2012.
dc.relationGregory Kahn y col. “Self-supervised deep reinforcement learning with generalizedcomputation graphs for robot navigation”. En: 2018 IEEE International Conferenceon Robotics and Automation (ICRA). IEEE. 2018, págs. 1-8
dc.relationAnis Koubâa y col.Robot Path Planning and Cooperation. Vol. 772. Springer, 2018.
dc.relationO Khatib y JF Le Maitre. “Dynamic control of manipulators operating in a complex environment”. En: On Theory and Practice of Robots and Manipulators, 3rd CISM-IFToMM Symp. Vol. 267. 1978.
dc.relationNils J Nilsson.The quest for artificial intelligence. Cambridge University Press, 2009.
dc.relationRamon Gonzalez, Marius Kloetzer y Cristian Mahulea. “Comparative study of trajec-tories resulted from cell decomposition path planning approaches”. En: 2017 21st In-ternational Conference on System Theory, Control and Computing (ICSTCC). IEEE.2017, págs. 49-54.
dc.relationJan Rosell y Pedro Iniguez. “Path planning using harmonic functions and probabilistic cell decomposition”. En: Proceedings of the 2005 IEEE international conference on robotics and automation. IEEE. 2005, págs. 1803-1808.
dc.relationNeerendra Kumar, Zoltán V ́amossy y Zsolt Miklós Szabó-Resch. “Robot path pur-suit using probabilistic roadmap”. En: 2016 IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI). IEEE. 2016, pags. 000139-000144
dc.relationMark Pfeiffer y col. “Reinforced imitation: Sample efficient deep reinforcement learning for mapless navigation by leveraging prior demonstrations”. En: IEEE Robotics and Automation Letters3.4 (2018), págs. 4423-4430.
dc.relationChen Xia y Abdelkader El Kamel. “Neural inverse reinforcement learning in autono-mous navigation”. En: Robotics and Autonomous Systems 84 (2016), págs. 1-14.
dc.relationBilly Okal y Kai O Arras. “Learning socially normative robot navigation behaviors with bayesian inverse reinforcement learning”. En: 2016 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2016, págs. 2889-2895.
dc.relationDevika S Nair y P Supriya. “Comparison of Temporal Difference Learning Algorithmand Dijkstra’s Algorithm for Robotic Path Planning”. En: 2018 Second InternationalConference on Intelligent Computing and Control Systems (ICICCS). IEEE. 2018, págs. 1619-1624.
dc.relationAleksandr I Panov, Konstantin S Yakovlev y Roman Suvorov. “Grid path planningwith deep reinforcement learning: Preliminary results”. En: Procedia computer science123 (2018), págs. 347-353.
dc.relationBoyi Liu, Lujia Wang y Ming Liu. “Life long federated reinforcement learning: a learning architecture for navigation in cloud robotic systems”. En: IEEE Robotics and Automation Letters 4.4 (2019), págs. 4555-4562.
dc.relationSomil Bansal y col. “Combining optimal control and learning for visual navigation in novel environments”. En: Conference on Robot Learning. 2020, págs. 420-429.
dc.relationDavid Luviano Cruz y Wen Yu. “Path planning of multi-agent systems in unknown environment with neural kernel smoothing and reinforcement learning”. En: Neurocomputing 233 (2017), págs. 34-42.
dc.relationPinxin Long y col. “Towards optimally decentralized multi-robot collision avoidance via deep reinforcement learning”. En: 2018 IEEE International Conference on Robotics and Automation (ICRA). IEEE. 2018, págs. 6252-6259.
dc.relationYue Jin y col. “Efficient multi-agent cooperative navigation in unknown environments with interlaced deep reinforcement learning”. En: ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE. 2019, págs. 2897-2901.
dc.relationLei Tai, Giuseppe Paolo y Ming Liu. “Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation”. En: 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE. 2017, págs. 31-36.
dc.relationAshwini Pokle y col. “Deep local trajectory replanning and control for robot navigation”. En: 2019 International Conference on Robotics and Automation (ICRA). IEEE. 2019, págs. 5815-5822.
dc.relationF Lachekhab y M Tadjine. “Goal seeking of mobile robot using fuzzy actor critic learning algorithm”. En:2015 7th International Conference on Modelling, Identificationand Control (ICMIC). IEEE. 2015, págs. 1-6
dc.relationAkram Adib y Behrooz Masoumi. “Mobile robots navigation in unknown environments by using fuzzy logic and learning automata”. En: 2017 Artificial Intelligence and Robotics (IRANOPEN). IEEE. 2017, págs. 58-63.
dc.relationChia-Feng Juang y Trong Bac Bui. “Reinforcement Neural Fuzzy Surrogate-Assisted Multiobjective Evolutionary Fuzzy Systems With Robot Learning Control Application”. En: IEEE Transactions on Fuzzy Systems28.3 (2019), págs. 434-446.
dc.relationFatemeh Fathinezhad, Vali Derhami y Mehdi Rezaeian. “Supervised fuzzy reinforce-ment learning for robot navigation”. En: Applied Soft Computing40 (2016), págs. 33-41.
dc.relationAlma Y Alanis y col. “Integration of an Inverse Optimal Neural Controller with Reinforced-SLAM for Path Panning and Mapping in Dynamic Environments”. En:Computación y Sistemas19.3 (2015), págs. 445-456.
dc.relationVignesh Prasad y col. “Learning to Prevent Monocular SLAM Failure using Reinforce-ment Learning”. En: Proceedings of the 11th Indian Conference on Computer Vision, Graphics and Image Processing. 2018, págs. 1-9.
dc.relationBeril Sirmaçek y col. “Reinforcement learning and slam based approach for mobile robot navigation in unknown environments”. En: ISPRS Workshop Indoor 3D 2019.2019.
dc.relationSiti Sendari y col. “Exploration of genetic network programming with two-stage rein-forcement learning for mobile robot”. En: Telkomnika 17.3 (2019), págs. 1447-1454.
dc.relationAlexander B Filimonov y Nikolay B Filimonov. “The peculiarities of application of the potential fields method for the problems of local navigation of mobile robots”. En: 2018XIV International Scientific-Technical Conference on Actual Problems of Electronics Instrument Engineering (APEIE). IEEE. 2018, págs. 208-211.
dc.relationRajat Kumar Panda y BB Choudhury. “An effective path planning of mobile robot using genetic algorithm”. En: 2015 IEEE International Conference on Computational Intelligence & Communication Technology. IEEE. 2015, págs. 287-291.
dc.relationMichel Aractingi y col. “Improving the Generalization of Visual Navigation Policies using Invariance Regularization”. En: (2019).
dc.relationXiangyun Meng y col. “Neural autonomous navigation with riemannian motion policy”. En: 2019 International Conference on Robotics and Automation (ICRA). IEEE.2019, págs. 8860-8866.
dc.relationRamon Gonzalez, Marius Kloetzer y Cristian Mahulea. “Comparative study of trajectories resulted from cell decomposition path planning approaches”. En: 2017 21st International Conference on System Theory, Control and Computing (ICSTCC). IEEE.2017, págs. 49-54.
dc.relationYuki Kato, Koji Kamiyama y Kazuyuki Morioka. “Autonomous robot navigation system with learning based on deep Q-network and topological maps”. En: 2017IEEE/SICE International Symposium on System Integration (SII). IEEE. 2017, págs. 1040-1046.
dc.relationColin Greatwood y Arthur G Richards. “Reinforcement learning and model predictive control for robust embedded quadrotor guidance and control”. En: Autonomous Robots 43.7 (2019), págs. 1681-1693.
dc.relationHaobin Shi y col. “End-to-end navigation strategy with deep reinforcement learningfor mobile robots”. En: IEEE Transactions on Industrial Informatics 16.4 (2019), págs. 2393-2402.
dc.relationJake Bruce y col. “One-shot reinforcement learning for robot navigation with interactive replay”. En: arXiv preprint arXiv:1711.10137(2017).
dc.relationCarlos Celemin, Javier Ruiz-del Solar y Jens Kober. “A fast hybrid reinforcement learning framework with human corrective feedback”. En: Autonomous Robots43.5(2019), págs. 1173-1186.
dc.relationSeung-Ho Han y col. “Sensor-Based Mobile Robot Navigation via Deep Reinforcement Learning”. En: 2018 IEEE International Conference on Big Data and Smart Computing (BigComp). IEEE. 2018, págs. 147-154.
dc.relationLiulong Ma y col. “Learning to Navigate in Indoor Environments: from Memorizing to Reasoning”. En: arXiv preprint arXiv:1904.06933(2019).
dc.relationDmytro Mishkin, Alexey Dosovitskiy y Vladlen Koltun. “Benchmarking classic and learned navigation in complex 3D environments”. En: arXiv preprint arXiv:1901.10915(2019).
dc.relationYe Zhou, Erik-Jan van Kampen y Qiping Chu. “Hybrid Hierarchical Reinforcement Learning for online guidance and navigation with partial observability”. En: Neuro-computing 331 (2019), págs. 443-457.
dc.relationLv Qiang y col. “A model-free mapless navigation method for mobile robot using reinforcement learning”. En: 2018 Chinese Control And Decision Conference (CCDC).IEEE. 2018, págs. 3410-3415.
dc.relationMihai Duguleana y Gheorghe Mogan. “Neural networks based reinforcement learning for mobile robots obstacle avoidance”. En: Expert Systems with Applications 62 (2016), págs. 104-115.
dc.relationFidel Aznar Gregori, Mar Pujol, Ramón Rizo y col. “Obtaining fault tolerance avoidance behavior using deep reinforcement learning”. En: (2019).
dc.relationT Tongloy y col. “Asynchronous deep reinforcement learning for the mobile robot navigation with supervised auxiliary tasks”. En: 2017 2nd International Conference on Robotics and Automation Engineering (ICRAE). IEEE. 2017, págs. 68-72.
dc.relationXingyu Zhao y col. “Asynchronous reinforcement learning algorithms for solving discrete space path planning problems”. En: Applied Intelligence 48.12 (2018), págs. 4889-4904.
dc.relationHongjie Geng y col. “Reinforcement extreme learning machine for mobile robot navigation”. En: Proceedings of ELM-2016. Springer, 2018, págs. 61-73.
dc.relationXingyu Zhao y col. “Asynchronous reinforcement learning algorithms for solving discrete space path planning problems”. En: Applied Intelligence 48.12 (2018), págs. 4889-4904.
dc.relationBaochang Zhang y col. “Cooperative and geometric learning for path planning of UAVs”. En: 2013 International Conference on Unmanned Aircraft Systems (ICUAS).IEEE. 2013, págs. 69-78.
dc.relationRushikesh Kamalapurkar y col. Reinforcement learning for optimal feedback control. Springer, 2018.
dc.relationChristopher Gatti. Design of experiments for reinforcement learning. Springer, 2014.
dc.relationTodd Hester. TEXPLORE: Temporal Difference Reinforcement Learning for Robotsand Time-Constrained Domains. Springer, 2013.
dc.relationWen Wu y col. “Deep Deterministic Policy Gradient with Clustered Prioritized Sampling”. En: International Conference on Neural Information Processing. Springer. 2018, págs. 645-654.
dc.relationShauharda Khadka y col. “Collaborative evolutionary reinforcement learning”. En: arXiv preprint arXiv:1905.00976 (2019).
dc.relationYoko Sasaki y col. “A3C Based Motion Learning for an Autonomous Mobile Robot in Crowds”. En: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC). IEEE. 2019, págs. 1036-1042.
dc.relationAlfonso B Labao, Mygel Andrei M Martija y Prospero C Naval. “A3C-GS: Adaptive Moment Gradient Sharing With Locks for Asynchronous Actor-Critic Agents”. En: IEEE Transactions on Neural Networks and Learning Systems (2020).
dc.relationPaul Christiano y col. “Transfer from simulation to real world through learning deep inverse dynamics model”. En: arXiv preprint arXiv:1610.03518 (2016).
dc.relationJoohyun Woo y Nakwan Kim. “Vision based obstacle detection and collision risk esti-mation of an unmanned surface vehicle”. En:2016 13th International Conference onUbiquitous Robots and Ambient Intelligence (URAI). IEEE. 2016, p ́ags. 461-465
dc.relationBedoya, D. L. R., Builes, J. A. J., & Bedoya, J. W. B. (2019). Metodología de desarrollo de software para plataformas educativas robóticas usando ROS-XP. Revista Politécnica, 15(30), 55-69.
dc.rightsReconocimiento 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleDiseño de una estrategia para la planeación de rutas de navegación autónoma de un robot móvil en entornos interiores usando un algoritmo de aprendizaje automático
dc.typeOtros


Este ítem pertenece a la siguiente institución