dc.contributorHenao Toro, Martha Cecilia
dc.creatorMonsalve Camacho, Oscar Iván
dc.date.accessioned2021-04-14T20:48:09Z
dc.date.available2021-04-14T20:48:09Z
dc.date.created2021-04-14T20:48:09Z
dc.date.issued2021-02
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79401
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractA escala finca, región, país o planeta, existe un considerable número de instrumentos que evalúan cualitativa o cuantitativamente el nivel de sostenibilidad de los sistemas de producción agrícola. Las opciones se reducen si la evaluación se quiere realizar a nivel ultra detallado, donde el sistema productivo está a escala de parcela o unidad experimental; es decir, en investigación agrícola aplicada. En este contexto, es común que los mejores tratamientos sean identificados a través de las diferencias significativas que resulten del análisis estadístico de variables como rendimiento, pero no se definen desde la sostenibilidad del sistema de producción agrícola, conectando al ambiente, la sociedad y la economía como un todo. Por otra parte, muchos de los estudios de sostenibilidad agrícola se realizan sin tener en cuenta las características del suelo. Esto contrasta con el efecto directo y determinante que este recurso tiene sobre la agricultura. Además de la restricción de detalle geográfico y la escasa importancia que se le da al suelo, las actuales herramientas no abordan cuantitativamente la sostenibilidad a largo plazo. Teniendo en cuenta estas tres limitaciones, se diseñó, construyó y evaluó MSEAS (Metodología de Evaluación de la Sostenibilidad Orientada a Experimentos Agrícolas Asociados al Suelo), una herramienta de análisis de la sostenibilidad agrícola basada en indicadores, que reúne las tres dimensiones de la sostenibilidad: ambiental, social y económica, y a través de un índice cuantitativo mide el nivel actual o futuro de la sostenibilidad de los tratamientos evaluados en experimentos sobre manejo del suelo. MSEAS se construyó con cuatro características importantes: 1) adaptable a experimentos asociados a actividades de manejo del suelo con diversas características espaciales, temporales y de medición. 2) modulable: dependiendo de la cantidad y calidad de los datos, se tiene la opción de evaluar solo la sostenibilidad actual o la sostenibilidad actual y futura. 3) cuantificable: el nivel de sostenibilidad de los tratamientos se determina a través de un índice cuantitativo. 4) inferencial: es posible estimar un importante número de indicadores mediante herramientas de modelación y simulación, como LCA (Life Cicle Assessment) y DSSAT (Decision Support System for Agrotechnology Transfer). Antes de construir MSEAS, se plantearon cuatro documentos de línea base: 1) Revisión sobre indicadores de sostenibilidad agrícola asociados a propiedades, procesos y manejo del suelo 2) Evaluación de indicadores de calidad del suelo con posibilidad de uso a escala de parcela o unidad experimental 3) Esfuerzo de labor. Indicador para estimar la magnitud del esfuerzo físico en las labores agrícolas 4) Marco de selección del conjunto mínimo de indicadores para evaluaciones de sostenibilidad agrícola a escala de parcela. Estos trabajos sirvieron de línea base y sustento técnico para la puesta a punto de MSEAS, la cual se desarrolló a través de tres procesos: diseño, construcción y evaluación con datos simulados, uso en condiciones actuales y uso en escenarios futuros. Se utilizaron datos de experimentos reales (estudios de caso) para evaluar la metodología. La principal conclusión que se desprende de esta evaluación es que es viable el uso de MSEAS con experimentos agrícolas orientados al suelo, ya que se evidenció su capacidad para identificar los tratamientos ambiental, social y económicamente más sostenibles en los experimentos evaluados. (Texto tomado de la fuente).
dc.description.abstractAt the farm, region, country, or global scale, there are many instruments that qualitatively or quantitatively assess the level agricultural production systems sustainability. The options are reduced if the evaluation is to be carried out at the ultra-detailed level, where the production system is at the plot or experimental unit scale, i.e., in applied agricultural research. In this context, it is common for the best treatments to be identified through the significant differences resulting from the statistical analysis of variables such as yield. However, they are not defined from the sustainability of the agricultural production system, connecting the environment, society, and the economy. On the other hand, many agricultural sustainability studies are conducted without considering soil characteristics. This contrasts with the direct and determining effect that this resource has on agriculture. In addition to the restriction of geographic detail and the low importance given to soil, current tools do not quantitatively address long-term sustainability. With these three limitations in mind, MSEAS (Methodology for Sustainability Evaluation oriented to Soil Associated Agricultural Experiments), an indicator-based agricultural sustainability analysis tool, was designed, constructed, and evaluated. It brings together the three dimensions of sustainability: environmental, social, and economical, and through a quantitative index measures the current or future level of sustainability of the treatments evaluated in soil management experiments. MSEAS was constructed with four essential characteristics: 1) Adaptable to experiments associated with soil management activities with diverse spatial, temporal, and measurement characteristics. 2) Modular, since depending on the quantity and quality of the data, there is the option of evaluating only current sustainability or current and future sustainability. 3) Quantifiable: the level of sustainability of treatments is determined through a quantitative index. 4) Inferential, since it is possible to estimate many indicators using modeling and simulation tools, such as LCA (Life Cycle Assessment) and DSSAT (Decision Support System for Agrotechnology Transfer). Before building MSEAS, four baseline documents were proposed: 1) Review of agricultural sustainability indicators associated with soil properties, processes, and management 2) Evaluation of soil quality indicators with the possibility of use at plot or experimental unit scale 3) Labour effort. Indicator to estimate the magnitude of physical effort in agricultural work. 4) Framework for the selection of the minimum set of indicators for agricultural sustainability evaluations at the plot scale. These works served as a baseline and technical support for the development of MSEAS, which was developed through three processes: design, construction and evaluation with simulated data, use in current conditions, and future scenarios. Data from real experiments (case studies) were used to evaluate the methodology. The main conclusion drawn from this evaluation is that the use of MSEAS with soil-oriented agricultural experiments is feasible. Its ability to identify the most environmentally, socially, and economically sustainable treatments in the evaluated experiments was evidenced.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias Agrarias - Doctorado en Ciencias Agrarias
dc.publisherEscuela de posgrados
dc.publisherFacultad de Ciencias Agrarias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbbona, E.A., Sarandón, S.J., Marasas, M.E., Astier, M., 2007. Ecological sustainability evaluation of traditional management in different vineyard systems in Berisso, Argentina. Agric. Ecosyst. Environ. 119, 335–445. https://doi.org/10.1016/j.agee.2006.08.001
dc.relationAcar, M., Celik, I., Günal, H., 2018. Effects of long-term tillage systems on aggregate-associated organic carbon in the eastern Mediterranean region of Turkey. Eurasian Eurasian J Soil Sci. 7 (1) 51 - 58, http://doi.org/10.18393/ejss.335329
dc.relationActon, D.F., L.J. Gregorich., 1995. The health of our soils: Toward sustainable agriculture in Canada. Centre for Land and Biological Resources Research, Research Branch, Agriculture and Agri-Food Canada, Ottawa. Publication 1906/E, 138 p.
dc.relationAcuña, G. A. C. 2009. Formulación y evaluación financiera de proyectos de inversión con aplicaciones en Excel. Bogotá, Colombia: Universidad Nacional de Colombia. Facultad de Ciencias Económicas.
dc.relationAdavi, Z., Moradi, R., Saeidnejad, A.H., Tadayon, M.R., Mansouri, H., 2018. Assessment of potato response to climate change and adaptation strategies. Sci. Hortic. (Amsterdam). 228, 91–102. https://doi.org/10.1016/j.scienta.2017.10.017
dc.relationAdhikari, K., Hartemink, A.E., 2016. Linking soils to ecosystem services - A global review. Geoderma 262, 101–111. https://doi.org/10.1016/j.geoderma.2015.08.009
dc.relationAgronet - Colombian Ministry of Agriculture and Rural Development, 2017. Statistics for the Agricultural Sector. Available at: http://www.agronet.gov.co (accessed 20.02.20). Agronet- Colombian Ministry of Agriculture and Rural Development., 2019. Reporte: Área, Producción y Rendimiento Nacional por Cultivo (Papa). Ministerio de Agricultura y Desarrollo Rural, Colombia. https://www.agronet.gov.co/estadistica/Paginas/home.aspx?cod=1. Accessed 19 Sept 2019
dc.relationAharonov-Nadborny, R., Tsechansky, L., Raviv, M., Graber, E.R., 2018. Mechanisms governing the leaching of soil metals as a result of disposal of olive mill wastewater on agricultural soils. Sci. Total Environ. 630, 1115–1123. https://doi.org/10.1016/j.scitotenv.2018.02.270
dc.relationAllahyari, M.S., Daghighi Masouleh, Z., Koundinya, V., 2016. Implementing Minkowski fuzzy screening, entropy, and aggregation methods for selecting agricultural sustainability indicators. Agroecol. Sustain. Food Syst. 40, 277–294. https://doi.org/10.1080/21683565.2015.1133467
dc.relationAltieri, M y Nicholls, C. 2008. Los impactos del cambio climático sobre las comunidades campesinas y de agricultores tradicionales y sus respuestas adaptativas. Agroecología. 3: 7–28. http://revistas.um.es/agroecologia/article/view/95471
dc.relationAltieri, M.A., 2018. Agroecology. The science of sustainable agriculture, 2nd ed. Taylor y Francis Group, United Kingdom.
dc.relationAmacher, M. C., O’Neil, K. P., Perry, C. H., 2007. Soil vital signs: A new Soil Quality Index (SQI) for assessing forest soil health. Res. Pap. RMRS-RP-65. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station. 12 p. https://doi.org/10.2737/RMRS-RP-65
dc.relationAndrews, S.S., Karlen, D.L., Cambardella, C.A., 2004. The Soil Management Assessment Framework. Soil Sci. Soc. Am. J. 68, 1945. https://doi.org/10.2136/sssaj2004.1945
dc.relationAndrews, S.S., Karlen, D.L., Mitchell, J.P., 2002. A comparison of soil quality indexing methods for vegetable production systems in Northern California. Agric. Ecosyst. Environ. 90, 25–45. https://doi.org/10.1016/S0167-8809(01)00174-8
dc.relationAntón, A., 2004. Utilización del análisis del ciclo de vida en la evaluación del impacto ambiental del cultivo bajo invernadero mediterráneo. Barcelona. Universitat Politècnica de Catalunya. PhD Thesis. http://tdx.cat/handle/10803/6827.
dc.relationAñez, B., Espinoza, W., 2006. Respuesta de la papa a la aplicación fraccionada de nitrógeno y potasio. Agric. Andin. 11, 28–38.
dc.relationArias, M.E., Gonzáles- Pérez, J.A., González-Vila, F.J., Ball, A.S., 2005. Soil health — a new challenge for microbiologists and. Int. Microbiol. 8, 13–21. https://doi.org/http://hdl.handle.net/10261/2130
dc.relationArizpe, N., Giampietro, M., Ramos-Martin, J., 2011. Food security and fossil energy dependence: An international comparison of the use of fossil energy in agriculture (1991-2003). CRC. Crit. Rev. Plant Sci. 30, 45–63. https://doi.org/10.1080/07352689.2011.554352
dc.relationAstier, M., Speelman, E.N., López-Ridaura, S., Masera, O.R., Gonzalez-Esquivel, C.E., 2011. Sustainability indicators, alternative strategies and trade-offs in peasant agroecosystems: Analysing 15 case studies from Latin America. Int. J. Agric. Sustain. 9, 409–422. https://doi.org/10.1080/14735903.2011.583481
dc.relationAudsley, E., Alber, S., Clift, R., Cowell, S., Crettaz, P., Gaillard, G., Hausheer, J., Jolliett, O., Kleijn, R., Mortensen, B., Pearce, D., Roger, E., Teulon, H., Weidema, B., Van Zeijts, H., 2003. Harmonisation of environmental life cycle assessment for agriculture, European Commission DG VI Agriculture. Retrieved from http://jurcom5.juris.de/bundesrecht/bbodschg/
dc.relationBaggs, E.M., 2011. Soil microbial sources of nitrous oxide: Recent advances in knowledge, emerging challenges and future direction. Curr. Opin. Environ. Sustain. 3, 321–327. https://doi.org/10.1016/j.cosust.2011.08.011
dc.relationBai, Z., Caspari, T., Gonzalez, M.R., Batjes, N.H., Mäder, P., Bünemann, E.K., de Goede, R., Brussaard, L., Xu, M., Ferreira, C.S.S., Reintam, E., Fan, H., Mihelič, R., Glavan, M., Tóth, Z., 2018. Effects of agricultural management practices on soil quality: A review of long-term experiments for Europe and China. Agric. Ecosyst. Environ. 265, 1–7. https://doi.org/10.1016/j.agee.2018.05.028
dc.relationBailey, V. L., Bond-Lamberty, B., DeAngelis, K., Grandy, A. S., Hawkes, C. V., Heckman, K., Lajtha, K., Phillips, R. P., Sulman, B. N., Todd-Brown, K. E.O., Wallenstein, M. D., 2018. Soil carbon cycling proxies: Understanding their critical role in predicting climate change feedbacks. Global Change Biology, 24(3), 895–905. http://doi.org/10.1111/gcb.13926
dc.relationBalaguera-López, H., Álvarez-Herrera, J., Martínez-Arévalo, G., Balaguera, W., 2011. El contenido de arcilla del suelo influye en el rendimiento de un cultivo de tomate (Solanum lycopersicum L.). Rev. Colomb. Cienc. Hortic, 3(2), 199-209. https://doi.org/10.17584/rcch.2009v3i2.1213
dc.relationBarrera, L. 1998. Fertilización del cultivo de la papa en los departamentos de Cundinamarca y Boyacá. in: Guerrero, R (Ed), Fertilización de cultivos en clima frío. Monómeros Colombo Venezolanos S.A.
dc.relationBarto, E.K., Alt, F., Oelmann, Y., Wilcke, W., Rillig, M.C., 2010. Contributions of biotic and abiotic factors to soil aggregation across a land use gradient. Soil Biol. Biochem. 42, 2316–2324. https://doi.org/10.1016/j.soilbio.2010.09.008
dc.relationBattilani, A., Plauborg, F.L., Hansen, S., Dolezal, F., Mazurczyk, W., Bizik, J., 2008. Nitrogen uptake and nitrogen use efficiency of fertigated potatoes. Acta Hortic. 792, 61–67. https://doi.org/http://dx.doi.org/10.17660/ActaHortic.2008.792.4 10
dc.relationBaush, J.C., Bojórquez, L.T., Eakin, H., 2014. Agro-environmental sustainability assessment using multicriteria decision analysis and system analysis. Sustainable Science. 1–17. https://doi.org/10.1007/s11625-014-0243-y
dc.relationBélanger, V., Vanasse, A., Parent, D., Allard, G., y Pellerin, D., 2012. Development of agri-environmental indicators to assess dairy farm sustainability in Quebec, Eastern Canada. Ecological Indicators, 23, 421-430. http://doi.org/10.1016/j.ecolind.2012.04.027
dc.relationBell, S., Morse, S., 2008. Sustainability Indicators: Measuring the Immeasurable?, second ed. Earthscan.London.Sterling,VA. https://doi.org/10.1016/S0743-0167(99)00036-4
dc.relationBenoît, C., Norris, G.A., Valdivia, S., Ciroth, A., Moberg, A., Bos, U., Prakash, S., Ugaya, C., Beck, T., 2010. The guidelines for social life cycle assessment of products: Just in time! Int. J. Life Cycle Assess. 15, 156–163. https://doi.org/10.1007/s11367-009-0147-8
dc.relationBentrup, F., Küsters, J., Lammel, J., Kuhlmann, H. 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5 (6): 349e357. https://doi.org/10.1007/BF02978670
dc.relationBergström, L. F., y Kirchmann, H. 2010. Leaching of Total Nitrogen from Nitrogen-15-Labeled Poultry Manure and Inorganic Nitrogen Fertilizer. Journal of Environment Quality, 28(4), 1283. https://doi.org/10.2134/jeq1999.00472425002800040032x
dc.relationBernard, E., Larkin, R.P., Tavantzis, S., Erich, M.S., Alyokhin, A., Sewell, G., Lannan, A., Gross, S.D., 2012. Compost, rapeseed rotation, and biocontrol agents significantly impact soil microbial communities in organic and conventional potato production systems. Appl. Soil Ecol. 52, 29–41. https://doi.org/10.1016/j.apsoil.2011.10.002
dc.relationBernard, F., Van Noordwijk, M., Luedeling, E., Villamor, G. B., Sileshi, G. W., Namirembe, S., 2014. Social actors and unsustainability of agriculture. Curr. Opin. Environ. Sustain. 6, 155–161, http://doi.org/10.1016/j.cosust.2014.01.002
dc.relationBeyer, L., Sieling, K., Pingpank, K., 1999. The impact of a low humus level in arable soils on microbial properties, soil organic matter quality and crop yield. Biol. Fertil. Soils 28, 156–161. https://doi.org/10.1007/s003740050478
dc.relationBinder, C.R., Feola, G., Steinberger, J.K., 2010. Considering the normative, systemic and procedural dimensions in indicator-based sustainability assessments in agriculture. Environ. Impact Assess. Rev. 30, 71–81. https://doi.org/10.1016/j.eiar.2009.06.002
dc.relationBlanco-Canqui, H., Lal, R., 2004. Mechanisms of carbon sequestration in soil aggregates. CRC. Crit. Rev. Plant Sci. 23, 481–504. https://doi.org/10.1080/07352680490886842
dc.relationBlum, W., 2005. Soils and climate change. Soils y Sediments. 5 (2): 67 – 68. https://doi.org/10.1065/jss2005.02.006
dc.relationBockstaller, C., Feschet, P., y Angevin, F., 2015. Issues in evaluating sustainability of farming systems with indicators. Oilseeds y Fats Crops and Lipids, 22(1), D102. http://doi.org/10.1051/ocl/2014052
dc.relationBockstaller, C., Guichard, L., Keichinger, O., Girardin, P., Galan, M. B., y Gaillard, G. 2009. Comparison of methods to assess the sustainability of agricultural systems. A review. Agronomy for Sustainable Development, 29, 223–235. http://doi.org/10.1051/agro:2008058
dc.relationBodirsky, B.L., Popp, A., Lotze-Campen, H., Dietrich, J.P., Rolinski, S., Weindl, I., Schmitz, C., Müller, C., Bonsch, M., Humpenöder, F., Biewald, A., Stevanovic, M., 2014. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5. https://doi.org/10.1038/ncomms4858
dc.relationBoeckx, P., Van Cleemput, O., 2001. Estimates of N2Oand CH4 fluxes fromagricultural lands in various regions in Europe. Nutr. Cycl. agroecosystems 60, 35–47.
dc.relationBogotá trade chamber (CCB)., 2019. Steps to create company. In: www.ccb.org.co; (accessed 25.06.19).
dc.relationBojacá, C.R., A. Cooman y H. Ubaque. 2009. Ecofisiología del cultivo y manejo del clima. pp. 65–83. En: Escobar, H y Lee, R (Ed). Manual de producción de tomate bajo invernadero. Fundación Universidad Jorge Tadeo Lozano.
dc.relationBojacá, C.R., Wyckhuys, K.A.G., Schrevens, E., 2014. Life cycle assessment of Colombian greenhouse tomato production based on farmer-level survey data. J. Clean. Prod. 69, 26–33. https://doi.org/10.1016/j.jclepro.2014.01.078
dc.relationBone, J., Head, M., Barraclough, D., Archer, M., Scheib, C., Flight, D., Voulvoulis, N., 2010. Soil quality assessment under emerging regulatory requirements. Environ. Int. 36, 609–622. https://doi.org/10.1016/j.envint.2010.04.010
dc.relationBorg, G. (1990). Psychophysical scaling with applications in physical work and the perception of exertion. Scandinavian Journal of Work, Environment y Health, 16, 55-58. Recuperado de www.jstor.org/stable/40965845
dc.relationBorg, G. A. V. (1982). Psychophysical bases of perceived exertion. Medicine y Science in Sports y Exercise, 14(5), 377–381. https://doi.org/10.1249/00005768-198205000-00012
dc.relationBoshell, J. F., 2008. Elementos de análisis para el manejo de las amenazas del cambio climáticas en la agricultura colombiana. Revista de Innovación y Cambio tecnológico. 7: 38-50. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=24511yshelfbrowse_itemnumber=25693
dc.relationBouma, J., Montanarella, L., Evanylo, G., 2019. The challenge for the soil science community to contribute to the implementation of the UN Sustainable Development Goals. Soil Use Manag. 35, 538–546. https://doi.org/10.1111/sum.12518
dc.relationBouwman, A.F., Van Der Hoek, K.W., Olivier, J.G.J., 1995. Uncertainties in the global source distribution of nitrous oxide. J. Geophys. Res. 100, 2785–2800. https://doi.org/10.1029/94JD02946
dc.relationBrentrup, F., Kusters, J., Lammel, J., Kuhlmann, H., 2000. Methods to estimate on-field nitrogen emissions from crop production as an input to LCA studies in the agricultural sector. Int. J. Life Cycle Assess. 5, 349–357. https://doi.org/10.1006/bbrc.2000.4000
dc.relationBrouder, S. M., y Volenec, J. J., 2008. Impact of climate change on crop nutrient and water use efficiencies. Physiol Plant. 133: 705–724. https://doi.org/10.1111/j.1399-3054.2008.01136.x
dc.relationBrunett Pérez, L., González Esquivel, C., García Hernández, L.A., 2005. Evaluación de la sustentabilidad de dos agroecosistemas campesinos de producción de maíz y leche, utilizando indicadores. Livest. Res. Rural Dev. 17.
dc.relationBurger, J.A., Kelting, D.L., 1999. Using soil quality indicators to assess forest stand management. For. Ecol. Manage. 122, 155–166. https://doi.org/https://doi.org/10.1016/S0378-1127(99)00039-0
dc.relationBurton, D.L., Zebarth, B.J., Gillam, K.M., Macleod, J.A., 2008. Effect of split application of fertilizer nitrogen on N2O emissions from potatoes.
dc.relationCan. J. Soil Sci. 99, 117–125. https://doi.org/10.1139/cjss-2018-0150 Camargo, J.A., Alonso, Á., 2006. Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment. Environ. Int. 32, 831–849. https://doi.org/10.1016/j.envint.2006.05.002
dc.relationCampbell, B.M., Thornton, P., Zougmoré, R., van Asten, P., Lipper, L., 2014. Sustainable intensification: What is its role in climate smart agriculture? Curr. Opin. Environ. Sustain. 8, 39–43. https://doi.org/10.1016/j.cosust.2014.07.002
dc.relationCano-Betancur, S, M., Gallego-Becerra, M., Chavarriaga-Montoya, W., 2011. Efecto de la aplicación de calcio y fósforo en un suelo ácido y la respuesta en el cultivo de tomate chonto (Solanum lycopersicum L. Mill). Agronomía 19 (1): 77-87. Retrieved of: http://agronomia.ucaldas.edu.co/downloads/Agronomia%2019(1)%20Completa.pdf#page=77
dc.relationCastellini, C., Boggia, A., Cortina, C., Dal Bosco, A., Paolotti, L., Novelli, E., y Mugnai, C., 2012. A multicriteria approach for measuring the sustainability of different poultry production systems. Journal of Cleaner Production, 37, 192-201. http://doi.org/10.1016/j.jclepro.2012.07.006
dc.relationCellura, M., Longo, S., Mistretta, M., 2012. Life Cycle Assessment (LCA) of protected crops: An Italian case study. J. Clean. Prod. 28, 56–62. https://doi.org/10.1016/j.jclepro.2011.10.021
dc.relationChen, Y., Camps-Arbestain, M., Shen, Q., Singh, B., Cayuela, M.L., 2018. The long-term role of organic amendments in building soil nutrient fertility: a meta-analysis and review. Nutr. Cycl. Agroecosystems 111, 103–125. https://doi.org/10.1007/s10705-017-9903-5
dc.relationCherubin, M.R., Karlen, D.L., Cerri, C.E.P., Franco, A.L.C., Tormena, C.A., Davies, C.A., Cerri, C.C., 2016a. Soil quality indexing strategies for evaluating sugarcane expansion in Brazil. PLoS One 11, 1–26. https://doi.org/10.1371/journal.pone.0150860
dc.relationCherubin, M.R., Karlen, D.L., Franco, A.L.C., Cerri, C.E.P., Tormena, C.A., Cerri, C.C., 2016b. A soil management assessment framework (SMAF) evaluation of brazilian sugarcane expansion on soil quality. Soil Sci. Soc. Am. J. 80, 215–226. https://doi.org/10.2136/sssaj2015.09.0328
dc.relationChong, I.G., Jun, C.H., 2005. Performance of some variable selection methods when multicollinearity is present. Chemom. Intell. Lab. Syst. 78, 103–112. https://doi.org/10.1016/j.chemolab.2004.12.011
dc.relationCiais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Quéré, C. L., Myneni, R. B, Piao, S., Thornton, P., 2013. Carbon and other biogeochemical cycles, in: Stocker, T.F., Qin. D., Plattner, G-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P. M. (Eds.), Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Chapter 6. Cambridge University Press, pp 465–570.
dc.relationClarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., Richels, R., 2007. Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations. Sub-report 2.1A of Synthesis and Assessment Product 2.1 by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Department of Energy, Office of Biological y Environmental Research, Washington, 7 DC., USA, 154 pp.
dc.relationCordell, D., Drangert, J.O., White, S., 2009. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 19, 292–305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
dc.relationDaccache, A., Keay, C., Jones, R.J.A., Waterhead, E.K., Stalhman, M.A., Knox, J.W., 2012. Climate change and land suitability for potato production in England and Wales: impacts and adaptation. J. Agric. Sci. 150, 161–177. https://doi.org/10.1017/S0021859611000839
dc.relationDane, J.H., Hopmans, J.H., 2002. Water retention and storage. In: Dane, J.H., Topp, G.C (Editors). Methods of soil analysis Part 4, SSSA Book Ser 5. Madison, WI.: SSSA. pp. 671–717.
dc.relationDantsis, T., Douma, C., Giourga, C., Loumou, A., Polychronaki, E.A., 2010. A methodological approach to assess and compare the sustainability level of agricultural plant production systems. Ecol. Indic. 10, 256–263. https://doi.org/10.1016/j.ecolind.2009.05.007
dc.relationDavidson, E.A., Janssens, I.A., 2006. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature. Reviews. 440 (9): 165-173. https://doi.org/10.1038/nature04514
dc.relationDe Jager, a., Onduru, D., van Wijk, M.S., Vlaming, J., Gachini, G.N., 2001. Assessing sustainability of low-external-input farm management systems with the nutrient monitoring approach: a case study in Kenya. Agric. Syst. 69, 99–118. https://doi.org/10.1016/S0308-521X(01)00020-8
dc.relationDe Jong, S., 1993. SIMPLS: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 18, 251–263. https://doi.org/10.1016/0169-7439(93)85002-X
dc.relationDe La Rosa, D., Mayol, F., Diaz-Pereira, E., Fernandez, M., 2004. A land evaluation decision support system (MicroLEIS DSS) for agricultural soil protection: With Special reference to the Mediterranean region. Environmental Modelling y Software. 19(10): 929-942
dc.relationDe Luca, A.I., Falcone, G., Stillitano, T., Iofrida, N., Strano, A., Gulisano, G., 2018. Evaluation of sustainable innovations in olive growing systems: A Life Cycle Sustainability Assessment case study in southern Italy. J. Clean. Prod. 171, 1187–1202. https://doi.org/10.1016/j.jclepro.2017.10.119
dc.relationDe Luca, A.I., Iofrida, N., Leskinen, P., Stillitano, T., Falcone, G., Strano, A., Gulisano, G., 2017. Life cycle tools combined with multi-criteria and participatory methods for agricultural sustainability: Insights from a systematic and critical review. Sci. Total Environ. 595, 352–370. https://doi.org/10.1016/j.scitotenv.2017.03.284
dc.relationDe Luca, A.I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., Vittuari, M., 2015. Multidisciplinary and innovative methodologies for sustainable management in agricultural systems. Environ. Eng. Manag. J. 14 (7):1–11 Retrieved from: http://omicron.ch.tuiasi.ro/EEMJ/pdfs/vol14/no7/11_1052_De_Luca_14.pdf.
dc.relationDe Luca, A.I., Molari, G., Seddaiu, G., Toscano, A., Bombino, G., Ledda, L., Milani, M., Vittuari, M., 2015. Multidisciplinary and Innovative Methodologies for Sustainable Management in Agricultural Systems: the Mimesmas Project. Environ. Eng. Manag. J. 14, 1571–1581.
dc.relationDe Olde, E. M., Oudshoorn, F., Bokkers, E., Stubsgaard, A., Sørensen, C., y de Boer, I., 2016a. Assessing the Sustainability Performance of Organic Farms in Denmark. Sustainability, 8(9), 957. http://doi.org/10.3390/su8090957
dc.relationDe Olde, E., Moller, H., Marchand, F., McDowell, R.W., MacLeod, C.J., Sautier, M., Halloy, S., Barber, A., Benge, J., Bockstaller, C., Bokkers, E.A.M., De Boer, I.J.M., Legun, K.A., Le Quellec, I., Merfield, C., Oudshoorn, F.W., Reid, J., Shader, C., Szymanski, E., Sorensen, C.A.G., Whitehead, J., Manhire, J., 2016b. When experts disagree: the need to rethink indicator selection for assessing sustainability of agriculture. Environ. Dev. Sustain. 1–16. https://doi.org/10.1007/s10668-016-9803-x
dc.relationDe Olde, E.M., Oudshoorn, F.W., Sørensen, C.A.G., Bokkers, E.A.M., De Boer, I.J.M., 2016c. Assessing sustainability at farm-level: Lessons learned from a comparison of tools in practice. Ecol. Indic. 66, 391–404. https://doi.org/10.1016/j.ecolind.2016.01.047
dc.relationDe Paul Obade, V., Lal, R., 2016. A standardized soil quality index for diverse field conditions. Sci. Total Environ. 541, 424–434. https://doi.org/10.1016/j.scitotenv.2015.09.096
dc.relationDempster, D.N., Jones, D.L., Murphy, D. V., 2012. Clay and biochar amendments decreased inorganic but not dissolved organic nitrogen leaching in soil. Soil Res. 50, 216–221. https://doi.org/10.1071/SR11316
dc.relationDepartamento Administrativo Nacional de Estadística (DANE)., 2017. El cultivo de la papa (Solanum tuberosum L.) y un estudio de caso de los costos de producción de papa Pastusa Suprema. Insumos y factores asociados a la producción agropecuaria. Boletín mensual No 15. Recuperado de https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_ene_2017.pdf
dc.relationDeytieux, V., Munier-Jolain, N., Caneill, J., 2016. Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods. European Journal of Agronomy, 72, 107–126. http://doi.org/10.1016/j.eja.2015.10.005 Dirección de Impuestos y Aduanas Nacionales (DIAN)., 2019. Estatuto tributario. www.dian.gov.co; consulta: junio de 2019.
dc.relationDizdaroglu, D., y Yigitcanlar, T., 2014. A parcel-scale assessment tool to measure sustainability through urban ecosystem components: The MUSIX model. Ecological Indicators, 41, 115-130. http://doi.org/10.1016/j.ecolind.2014.01.037
dc.relationDong, F., Mitchell, P. D., y Colquhoun, J. 2015. Measuring farm sustainability using data envelope analysis with principal components: The case of Wisconsin cranberry. Journal of Environmental Management, 147, 175–183. http://doi.org/10.1016/j.jenvman.2014.08.025
dc.relationDoran, J. W., Zeiss, M. R., 2000. Soil health and sustainability: managing the biotic component of soil quality. Life Sci. 62(16), 1433–1441. https://doi.org/10.1016/S0024-3205(98)00082-4
dc.relationDoran, J.W., Parkin, T.B., 1994. Defining an assesing soil quality, in: Doran, J.W. (Ed.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, Madison, USA, pp. 3–21.
dc.relationDrechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Singh, H., Wichelns, D., 2015. Managing water and nutrients to ensure global food security, while sustaining ecosystem services, in: Drechsel, P., Heffer, P., Magen, H., Mikkelsen, R., Wichelns, D (Eds), Managing Water and Fertilizer for Sustainable Agricultural Intensification. International Fertilizer Industry Association (IFA), International Water Management Institute (IWMI), International Plant Nutrition Institute (IPNI), and International Potash Institute (IPI). First edition, Paris, France, pp 1-8
dc.relationDzotsi, K.A., Jones, J.W., Adiku, S.G.K., Naab, J.B., Singh, U., Porter, C.H., Gijsman, A.J., 2010. Modeling soil and plant phosphorus within DSSAT. Ecol. Modell. 221, 2839–2849. https://doi.org/10.1016/j.ecolmodel.2010.08.023
dc.relationEcoinvent Centre. 2017. Ecoinvent Data V. 2.0. Version 3.4. Swiss centre for life cycle inventories. Available from: http://www.ecoinvent.org.
dc.relationElkington, J., 1997. Cannibals With Forks. The Triple Bottom Line of 21st Century Business. Capstone Publishing, Oxford.
dc.relationElkington, J., 1998. Partnerships from cannibals with forks: The triple bottom line of 21st-century business. Environ. Qual. Manag. 8, 37–51. https://doi.org/10.1002/tqem.3310080106
dc.relationEngels, C., Kirkby, E., White, P., 2012. Mineral nutrition, yield and source–sink relationships, in: Marschner, P (Ed), Mineral nutrition of higher plants. Third edition. Elsevier. P: 347-368
dc.relationEuropean Comission., 2001. A Framework for Indicators for the Economic and Social Dimensions of Sustainable Agriculture and Rural Development. https://doi.org/10.1021/jacs.6b12944
dc.relationFAO (Food and Agriculture Organization of the United Nations)., 2009. International year of the potato 2008: new light on a hidden treasure. http://www.potato2008.org/en/events/book.html
dc.relationFAOSTAT., 2019. World potato production quantity, yields and harvested areas for 2017. http://www.fao.org/faostat/en/#data/QC. Accessed 19 Sept 2019
dc.relationFarahani, E., Emami, H., Keller, T., 2018. Impact of monovalent cations on soil structure. Part II. Results of two Swiss soils. Int. Agrophysics 32, 69–80. https://doi.org/10.1515/intag-2016-0092
dc.relationFederación colombiana de productores de papa (Fedepapa); Ministerio de Ambiente, Vivienda y Desarrollo Territorial (Minambiente)., 2004. Guía ambiental para el cultivo de la papa. Federación Colombiana de Productores de Papa
dc.relationFernandes, J. C., Gamero, C. A., Rodrigues, J. G. L., Mirás-Avalos, J, M., 2011. Determination of the quality index of a Paleudult under sunflower culture and different management systems. Soil and Tillage Research 112: 167–174. https://doi.org/10.1016/j.still.2011.01.001 Filzmoser, P y Gschwandtner, M. 2017. Mvoutlier: Multivariate outlier detection based on robust methods. R package version 2.0.8. https://CRAN.R-project.org/package=mvoutlier
dc.relationFinkbeiner, M., Schau, E. M., Lehmann, A., y Traverso, M., 2010. Towards life cycle sustainability assessment. Sustainability. 2(10), 3309-3322. http://doi.org/10.3390/su2103309
dc.relationFleisher, D.H., Barnaby, J., Sicher, R., Resop, J.P., Timlin, D.J., Reddy, V.R., 2013. Effects of elevated CO2 and cyclic drought on potato under varying radiation regimes. Agric. For. Meteorol. 171–172, 270–280. https://doi.org/10.1016/j.agrformet.2012.12.011
dc.relationFleisher, D.H., Timlin, D.J., Reddy, V.R., 2008. Interactive effects of carbon dioxide and water stress on potato canopy growth and development. Agron. J. 100, 711–719. https://doi.org/10.2134/agronj2007.0188
dc.relationFoley J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connel, C., Ray, D. K., West, P. C., Balzer, C., Bennett, E. M., Carpenter, S. R., Hill, J., Monfreda, C., Polasky, S., Rockström, J., Sheehan, J., Siebert, S., Tilman, D., Zaks, D. P. M., 2011. Solutions for a cultivated planet. Nature, 478, 337–342, http://doi.org/10.1038/nature10452
dc.relationFood and Agriculture Organization (FAO)., 2011. The State of the World’s Land and Water Resources for Food and Agriculture. Managing Systems at Risk. Lancet, 2(7929), 285, http://doi.org/10.4324/9780203142837
dc.relationFood and Agriculture Organization (FAO)., 2013. Sustainability Assessment Of Food and Agriculture Systems. Guidelines Version 3.0. Retrieved from http://www.fao.org/nr/sustainability/sustainability-assessments-safa/en/
dc.relationFood and Agriculture Organization of the United Nations (FAO). AquaCrop training handbooks. Book I. Anderstanding AquaCrop. FAO. P: 59.
dc.relationForero, H. D., y Garzón, M. E. 2000. Validación del modelo de simulación del crecimiento “Substor-potato V. 35” para cuatro variedades mejoradas de papa (Solanum tuberosum ssp. andígena) bajo condiciones de cultivo comercial. Tesis de pregrado. Universidad Nacional de Colombia. Facultad de Ciencias Agrarias. Bogotá., Colombia. https://repository.agrosavia.co/handle/20.500.12324/16894
dc.relationFreudenberg, M., 2003. Composite indicators of country performance: a critical assessment. OECD Sci. Technol. Ind. Work. Pap. 16, 35. https://doi.org/10.1787/405566708255
dc.relationGalloway, J.N., Aer, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J., 2003. The Nitrogen Cascade. Bioscience 53, 341. https://doi.org/10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2
dc.relationGarrigues, E., Corson, M.S., Angers, D.A., Van Der Werf, H.M.G., Walter, C., 2012. Soil quality in Life Cycle Assessment: Towards development of an indicator. Ecol. Indic. 18, 434–442. https://doi.org/10.1016/j.ecolind.2011.12.014
dc.relationGasparatos, A., 2010. Embedded value systems in sustainability assessment tools and their implications. Journal of Environmental Management, 91(8), 1613–1622. https://doi:10.1016/j.jenvman.2010.03.014
dc.relationGattinger, A., Muller, A., Haeni, M., Skinner, C., Fliessbach, A., Buchmann, N., Mader, P., Stolze, M., Smith, P., Scialabba, N.E.-H., Niggli, U., 2012. Enhanced top soil carbon stocks under organic farming. Proc. Natl. Acad. Sci. 109, 18226–18231. https://doi.org/10.1073/pnas.1209429109
dc.relationGaudino, S., Goia, I., Borreani, G., Tabacco, E., Sacco, D., 2014. Cropping system intensification grading using an agro-environmental indicator set in northern Italy. Ecol. Indic. 40, 76–89. https://doi.org/10.1016/j.ecolind.2014.01.004
dc.relationGavrilov, I., Pusev, R., 2014. Normtest: Tests for normality. R package version 1.1. https://CRAN.R-project.org/package=normtest
dc.relationGerdessen, J.C., Pascucci, S., 2013. Data envelopment analysis of sustainability indicators of european agricultural systems at regional level. Agric. Syst. 118, 78–90. https://doi.org/10.1016/j.agsy.2013.03.004
dc.relationGerik, T., Williams, J., Dagitz, S., Magre, M., Meinardus, A., Steglich, E., Taylor, R., 2015. Environmental Policy Integrated Climate. Texas AyM Agri Life, United States. P: 102
dc.relationGerrard, C., Smith, L.G., Pearce, B., Padel, S., Hitchings, R., y Measures, M., 2012. Public Goods and Farming. En: Lichtfouse, E. 2012. Farming for Food and Water Security. Sustainable agriculture reviews (Vol. 5). Springer. http://doi.org/10.1016/S1573-4285(04)80400-9
dc.relationGhisellini, P., Zucaro, A., Viglia, S., Ulgiati, S., 2014. Monitoring and evaluating the sustainability of Italian agricultural system. An emergy decomposition analysis. Ecol. Modell. 271, 132–148. https://doi.org/10.1016/j.ecolmodel.2013.02.014
dc.relationGiampietro, M., Aspinall, R. J., Ramos-Martin, J., y Bukkens, S. G. F. 2014. Resource accounting for sustainability assessment. The nexus between energy, food, water and land use (1st ed.). London and New York: Routledge. Taylor and Francis Group. Recuperado de: https://www.routledge.com/Resource-Accounting-for-Sustainability-Assessment-The-Nexus-between-Energy/Giampietro-Aspinall-Ramos-Martin-Bukkens/p/book/9780415720595
dc.relationGiles, J., 2005. Nitrogen study fertilizes fears of pollution. Nature 433, 791. https://doi.org/10.1038/433791a
dc.relationGlobal Strategy (GSARS)., 2014. Handbook on Agricultural Cost of Production Statistics. Technical report series. Improving agricultural y rural statistics. DRAFT Guidelines for Data Collection, Compilation Glover, J.D., Reganold, J.P., Andrews, P.K., 2000. Systematic method for rating soil quality of conventional, organic, and integrated apple orchards in Washington State. Agric. Ecosyst. Environ. 80, 29–45. https://doi.org/10.1016/S0167-8809(00)00131-6
dc.relationGodfray, H.C.J., Beddington, J.R., Crute, I.R., Haddad, L., Lawrence, D., Muir, J.F., Pretty, J., Robinson, S., Thomas, S.M., Toulmin, C., 2010. Food security: The challenge of feeding 9 billion people. Science. 327, 812–818. https://doi.org/10.1126/science.1185383
dc.relationGodwin, D. C., Singh, U., 1998. Nitrogen balance and crop response to nitrogen in upland and lowland cropping systems, in: Tsuji, G. Y., Hoogenboom, G., Thornton, P. K (Eds), Understanding options for agricultural production. Kluwer Academic Publ., Dordrecht, the Netherlands. p. 55–78. https://doi.org/10.1007/978-94-017-3624-4_4
dc.relationGómez, H. L. 1997. Estadística experimental aplicada a las ciencias agrícolas. Universidad Nacional de Colombia.
dc.relationGómez, L. J. A., y Arriaza, B. M. 2011. La construcción de indicadores sintéticos de sostenibilidad agrícola. En: Evaluación de la sostenibilidad de las explotaciones de olivar en Andalucía. Premios agrarios Unicaja.
dc.relationGómez, L. J. A., y Riesgo, L., 2009. Alternative approaches to the construction of a composite indicator of agricultural sustainability: An application to irrigated agriculture in the Duero basin in Spain. Journal of Environmental Management, 90(11), 3345-3362. http://doi.org/10.1016/j.jenvman.2009.05.023
dc.relationGómez, L. J. A., y Sanchez, F. G., 2010. Empirical evaluation of agricultural sustainability using composite indicators. Ecological Economics, 69(5), 1062–1075. http://doi.org/10.1016/j.ecolecon.2009.11.027
dc.relationGómez-Limón, J.A., Arriaza, B.M., 2011. Evaluación de la sostenibilidad de las explotaciones de olivar en Andalucía, premios agrarios Unicaja. Gómez-Macpherson, H., Gómez, J.A., Orgaz, F., Villalobos, F.J., Fereres, E. 2016. Soil conservation. In: Villalobos, F.J., Fereres, E (Eds), Principles of agronomy for sustainable agriculture. Springer. p 241-254. Recuperado de: https://link.springer.com/book/10.1007%2F978-3-319-46116-8
dc.relationGomiero, T., Pimentel, D., Paoletti, M.G., 2011. Is There a Need for a More Sustainable Agriculture? CRC. Crit. Rev. Plant Sci. 30, 6–23. https://doi.org/10.1080/07352689.2011.553515
dc.relationGrabowski, P., Musumba, M., Palm, C., 2018. Sustainable agricultural intensification and measuring the immeasurable: Do we have a choice?, in: Bell, S., Mors, S. (Eds.), Routledge Handbook of Sustainability Indicators. Taylor y Francis Group, p. 568.
dc.relationGrassini, P., van Bussel, L. G.J., Wart, J. V., Wolf, J., Claessens, L., Yanga, H., Boogaard, H., de Groote, H., van Ittersumb, M. K., y Cassman, K. G., 2015. How good is good enough? Data requirements for reliable crop yield simulations and yield-gap analysis. Field Crops Research. 177: 49–63. http://dx.doi.org/10.1016/j.fcr.2015.03.004
dc.relationGu, Y.J., Han, C.L., Fan, J.W., Shi, X.P., Kong, M., Shi, X.Y., Siddique, K.H.M., Zhao, Y.Y., Li, F.M., 2018. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment. F. Crop. Res. 215, 94–103. https://doi.org/10.1016/j.fcr.2017.10.010
dc.relationGuerrero, R. 1998. Fertilización de cultivos de clima frío. Segunda edición. Monómeros Colombo-venezolanos, Bogotá. 370 p. Guinée, J.B., Gorree, M., Heijungs, R., Huppes, G., Kleijn, R., De Koning, A., Wegener Sleeswijk, A., Suh, S., Udo de Haes, H.A., De Bruijn, J.A., Van Duin, R., Huijbregts, M.A.J., 2004. Handbook on Life Cycle Assessment. Operational Guide to the ISO Standards. Kluwer, The Netherlands.
dc.relationHaberern, J., 1992. A soil health index. J. Soil Water Conserv. 47, 6. Recuperado de https://www.jswconline.org/content/47/1/6.full.pdf
dc.relationHaitovsky, Y., 1968. Missing Data in regression analysis. Journal of the Royal Statistical Society: Series B (Methodological). 30, 67–82. https://doi.org/10.1111/j.2517-6161.1968.tb01507.x
dc.relationHäni, F., Braga, F., Stämpfli, A., Keller, T., Fischer, M., y Porsche, H. 2003. RISE, a tool for holistic sustainability assessment at the farm level. International Food and Agribusiness Management Review, 6(4).
dc.relationHavlin, J. L., Beaton, J. D., Tisdale, S. L., Nelson, W. L., 2014. Soil Fertility and Fertilizers, an introduction to nutrient management. 8th ed. Pearson Education, Inc, Upper Saddle River.
dc.relationHayakawa, A., Akiyama, H., Sudo, S., Yagi, K., 2009. N2O and NO emissions from an Andisol field as influenced by pelleted poultry manure. Soil Biol. Biochem. 41, 521–529. https://doi.org/10.1016/j.soilbio.2008.12.011
dc.relationHayati, D., Ranjbar, Z., Karami, E., 2010. Measuring agricultural sustainability. En Sustainable Agriculture Reviews, 5, 73–100, http://doi.org/10.1007/978-90-481-9513-8
dc.relationHe, Z., Honeycutt, W. C., Olanya, M, O., Larkin, R, P., Halloran, J. M., Frantz, J. M.,2012. Comparison of soil phosphorus status and organic matter composition in potato fields with different crop rotation systems, in: He, Z., Larkin, R., Honeycutt, W (Eds). Sustainable potato production: Global case studies, 1st ed, Springer, New York, London. https://doi.org/10.1017/CBO9781107415324.004
dc.relationHeijungs, R., Guinée, J. B. 2012. An overview of the life cycle assessment method - Past, Present, and Future, in: Curran, M. A (Ed), Life cycle assessment handbook. A guide for environmentally sustainable products. Willey. USA. P: 15-42
dc.relationHerrick, J.E., 2000. Soil quality: An indicator of sustainable land management? Appl. Soil Ecol. 15, 75–83. https://doi.org/10.1016/S0929-1393(00)00073-1
dc.relationHigueras, P., Campos, J.A., Esbrí, J.M., García-noguero, E.M., Elmayel, I., 2019. Petrogenesis and Exploration of the Earth’s Interior. Springer International Publishing. https://doi.org/10.1007/978-3-030-01575-6
dc.relationHirel, B., Tétu, T., Lea, P.J., Dubois, F., 2011. Improving nitrogen use efficiency in crops for sustainable agriculture. Sustainability 3, 1452–1485. https://doi.org/10.3390/su3091452
dc.relationHoang, V.N., Alauddin, M., 2010. Assessing the eco-environmental performance of agricultural production in OECD countries: The use of nitrogen flows and balance. Nutr. Cycl. Agroecosystems 87, 353–368. https://doi.org/10.1007/s10705-010-9343-y
dc.relationHoogenboom, G., C.H. Porter, V. Shelia, K.J. Boote, U. Singh, J.W. White, L.A. Hunt, R. Ogoshi, J.I. Lizaso, J. Koo, S. Asseng, A. Singels, L.P. Moreno, and J.W. Jones. 2017. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7. DSSAT Foundation, Gainesville, Florida, USA. https://DSSAT.net
dc.relationHoogenboom, G., Jones, J. W., Traore, P. C. S., Boote, K. J., 2012. Experiments and Data for Model Evaluation and Application. En: Kijara, J., Fatondji, D., Jones, J. W., Hoogenboom, G., Tabo, R., Bationo, A. 2012. Inproving soil fertility recomendations in Africa using the Decision Support System for Agrothecnology Transfer (DSSAT). Springer, 9-18
dc.relationHoogenboom, G., Porter, C.H., Shelia, V., Boote, K.J., Singh, U., White, J.W., Hunt, L.A., Ogoshi, R., Lizaso, J.I., Koo, J., Asseng, S., Singels, A., Moreno, L.P., Jones, J.W., 2019. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.7 (www.DSSAT.net). DSSAT Foundation, Gainesville, Florida, USA.
dc.relationHosiny, E. I., Khafagy, E. E., Mosaad, I. S. M., y Seadh, A. K. 2017. Interaction effect between mineral zinc-nitrogen fertilization mixture and organic fertilization as compost on yield, nutrients uptake of rice and some soil properties. Agric.Eng.Int, 302–309. Recuperado de http://www.cigrjournal.org/index.php/Ejounral/article/view/4647
dc.relationHubeau, M., Marchand, F., Coteur, I., Mondelaers, K., Debruyne, L., Van Huylenbroeck, G., 2017. A new agri-food systems sustainability approach to identify shared transformation pathways towards sustainability. Ecol. Econ. 131, 52–63. https://doi.org/10.1016/j.ecolecon.2016.08.019
dc.relationHünnemeyer, A. J., de Camino, R., Müller, S. 1997. Analisis de desarrollo sostenible en Centroamerica. Indicadores para la agricultura y los recursos naturales. IICA, BMZ GTZ.
dc.relationHussain, I., Olson, K.R., Wander, M.M., Karlen, D.L., 1999. Adaptation of soil quality indices and application to three tillage systems in southern Illinois. Soil Till. Res. 50, 237–249. https://doi.org/10.1016/S0167-1987(99)00012-4
dc.relationIDEAM, PNUD, MADS, DNP, CANCILLERÍA., 2015. Escenarios de Cambio Climático para Precipitación y Temperatura para Colombia 2011-2100. Herramientas Científicas para la Toma de Decisiones. Estudio Técnico Completo: Tercera Comunicación Nacional de Cambio Climático. http://documentacion.ideam.gov.co/openbiblio/bvirtual/022964/documento_nacional_departamental.pdf
dc.relationInstituto Geográfico Agustín Codazzi (IGAC). (2014). Códigos para los levantamientos de suelos. Instructivo. Grupo interno de trabajo de levantamientos agrológicos. Recuperado de http://igacnet2.igac.gov.co/intranet/UserFiles/File/procedimientos/instructivos/I40100-06-14.V1Codigos%20para%20los%20levantamientos%20de%20suelos.pdf
dc.relationInstituto Interamericano de Cooperación para la Agricultura (IICA)., 2015. Modelos de simulación y herramientas de modelaje: elementos conceptuales y sistematización de herramientas para apoyar el análisis de impactos de la variabilidad y el cambio climático sobre las actividades agrícolas. IICA. www.iica.int
dc.relationIntergovernmental Panel on Climate Change (IPCC), 2013. Climate Change 2013 - The Physical Science Basis, Intergovernmental Panel on Climate Change. https://doi.org/10.1038/446727a
dc.relationInternational Organization for Standardization (ISO). 2006a. Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14040
dc.relationInternational Organization for Standardization (ISO). 2006b. Environmental Management. Life Cycle Assessment. Principles and Framework. ISO 14044
dc.relationIvushkin, K., Bartholomeus, H., Bregt, A.K., Pulatov, A., Bui, E.N., Wilford, J., 2018. Soil salinity assessment through satellite thermography for different irrigated and rainfed crops. Int. J. Appl. Earth Obs. Geoinf. 68, 230–237. https://doi.org/10.1016/j.jag.2018.02.004
dc.relationJaramillo, J. 2009. The state of research in tomato in Colombia. Acta Hort. 821, 47–52. https://10.17660/ActaHortic.2009.821.3
dc.relationJoice, L.A., 2003. Improving the flow of scientific information across the interface of forest science and policy. Forest Policy Econ. 5, 339–347.
dc.relationJones, J.W., Hoogenboom, G., Porter, C.H., Boote, K.J., Batchelor, W.D., Hunt, L.A., Wilkens, P.W., Singh, U., Gijsman, A.J., Ritchie, J.T., 2003. The DSSAT cropping system model. Eur. J. Agron. 18, 235–265. https://doi.org/10.1016/S1161-0301(02)00107-7
dc.relationJones, J.W., Jianqiang, H., Boote, K.J., Wilkens, P., Porter, C.H., Hu, Z., 2011. Estimating DSSAT cropping system cultivar-specific parameters using Bayesian techniques. In: Ahuja, L.R., Liwang, M. (Eds.), Methods of Introducing SystemModels into Agricultural Research. American Society of Agronomy, CropScience Society of America, Soil Science Society of America Madison, WI, USA.
dc.relationKachanoski, R.G., Carter, M.R., 1999. Landscape position and soil redistribution under three soil types and land use practices in Prince Edward Island. Soil Tillage Res. 51, 211–217. https://doi.org/10.1016/S0167-1987(99)00038-0
dc.relationKanter, D.R., Musumba, M., Wood, S.L.R., Palm, C., Antle, J., Balvanera, P., Dale, V.H., Havlik, P., Kline, K.L., Scholes, R.J., Thornton, P., Tittonell, P., Andelman, S., 2016. Evaluating agricultural trade-offs in the age of sustainable development. Agric. Syst. In Press. https://doi.org/10.1016/j.agsy.2016.09.010
dc.relationKaraca, S., Gürses, A., Ejder, M., Açikyildiz, M., 2004. Kinetic modeling of liquid-phase adsorption of phosphate on dolomite. J. Colloid Interface Sci. 277, 257–263. https://doi.org/10.1016/j.jcis.2004.04.042
dc.relationKarlen, D.L., Stott, D.E., 1994. A Framework for Evaluating Physical and Chemcial Indicators of Soil Quality. Soil Sci. Soc. Am. 264, 53–72. https://doi.org/10.1126/science.264.5156.281
dc.relationKarlen, D.L., Stott, D.E., Cambardella, C.A., Kremer, R.J., King, K.W., McCarty, G.W., 2014. Surface soil quality in five midwestern cropland Conservation Effects Assessment Project watersheds. J. Soil Water Conserv. 69:393–401. https://doi:10.2489/jswc.69.5.393
dc.relationKeating, B.A., Carberry, P.S., Hammer, G.L., Probert, M.E., Robertson, M.J., Holzworth, D., Huth, N.I., Hargreaves, J.N.G., Meinke, H., Hochman, Z., McLean, G., Verburg, K., Snow, V., Dimes, J.P., Silburn, M., Wang, E., Brown, S., Bristow, K.L., Asseng, S., Chapman, S., McCown, R.L., Freebairn, D.M., Smith, C.J., 2003. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 18, 267–288. https://doi.org/10.1016/S1161-0301(02)00108-9
dc.relationKeesstra, S.D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J.N., Pachepsky, Y., Van Der Putten, W.H., Bardgett, R.D., Moolenaar, S., Mol, G., Jansen, B., Fresco, L.O., 2016. The significance of soils and soil science towards realization of the United Nations sustainable development goals. Soil 2, 111–128. https://doi.org/10.5194/soil-2-111-2016
dc.relationKhakbazan, M., Mohr, R.M., Huang, J., Xie, R., Volkmar, K.M., Tomasiewicz, D.J., Moulin, A.P., Derksen, D.A., Irvine, B.R., Mclaren, D.L., Nelson, A., 2019. Effects of crop rotation on energy use e ffi ciency of irrigated potato with cereals, canola, and alfalfa over a 14-year period in Manitoba, Canada. Soil Tillage Res. 195, 104357. https://doi.org/10.1016/j.still.2019.104357
dc.relationKhodaverdiloo, H., Momtaz, H., Liao, K., 2018. Performance of Soil Cation Exchange Capacity Pedotransfer Function as Affected by the Inputs and Database Size. Clean - Soil, Air, Water 46. https://doi.org/10.1002/clen.201700670
dc.relationKibblewhite, M.G., Ritz, K., Swift, M.J., 2008. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 363, 685–701. https://doi.org/10.1098/rstb.2007.2178
dc.relationKleinwechter, U., Gastelo, M., Ritchie, J., Nelson, G., Asseng, S., 2016. Simulating cultivar variations in potato yields for contrasting environments. Agric. Syst. 145, 51–63. https://doi.org/10.1016/j.agsy.2016.02.011
dc.relationKucukvar, M., Egilmez, G., Tatari, O., 2014. Sustainability assessment of U.S. final consumption and investments: triple-bottom-line input-output analysis. J. Clean. Prod. 81, 234–243. https://doi.org/10.1016/j.jclepro.2014.06.033
dc.relationKuisma, P., 2002. Efficiency of split nitrogen fertilization with adjusted irrigation on potato. Agricultural and food science in Finland. 11: 59–74. https://doi.org/10.23986/afsci.5713
dc.relationKumar, S.N., Govindakrishnan, P.M., Swarooparani, D.N., Nitin, C., Surabhi, J., Aggarwal, P.K., 2015. Assessment of impact of climate change on potato and potential adaptation gains in the Indo-Gangetic Plains of India. Int. J. Plant Prod. 9, 151–170. https://doi.org/https://dx.doi.org/10.5958/2231-3915.2015.00011.5
dc.relationKutílek, M., 2011. Soils and climate change. Soil y Tillage Research. 117: 1–7. https://doi.org/10.1016/j.still.2011.08.009
dc.relationLaird, D., Fleming, P., Wang, B., Horton, R., Karlen, D., 2010. Biochar impact on nutrient leaching from a Midwestern agricultural soil. Geoderma 158, 436–442. https://doi.org/10.1016/j.geoderma.2010.05.012
dc.relationLal, R., 1994. Methods and guidelines for assessing sustainable use of soil and water resources in the tropics; Washington D.C.: USDA/SMSS Technical Monograph 21
dc.relationLal, R., 2009. Soil carbon sequestration impacts on global climate change and food security. Science (New York, N.Y.), 304(5677), 1–184. http://doi.org/10.1126/science.1097396
dc.relationLal, R., 2015. Restoring soil quality to mitigate soil degradation. Sustain. 7, 5875–5895. https://doi.org/10.3390/su7055875 Lanfranco, B. C., y Helguera, L. P. 2006. Óptimo técnico y económico. Diversificación, costos ocultos y los estímulos para mejorar los procreos en la ganadería nacional. Revista INIA, 8, 2–5. Retrieved from http://www.ainfo.inia.uy/digital/bitstream/item/846/1/111219220807165946.pdf
dc.relationLarkin, R.P., Honeycutt, C.W., 2006. Effects of different 3-year cropping systems on soil microbial communities and rhizoctonia diseases of potato. Phytopathology 96, 68–79. https://doi.org/10.1094/PHYTO-96-0068
dc.relationLarson, W.E., Pierce, F.J., 1994. The dynamics of soil quality as a measure of sustainable management, in: Doran, J.W. (Ed.), Defining Soil Quality for a Sustainable Environment. Soil Science Society of America, pp. 37–51.
dc.relationLebacq, T., Baret, P. V, Stilmant, D., 2013. Sustainability indicators for livestock farming. A review. Agron. Sustain. Dev. 33, 311–327. https://doi.org/10.1007/s13593-012-0121-x
dc.relationLemtiri, A., Colinet, G., Alabi, T., Bodson, B., Olivier, C., Brostaux, Y., Pierreux, J., Haubruge, E., Cluzeau, D., Francis, F., 2018. Short-Term Effects of Tillage Practices and Crop Residue Exportation on Soil Organic Matter and Earthworm Communities in Silt Loam Arable Soil, in: Soil Management and Climate Change: Effects on Organic Carbon, Nitrogen Dynamics, and Greenhouse Gas Emissions. Elsevier Inc., pp. 53–71. https://doi.org/10.1016/B978-0-12-812128-3.00005-7
dc.relationLi, L., Du, S., Wu, L., Liu, G., 2009. An overview of soil loss tolerance. Catena 78, 93–99. https://doi.org/10.1016/j.catena.2009.03.007
dc.relationLiang, K., Jiang, Y., Nyiraneza, J., Fuller, K., Murnaghan, D., Meng, F.-R., 2019. Nitrogen dynamics and leaching potential under conventional and alternative potato rotations in Atlantic Canada. F. Crop. Res. 242, 107603. https://doi.org/10.1016/j.fcr.2019.107603
dc.relationLima, A.C.R., Brussaard, L., Totola, M.R., Hoogmoed, W.B., de Goede, R.G.M., 2013. A functional evaluation of three indicator sets for assessing soil quality. Applied Soil Ecology 64, 194–200. http://dx.doi.org/10.1016/j.apsoil.2012.12.009
dc.relationLisboaa, I.P., Cherubin, M.R., Satiro, L.S., Siqueira-Neto, M., Lima, R.P., Gmach, M.R., Wienhold, B.J., Schmer, M.R., Jin, V.L., Cerri, C.C., Cerri, C.E.P., 2019. Applying Soil Management Assessment Framework (SMAF) on short-term sugarcane straw removal in Brazil. Industrial Crops y Products 129, 175–184. https://doi.org/10.1016/j.indcrop.2018.12.004
dc.relationLitke, L., Gaile, Z., y Ruza, A., 2018. Effect of Nitrogen Fertilization on Winter Wheat Quality. Cereal Research Communications, 38(2), 243–249. http://doi.org/10.1556/CRC.38.2010.2.10
dc.relationLiu, E.Y., Li, S., Lantz, V., Olale, E., 2019. Impacts of Crop Rotation and Tillage Practices on Potato Yield and Farm Revenue. Agron. J. 111, 1838. https://doi.org/10.2134/agronj2018.05.0325
dc.relationLiu, H. L., Yang, J. Y., Tan, C. S., Drury, C. F., Reynolds, W. D., Zhang, T. Q., Hoogenboom, G., 2011. Simulating wáter content, crop yield and nitrate‐N loss under free and controlled tile drainage with subsurface irrigation using the DSSAT model. Agricultural Water Management. 98(6): 1105‐1111.
dc.relationLizana, X.C., Avila, A., Tolaba, A., Pablo, J., 2017. Agricultural and Forest Meteorology Field responses of potato to increased temperature during tuber bulking : Projection for climate change scenarios , at high-yield environments of Southern Chile. Agric. For. Meteorol. 239, 192–201. https://doi.org/10.1016/j.agrformet.2017.03.012
dc.relationLoaiza, P. V, Pujol, P.E.I., Wittwer, R., van der Heijden, M., Six, J., 2018. Improvement of soil structure through organic crop management, conservation tillage and grass-clover ley. Soil Tillage Res. 180, 1–9. https://doi.org/10.1016/j.still.2018.02.007
dc.relationLori, M., Symnaczik, S., Mäder, P., De Deyn, G., Gattinger, A., 2017. Organic farming enhances soil microbial abundance and activity—A meta-analysis and meta-Regression. PLoS One 12, 1–25. https://doi.org/10.1371/journal.pone.0180442
dc.relationLutz, A.F., ter Maat, H.W., Biemans, H., Shrestha, A.B., Wester, P., Immerzeel, W.W., 2016. Selecting representative climate models for climate change impact studies: an advanced envelope-based selection approach. Int. J. Climatol. 36, 3988–4005. https://doi.org/10.1002/joc.4608
dc.relationLynch, J., Marschner, P., Z, Rangel., 2012. Effect of internal and external factors on root growth and development, in: Marschner, P (Ed), Mineral nutrition of higher plants. Third edition. Elsevier. P: 331-346
dc.relationMeadows, D. H. 2009. Thinking in Systems. Journal of Chemical Information and Modeling (Vol. 53). http://doi.org/10.1017/CBO9781107415324.004
dc.relationMaltas, A., Dupuis, B., y Sinaj, S., 2018. Yield and Quality Response of Two Potato Cultivars to Nitrogen Fertilization. Potato Research, 1–18. http://doi.org/10.1007/s11540-018-9361-8
dc.relationMarchand, F., Debruyne, L., Triste, L., Gerrard, C., Padel, S., Lauwers, L., 2014. Key characteristics for tool choice in indicator-based sustainability assessment at farm level. Ecol. Soc. 19(3), 46–56. https://doi.org/10.5751/ES-06876-190346
dc.relationMarinari, S., Mancinelli, R., Campiglia, E., Grego, S., 2006. Chemical and biological indicators of soil quality in organic and conventional farming systems in Central Italy. Ecol. Indic. 6, 701–711. https://doi.org/10.1016/j.ecolind.2005.08.029
dc.relationMarschner, P., 2012. Mineral nutrition of higher plants (Third edit). USA: Academic Press is an imprimint of Elsevier.
dc.relationMarschner, P., Z, Rangel., 2012. Nutrient availability in soils, in: Marschner, P (Ed). Mineral nutrition of higher plants. Third edition. Elsevier. P: 315-328
dc.relationMartinez, R., Martinez, N. R., y Martinez, M. V. M., 2011. Diseño de experimentos en ciencias agropecuarias y biológicas con SAS, SPSS, R y Statistix. Tomi I. Fondo Nacional Universitario.
dc.relationMartínez-Blanco, J., Lehmann, A., Muñoz, P., Antón, A., Traverso, M., Rieradevall, J., Finkbeiner, M., 2014. Application challenges for the social Life Cycle Assessment of fertilizers within life cycle sustainability assessment. J. Clean. Prod. 69, 34–48. https://doi.org/10.1016/j.jclepro.2014.01.044
dc.relationMascarenhas, A., Coelho, P., Subtil, E., Ramos, T.B., 2010. The role of common local indicators in regional sustainability assessment. Ecol. Indic. 10, 646–656. https://doi.org/10.1016/j.ecolind.2009.11.003
dc.relationMehmood, T., Liland, K.H., Snipen, L., Saebo, S., 2012. A review of variable selection methods in Partial Least Squares Regression. Chemom. Intell. Lab. Syst. 118, 62–69. https://doi.org/10.1016/j.chemolab.2012.07.010
dc.relationMehmood, T., Martens, H., Saebo, S.,Warringer, J., Snipen, L., 2011. A Partial Least Squares based algorithm for parsimonious variable selection. Algorithms Mol. Biol. 6. https://doi.org/10.1186/1748-7188-6-27
dc.relationMendiburu, F. 2017. Agricolae: Statistical Procedures for Agricultural Research. R package version 1.2-6. https://CRAN.R-project.org/package=agricolae.
dc.relationMeul, M., Passel, S., Nevens, F., Dessein, J., Rogge, E., Mulier, A., Hauwermeiren, A., 2008. MOTIFS: a monitoring tool for integrated farm sustainability. Agron. Sustain. Dev. 28, 321–332. https://doi.org/10.1051/agro:2008001
dc.relationMevik, B. H., Wehrens, R., Hovde, L. K., 2019. pls: partial least squares and principal component regression. R package version 2.7-2. https://CRAN.R-project.org/package=pls
dc.relationMilder, J.C., Arbuthnot, M., Blackman, A., Brooks, S.E., Giovannucci, D., Gross, L., Kennedy, E.T., Komives, K., Lambin, E.F., Lee, A., Meyer, D., Newton, P., Phalan, B., Schroth, G., Semroc, B., Van Rikxoort, H., Zrust, M., 2014. An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture. Conserv. Biol. 29, 309–320. https://doi.org/10.1111/cobi.12411
dc.relationMonsalve, O.I., Casilimas, H.A. y Bojacá, C.R. 2011. Evaluación técnica y económica del pepino y el pimentón como alternativas al tomate bajo invernadero. Rev. Colomb. Cienc. Hortic, Vol 5. P: 69-82. https://doi.org/10.17584/rcch.2011v5i1.1254
dc.relationMtengeti, E. J., Brentrup, F., Mtengeti, E., Olav, E. L., Chambuya, R., 2015. Sustainable intensification of maize and rice in smallholder farming systems under climate change in Tanzania, in: Mwaseba, D. L., Kraybill, D., Hansen, D. O., Olav, L., Editors, E. (Eds), Sustainable Intensification to Advance Food Security and Enhance Climate Resilience in Africa (1st ed.). Springer. http://doi.org/10.1007/978-3-319-09360-4
dc.relationMuckel, G. B., Mausbach, M. J., 1996. Soil quality information sheets, in: Methods for Assessing Soil Quality, edited by: Doran, J. W., Jones, A. J., Soil Sci. Soc. Am., Special Publication 49, Madison, WI, 393–400. Mukherjee, A., Lal, R., 2014. Comparison of soil quality index using three methods. PLoS One 9. https://doi.org/10.1371/journal.pone.0105981
dc.relationMunda, G. 2005. “Measuring sustainability”: A multi-criterion framework. Environment, Development and Sustainability. 7(1): 117–134. http://doi.org/10.1007/s10668-003-4713-0
dc.relationMuthoni, J., Kabira, J.N., 2010. Effects of crop rotation on soil macronutrient content and pH in potato producing areas in Kenya: Case study of KARI Tigoni station. J. Soil Sci. Environ. Manag. 1, 227–233.
dc.relationNambiar, K.K.M., Gupta, A.P., Fu, Q., Li, S., 2001. Biophysical, chemical and socio-economic indicators for assessing agricultural sustainability in the Chinese coastal zone. Agric. Ecosyst. Environ. 87, 209–214. https://doi.org/10.1016/S0167-8809(01)00279-1
dc.relationNannipieri, P., 1984. Microbial biomass and activity measurement in soils: ecological significance, in: Klug, M.J., Reddy, C.A. (Eds), Current Perspectives in Microbial Ecology. American Society of Microbiology, Washington, pp. 512–521
dc.relationNannipieri, P., Grego, S., Ceccanti, B., 1990. Ecological significance of the biological activity in soils, in: Bollag, J. M., Stotzky, G., Marcel Dekker (Eds), Soil Biochemical, New York, 293–355.
dc.relationNdiaye, E.L., Sandeno, J.M., McGrath, D., Dick, R.P., 2000. Integrative biological indicators for detecting change in soil quality. Am. J. Altern. Agric. 15, 26–36. https://doi.org/10.1017/s0889189300008432
dc.relationNelson, K.L., Lynch, D.H., Boiteau, G., 2009. Assessment of changes in soil health throughout organic potato rotation sequences. Agric. Ecosyst. Environ. 131, 220–228. https://doi.org/10.1016/j.agee.2009.01.014
dc.relationNeugebauer, S., Martinez-Blanco, J., Finkbeiner, M., 2015. Enhancing the practical implementation of life cycle sustainability assessment - proposal of a Tiered approach. J. Clean. Prod. 102, 165–176. https://doi.org/10.1016/j.jclepro.2015.04.053
dc.relationNeumann, G., Römheld, V., 2012. Rhizosphere chemistry in relation to plant nutrition, in: Marschner, P (Ed). Mineral nutrition of higher plants. Third edition. Elsevier. P: 347-368
dc.relationNieder, R., Benbi, D.K., 2008. Carbon and Nitrogen in the Terrestrial Environment. Springer Science, 430 pp. https://doi.org/10.1007/978-1-4020-8433-1
dc.relationNyiraneza, J., Peters, R.D., Rodd, V.A., Grimmett, M.G., Jiang, Y., 2015. Improving productivity of managed potato cropping systems in Eastern Canada: Crop rotation and nitrogen source effects. Agron. J. 107, 1447–1457. https://doi.org/10.2134/agronj14.0430
dc.relationObade, V.P., Lal, R., 2016. A standardized soil quality index for diverse field conditions. Science of the Total Environment 541, 424–434. https://doi.org/10.1016/j.scitotenv.2015.09.096
dc.relationOECD (Organization for Economic Co-operation and Development) — JRC (Joint Research Centre)., 2008. Handbook on constructing composite indicators. Methodology and user guide. OECD, Paris.
dc.relationOertel, C., Matschullat, J., Zurba, K., Zimmermann, F., Erasmi, S., 2016. Greenhouse gas emissions from soils—A review. Chemie der Erde - Geochemistry 76, 327–352. https://doi.org/10.1016/j.chemer.2016.04.002
dc.relationOgle, S.M., Breidt, F.J., Paustian, K., 2005. Agricultural management impacts on soil organic carbon storage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry. 72: 87–121. https://doi.org/10.1007/s10533-004-0360-2
dc.relationOkalebo, J.R., Gathua, K.W.K.W., Woomer, P.L.P.L., 2002. Laboratory methods of soil and plant analysis: a working manual, second ed. TSBF-CIAT, Africa.
dc.relationOldeman, L., 1994. The global extent of soil degradation. Soil Resil. Sustain. L. use 19–36. https://doi.org/10.1016/j.apsoil.2013.10.002 Ordoñez, D.N., Bolivar, G.A., 2014. Levantamiento agrológico del Centro Agropecuario (CAM), 1st ed. Instituto Geográfico Agustin Codazzi (IGAC), Bogotá, Colombia.
dc.relationOrtíz, R. 2012. El cambio climático y la producción agrícola. Banco Interamericano de Desarrollo. Notas técnicas. ESG-TN-383. http://asocam.org/biblioteca/files/original/e7a4a8a00d9ba9390d273d6dc1bb5666.pdf
dc.relationPacini, C., Wossink, A., Giesen, G., Vazzana, C., Huirne, R., 2003. Evaluation of sustainability of organic, integrated and conventional farm systems: a farm and field scale analysis. Agriculture, Ecosystems and Environment, 95, 273–288.
dc.relationPanell, D. J., Schilizzi, S., 1993. Sustainable agriculture: a matter of ecology, equity, economic, efficiency or expedience. Journal of Sustainable Agriculture. 13: 57-66
dc.relationPansau, M., Gautheyrou, J., 2006. Handbook of soil analysis. Mineralogical, organic and inorganic Methods. Springer, Germany, p 995.
dc.relationPapadopoulos, I., 1988. Nitrogen fertigation of trickle-irrigated potato. Fertil. Res. 167, 157–167. https://doi.org/https://doi.org/10.1007/BF01049771
dc.relationPapendick, R. I., Parr. J. F., 1992. Soil quality—The key to a sustainable agriculture. Am. J. Altern. Agric. 7 (1-2): 2–3. https://doi.org/10.1017/S0889189300004343
dc.relationParacchini, M.L., Bulgheroni, C., Borreani, G., Tabacco, E., Banterle, A., Bertoni, D., Rossi, G., Parolo, G., Origgi, R., De Paola, C., 2015. A diagnostic system to assess sustainability at a farm level: The SOSTARE model. Agric. Syst. 133, 35–53. https://doi.org/10.1016/j.agsy.2014.10.004
dc.relationParris, T.M., Kates, R.W., 2003. Characterizing and measuring sustainable development. Annu. Rev. Environ. Resour. 28, 559–586. https://doi.org/10.1146/annurev.energy.28.050302.105551
dc.relationParton, W., Schimel, D., Ojima, D., Cole, C., 1994. A general model for soil organic matter dynamics: sensitivity to litter chemistry, texture and management. Pages 147-167 in R.B. Bryant and R.W. Arnold, editors. Quantitative modeling of soil forming processes. SSSA Spec. Publ. 39. Passam, H.C., Karapanos, I.C., Bebeli, P.J. y Savvas, D. 2007. A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. The european journal of plant science and biotechnology. Vol 1(1). P: 1-21. file:///D:/descargas/A_Review_of_Recent_Research_on_Tomato_Nu%20(2).pdf
dc.relationPeano, C., Migliorini, P., y Sottile, F., 2014. A methodology for the sustainability assessment of agri-food systems: An application to the slow food presidia project. Ecology and Society, 19(4), 24. http://doi.org/10.5751/ES-06972-190424
dc.relationPeltre, C., Christensen, B.T., Dragon, S., Icard, C., Katterer, T., Houot, S. 2012. RothC simulation of carbon accumulation in soil after repeated application of widely different organic amendments. Soil Biol. Biochem. 52, 49–60. http://dx.doi.org/10.1016/j.soilbio.2012.03.023
dc.relationPeña, M. Y., CAsierra-Posada, F., Monsalve, O. I., 2013. Producción hidropónica de tomate (Solanum lycopersicum L.) en cascarilla de arroz mezclada con materiales minerales y orgánicos. Rev. Colomb. Cienc. Hortic., 7 (2), 217-227. https://doi.org/10.17584/rcch.2013v7i2.2236
dc.relationPérez, L.C., Rodríguez, L.E., Gómez, M.I., 2008. Efecto del fraccionamiento de la fertilización con N, P, K y Mg y la aplicación de los micronutrientes B, Mn y Zn en el rendimiento y calidad de papa criolla (Solanum phureja) variedad Criolla Colombia. Agron. Colomb. 26, 477–486.
dc.relationPergola, M., D’Amico, M., Celano, G., Palese, A.M., Scuderi, A., Di Vita, G., Pappalardo, G., Inglese, P., 2013. Sustainability evaluation of Sicily’s lemon and orange production: Anenergy, economic and environmental analysis. J. Environ. Manage. 128, 674–682. https://doi.org/10.1016/j.jenvman.2013.06.007
dc.relationPintér, L., Hardi, P., Martinuzzi, A., Hall, J., 2012. Bellagio STAMP: Principles for sustainability assessment and measurement. Ecol. Indic. 17, 20–28. https://doi.org/10.1016/j.ecolind.2011.07.001
dc.relationPollesch, N., Dale, V. H., 2015. Applications of aggregation theory to sustainability assessment. Ecological Economics, 114, 117–127. http://doi.org/10.1016/j.ecolecon.2015.03.011
dc.relationPorras, R.P.D., Herrera, H.C.A., 2015. Modelo productivo de la papa variedad Diacol Capiro para el departamento de Antioquia, 1st ed. Corporación Colombiana de Investigación Agropecuaria (Corpoica), Mosquera, Colombia.
dc.relationPraneetvatakul, S., Janekarnkij, P., Potchanasin, C., Prayoonwong, K., 2001. Assessing the sustainability of agriculture: A case of Mae Chaem Catchment, northern Thailand. Environ. Int. 27, 103–109. https://doi.org/10.1016/S0160-4120(01)00068-X
dc.relationPretty, J., Bharucha, Z.P., 2014. Sustainable intensification in agricultural systems. Ann. Bot. 114, 1571–1596. https://doi.org/10.1093/aob/mcu205
dc.relationQadir, M., Oster, J.D., 2004. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 323, 1–19. https://doi.org/10.1016/j.scitotenv.2003.10.012
dc.relationR Core Team. 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
dc.relationRao, N.H., Rogers, P.P., 2006. Assessment of agricultural sustainability. Curr. Sci. 91, 439–448. www.jstor.org/stable/24093944
dc.relationRawashdeh, R.A., Maxwell, P., 2014. Analysing the world potash industry. Resour. Policy 41, 143–151. https://doi.org/10.1016/j.resourpol.2014.05.004
dc.relationRawashdeh, R.A., Xavier-Oliveira, E., Maxwell, P., 2016. The potash market and its future prospects. Resour. Policy 47, 154–163. https://doi.org/10.1016/j.resourpol.2016.01.011
dc.relationRaymundo, R., Asseng, S., Prassad, R., Kleinwechter, U., Concha, J., Condori, B., Bowen, W., Wolf, J., Olesen, J.E., Dong, Q., Zotarelli, L., Gastelo, M., Alva, A., Travasso, M., Quiroz, R., Arora, V., Graham, W., Porter, C., 2017. Field Crops Research Performance of the SUBSTOR-potato model across contrasting growing conditions. F. Crop. Res. 202, 57–76. https://doi.org/10.1016/j.fcr.2016.04.012
dc.relationRaymundo, R., Asseng, S., Robertson, R., Petsakos, A., Hoogenboom, G., Quiroz, R., Hareau, G., Wolf, J., 2018. Climate change impact on global potato production. Eur. J. Agron. 100, 87–98. https://doi.org/10.1016/j.eja.2017.11.008
dc.relationReed, M.S., Fraser, E.D.G., Dougill, A.J., 2006. An adaptive learning process for developing and applying sustainability indicators with local communities. Ecol. Econ. 59, 406–418. https://doi.org/10.1016/j.ecolecon.2005.11.008
dc.relationRees, H.W., Chow, T.L., Zebarth, B.J., Xing, Z., Toner, P., Lavoie, J., Daigle, J.L., 2011. Effects of supplemental poultry manure applications on soil erosion and runoff water quality from a loam soil under potato production in northwestern New Brunswick. Can. J. Soil Sci. 91, 595–613. https://doi.org/10.4141/cjss10093
dc.relationRennenberg, H., Dannenmann, M., Gessler, A., Kreuzwieser, J., Simon, J., Papen, H., 2009. Nitrogen balance in forest soils: nutritional limitation of plants under climate change stresses. Plant Biology. 11 (Suppl. 1): 4–23. https://doi.org/10.1111/j.1438-8677.2009.00241.x
dc.relationRepar, N., Jan, P., Dux, D., Nemecek, T., Doluschitz, R., 2017. Implementing farm-level environmental sustainability in environmental performance indicators: A combined global-local approach. J. Clean. Prod. 140, 692–704. https://doi.org/10.1016/j.jclepro.2016.07.022
dc.relationRiahi, K., Gruebler, A., Nakicenovic, N., 2007. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technological Forecasting and Social Change 74, 7, 887-935.
dc.relationRigby, D., Howlett, D., Woodhouse, P., 2000. A Review of Indicators of Agricultural and Rural Livelihood Sustainability. FAO. AGRIS.
dc.relationRinne, J., Lyytimäki, J., Kautto, P., 2013. From sustainability to well-being: Lessons learned from the use of sustainable development indicators at national and EU level. Ecol. Indic. 35, 35–42. https://doi.org/10.1016/j.ecolind.2012.09.023
dc.relationRipley, B., Venables, B., Douglas, M. B., Hornik, K., Gebhardt, A., Firth, D. 2017. MASS: Support functions and datasets. R package version 7.3-47. https://CRAN.R-project.org/package=MASS
dc.relationRitchie, J. T., 1981. Water dynamics in the Soil-Plant-athmosphere system. In Plant and Soil (Vol. 96, pp. 81–96). ICARDA. https://doi.org/https://doi.org/10.1007/BF02180050
dc.relationRockström, J., Williams, J., Daily, G., Noble, A., Matthews, N., Gordon, L., Wetterstrand, H., DeClerck, F., Shah, M., Steduto, P., de Fraiture, C., Hatibu, N., Unver, O., Bird, J., Sibanda, L., Smith, J., 2017. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 46, 4–17. https://doi.org/10.1007/s13280-016-0793-6
dc.relationRodrigues, G.S., Rodrigues, I.A., Buschinelli, C.C. de A., de Barros, I., 2010. Integrated farm sustainability assessment for the environmental management of rural activities. Environ. Impact Assess. Rev. 30, 229–239. https://doi.org/10.1016/j.eiar.2009.10.002
dc.relationRodríguez, A., 2012. Evaluación de las simulaciones de precipitación y temperatura de los modelos climáticos globales del proyecto CMIP5 con el clima presente en Colombia. Ideam-Meteo 34.
dc.relationRojas, B.E.O., 2011. Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interanual y cambio climático, en el sur oeste de la Sabana de Bogotá. Tesis de maestría. Universidad Nacional de Colombia. Facultad de Ciencias. Departamento de Geociencias. http://www.bdigital.unal.edu.co/5242/
dc.relationRojas, E. O. B., 2011. Evaluación del desarrollo del cultivo de papa bajo escenarios de variabilidad climática interaunal y cambio climático, en el sur oeste de la Sabana de Bogotá. Tesis de maestría. Universidad Nacional de Colombia. Facultad de Ciencias, Departamento de Geociencias. Bogotá., Colombia. http://www.bdigital.unal.edu.co/5242/
dc.relationRömheld, V., Kirkby, E.A., 2010. Research on potassium in agriculture: Needs and prospects. Plant Soil 335, 155–180. https://doi.org/10.1007/s11104-010-0520-1
dc.relationRosegrant, M.W., Cline, S.A., 2003. Global Food Security: Challenges and Policies. Science 302, 1917–1919. https://doi.org/10.1126/science.1092958
dc.relationRossi, J. P., Franc, A., y Rousseau, G. X. 2009. Indicating soil quality and the GISQ. Soil Biology and Biochemistry, 41(2), 444–445. https://doi.org/10.1016/j.soilbio.2008.10.004
dc.relationRoy, R., Chan, N.W., 2012. An assessment of agricultural sustainability indicators in Bangladesh: review and synthesis. Environmentalist 32, 99–110. https://doi.org/10.1007/s10669-011-9364-3
dc.relationRuser, R., Flessa, H., Schilling, R., Steindl, H., Beese, F., 1998. Soil compaction and fertilization effects on nitrous oxide and methane fluxes in potato fields. Soil Sci. Soc. Am. J. 62, 1587–1595. https://doi.org/10.2136/sssaj1998.03615995006200060016x
dc.relationRyan, M., Hennessy, T., Buckley, C., Dillon, E. J., Donnellan, T., Hanrahan, K., y Moran, B., 2016. Developing farm-level sustainability indicators for Ireland using the Teagasc National Farm Survey. Irish Journal of Agricultural and Food Research, 55(2), 112-125. http://doi.org/10.1515/ijafr-2016-0011
dc.relationSadok, W., Angevin, F., Bergez, J.E., Bockstaller, C., Colomb, B., Guichard, L., Reau, R., Messéan, A., Doré, T., 2009. MASC, a qualitative multi-attribute decision model for ex ante assessment of the sustainability of cropping systems. Agron. Sustain. Dev. 29, 447–461. https://doi.org/10.1051/agro/2009006
dc.relationSarkar, D., Haldar, A., 2005. Physical and chemical methods in soil analysis. Fundamental concepts of analytical chemistry and instrumental thecniques, vol 1. New Age International Publishers, New Delhi. http://doi.org/10.1017/CBO9781107415324.004
dc.relationSchader, C., Baumgart, L., Landert, J., Muller, A., Ssebunya, B., Blockeel, J., Weisshaidinger, R., Petrasek, R., Mészáros, D., Padel, S., Gerrard, C., Smith, L., Lindenthal, T., Niggli, U., y Stolze, M., 2016. Using the Sustainability Monitoring and Assessment Routine (SMART) for the systematic analysis of trade-offs and synergies between sustainability dimensions and themes at farm level. Sustainability, 8(3), 1-20. http://doi.org/10.3390/su8030274
dc.relationSchader, C., Grenz, J., Meier, M. S., Stolze, M., 2014. Scope and precision of sustainability assessment approaches to food systems. Ecology and Society, 19(3), 42–57. http://doi.org/10.5751/ES-06866-190342
dc.relationSchaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M.A., Zechmeister-Boltenstern, S., 2010. Greenhouse gas emissions from European soils under different land use: Effects of soil moisture and temperature. Eur. J. Soil Sci. 61, 683–696. https://doi.org/10.1111/j.1365-2389.2010.01277.x
dc.relationScheffer, F., Schachtschabel, P., 2016. Soil Science. Springer. 16th edition. Germany. http://doi.org/10.1007/978-3-642-30942-7
dc.relationSchimel, D.S., Braswell, B.H., Holland, E.A., McKeown, R., Ojima, D.S. Painter, T.H., Parton, W.J., Townsend, A.R., 2007. Climatic, edaphic, and biotic controls over storage and turnover of carbon in soils. Global biogeochemical cycles. 8(3): 279-293. https://doi.org/10.1029/94GB00993
dc.relationSchindler, J., Graef, F., König, H. J., 2015). Methods to assess farming sustainability in developing countries. A review. Agronomy for Sustainable Development, 35, 1043-1057. http://doi.org/10.1007/s13593-015-0305-2
dc.relationSchmitz, A., Moss, C.B. (2015). Mechanized agriculture: Machine adoption, farm size, and labor displacement. AgBioForum 18, 278–296. Recuperado de https://mospace.umsystem.edu/xmlui/bitstream/handle/10355/48143/MechanizedAgriculture.pdf?sequence=1
dc.relationShahbazi, F., y Jafarzadeh, A. 2010. Integrated assessment of rural land for sustainable development using MicroLEIS DSS in west Azerbaijan, Iran. Geoderma, 157(3): 175‐184.
dc.relationSharifi, M., Lynch, D.H., Hammermeister, A., Burton, D.L., Messiga, A.J., 2014. Effect of green manure and supplemental fertility amendments on selected soil quality parameters in an organic potato rotation in Eastern Canada. Nutr. Cycl. Agroecosystems 100, 135–146. https://doi.org/10.1007/s10705-014-9633-x
dc.relationShayler, H., McBride, M., Harrison, E., 2009. Sources and Impacts of Contaminants in Soils. Soil Sciences, CornelL Waste Management Institute. p: 1–6. http://cwmi.css.cornell.edu/sourcesandimpacts.pdf
dc.relationShibabaw, A., Alemayehu, G., Adgo, E., Asch, F., Freyer, B., 2018. Effects of organic manure and crop rotation system on potato (Solanum tuberosum L.) tuber yield in the highlands of Awi Zone. Ethiop. J. Sci. Technol. 11, 1. https://doi.org/10.4314/ejst.v11i1.1
dc.relationShukla, M.K., Lal, R., Ebinger, M., 2006. Determining soil quality indicators by factor analysis. Soil Tillage Res. 87, 194–204. https://doi.org/10.1016/j.still.2005.03.011
dc.relationShukla, S. K., Yadav, R. L., Gupta, R., Singh, A. K., Awasthi, S. K., Gaur, A., 2018. Deep Tillage, Soil Moisture Regime, and Optimizing N Nutrition for Sustaining Soil Health and Sugarcane Yield in Subtropical India. Communications in Soil Science and Plant Analysis, 49(4), 444–462. http://doi.org/10.1080/00103624.2018.1431263
dc.relationSingh, R. K., Murty, H. R., Gupta, S. K., Dikshit, A. K., 2012. An overview of sustainability assessment methodologies. Ecological Indicators, 15, 281–299. http://doi.org/10.1016/j.ecolind.2011.01.007
dc.relationSmith, A., Snapp, S., Chikowo, R., Thorne, P., Bekunda, M., Glover, J., 2017. Measuring sustainable intensification in smallholder agroecosystems: A review. Global Food Security, 12, 127–138, http://doi.org/10.1016/j.gfs.2016.11.002
dc.relationSmith, A.J., Dumanski, J. 1994. FESLM: An international framework for evaluating sustainable land management. World Soil Resources Report No 73. FAO. Roma.
dc.relationSmith, P., 2012. Soils and climate change. Current Opinion in Environmental Sustainability. 4: 539–544. http://dx.doi.org/10.1016/j.cosust.2012.06.005
dc.relationSmith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., Sirotenko, O., Howden, M., McAllister, T., Pan, G., Romanenkov, V., Schneider, U., Towprayoon, S., Wattenbach, M., Smith, J., 2008. Greenhouse gas mitigation in agriculture. Philos. Trans. R. Soc. B Biol. Sci. 363, 789–813. https://doi.org/10.1098/rstb.2007.2184
dc.relationSmith, P., Smith, J.U., Powlson, D.S., Mcgill, W.B., Arah, J.R.M., Chertov, O.G., Coleman, K., Franko, U., Frolking, S., Jenkinson, D.S., Jensen, L.S., Kelly, R.H., Klein-gunnewiek, H., Komarov, A.S., Li, C., Molina, J.A.E.J., Mueller, T., Parton, W.J., Thornley, J.H.M., Whitmore, A.P., 1997. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 81, 153–225. https://doi.org/https://doi.org/10.1016/S0016-7061(97)00087-6
dc.relationSmith, S.J., Wigley, T.M.L., 2006. Multi-Gas Forcing Stabilization with the MiniCAM. Energy Journal (Special Issue #3) pp 373-391. Soussana, J.F., 2014. Research priorities for sustainable agri-food systems and life cycle assessment. J. Clean. Prod. 73, 19–23. https://doi.org/10.1016/j.jclepro.2014.02.061
dc.relationSparks, A.H., Forbes, G.A., Hijmans, R.J., Garrett, K.A., 2014. Climate change may have limited effect on global risk of potato late blight. Glob. Chang. Biol. 20, 3621–3631. https://doi.org/10.1111/gcb.12587
dc.relationSparrow, L.A., 2015. Six years of results from a potato rotation and green manure trial in Tasmania, Australia. Acta Hortic. 1076, 29–36. Spiertz, J.H.J., 2010. Nitrogen , sustainable agriculture and food security . A review. Agron. Sustain. Dev. 30, 43–55. https://doi.org/10.1051/agro:2008064
dc.relationSt. Clair, S.B. y Lynch, J.P. 2010. The opening of Pandora’s Box: climate change impacts on soil fertility and crop nutrition in developing countries. Plant Soil. 335: 101–115. https://doi.org/10.1007/s11104-010-0328-z
dc.relationStackhouse, P.W., Kusterer, J.M., 2019. NASA -POWER Data Access Viewer. NASA Langley ASDC User Serv. 1. https://power.larc.nasa.gov/ Stavi, I., Lal, R., 2013. Agriculture and greenhouse gases, a common tragedy. A review. Agron. Sustain. Dev. 33, 275–289. https://doi.org/10.1007/s13593-012-0110-0
dc.relationSwart, R.J., Raskin, P., Robinson, J., 2004. The problem of the future: Sustainability science and scenario analysis. Glob. Environ. Chang. 14, 137–146. https://doi.org/10.1016/j.gloenvcha.2003.10.002
dc.relationTan, G., Shibasaki, R., 2003. Global estimation of crop productivity and the impacts of global warming by GIS and EPIC integration. Ecological Modelling. 168(3): 357-370.
dc.relationTherond, O., Duru, M., Roger-Estrade, J., Richard, G., 2017. A new analytical framework of farming system and agriculture model diversities. A review. Agron. Sustain. Dev. 37. https://doi.org/10.1007/s13593-017-0429-7
dc.relationThoumazeau, A., Bessou, C., Renevier, M.S., Panklang, P., Puttaso, P., Peerawat, M., Heepngoen, P., Polwong, P., Koonklang, N., Sdoodee, S., Chantuma, P., Lawongsa, P., Nimkingrat, P., Thaler, P., Gay, F., Brauman, A., 2019. Biofunctool®: a new framework to assess the impact of land management on soil quality. Part B: investigating the impact of land management of rubber plantations on soil quality with the Biofunctool® index. Ecol. Indic. 97, 429–437. https://doi.org/10.1016/j.ecolind.2018.10.028
dc.relationTilman, D., Cassman, K. G., Matson, P. A., Naylor, R., y Polasky, S. 2002. Agricultural sustainability and intensive production practices. Nature, 418(6898), 671–677. http://doi.org/10.1038/nature01014
dc.relationTimsina, J., Godwin, D., Humphreys, E., Kukal, S. S., Smith, D., 2008. Evaluation of options for increasing yield and wáter productivity of wheat in Punjab, India Using the DSSAT‐CSM-CERES-Wheat model. Agricultural Wáter management. 95(9): 1099‐1110.
dc.relationTittonell, P., 2014. Ecological intensification of agriculture-sustainable by nature. Current Opinion in Environmental Sustainability, 8, 53–61. http://doi.org/10.1016/j.cosust.2014.08.006
dc.relationTorrellas, M., Antón, A., Montero, J.I. 2013. An environmental calculator for greenhouse production systems. J. Environ. Manag. 118, 186e195. https://doi.org/10.1016/j.jenvman.2013.01.011
dc.relationTóth, G., Hermann, T., da Silva, M.R., Montanarella, L., 2018. Monitoring soil for sustainable development and land degradation neutrality. Environ. Monit. Assess. 190. https://doi.org/10.1007/s10661-017-6415-3
dc.relationTricase, C., Lamonaca, E., Ingrao, C., Bacenetti, J., Lo Giudice, A., 2018. A comparative Life Cycle Assessment between organic and conventional barley cultivation for sustainable agriculture pathways. J. Clean. Prod. 172, 3747–3759. https://doi.org/10.1016/j.jclepro.2017.07.008
dc.relationTriste, L., Marchand, F., Debruyne, L., Meul, M., Lauwers, L., 2014. Reflection on the development process of a sustainability assessment tool: learning from a Flemish case. Eclogy Soc. 19, 47–57. https://doi.org/10.5751/ES-06789-190347
dc.relationUlén, B., Larsbo, M., Koestel, J., Hellner, Q., Blomberg, M., Geranmayeh, P., 2018. Assessing strategies to mitigate phosphorus leaching from drained clay soils. Ambio 47, 114–123. https://doi.org/10.1007/s13280-017-0991-x
dc.relationUmar A. S., Iqbal, M., 2007. Nitrate accumulation in plants, factors affecting the process and human health implications. A review. Agron Sustain Dev, 27, 45–57, http://doi.org/10.1051/agro:2006021
dc.relationUSEPA., 1972. Quality of life indicators: A review of state-of-the-art and guidelines derived to assist in developing environmental indicators. USEPA Environmental Studies Division, Office of Research and Monitoring. Washington, DC.
dc.relationUsman, M., Ibrahim, F., Oyetola, S.O., 2018. Sustainable agriculture in relation to problems of soil degradation and how to amend such soils for optimum crop production in Nigeria. Int. J. Res. Agric. Food Sci. 4, 1–17.
dc.relationVakhnyi, S., Khakhula, V., Fedoruk, Y., Panchenko, T., Herasymenko, L., 2018. The efficiency increase of the nutrition element uptake by various potato cultivars grown in one-crop system and in crop rotation. EurAsian J. Biosci. 12, 1–7.
dc.relationVan Asselt, E. D., Van Bussel, L. G. J., Van der Voet, H., Van der Heijden, G. W. A. M., Tromp, S. O., Rijgersberg, H., Van Efert, F., Van Wagenberg, C. P. A., 2014. A protocol for evaluating the sustainability of agri-food production systems-A case study on potato production in peri-urban agriculture in The Netherlands. Ecological Indicators, 43, 315–321. http://doi.org/10.1016/j.ecolind.2014.02.027
dc.relationVan Capelle, C., Schrader, S., Brunotte, J., 2012. Tillage-induced changes in the functional diversity of soil biota - A review with a focus on German data. Eur. J. Soil Biol. 50, 165–181. https://doi.org/10.1016/j.ejsobi.2012.02.005
dc.relationVan Passel, S., y Meul, M. (2012). Multilevel and multi-user sustainability assessment of farming systems. Environmental Impact Assessment Review, 32, 170-180. http://doi.org/10.1016/j.eiar.2011.08.005
dc.relationVargas, C. Z. R., 2009. La investigación aplicada: una forma de conocer las realidades con evidencia científica. Revista Educación, 33(1), 155–165. http://doi.org/0379-7082
dc.relationVelasquez, E., Lavelle, P., Andrade, M., 2007. GISQ, a multifunctional indicator of soil quality. Soil Biol. Biochem. 39, 3066–3080. https://doi.org/10.1016/j.soilbio.2007.06.013
dc.relationVerheijen, F.G.A., Jones, R.J.A., Rickson, R.J., Smith, C.J., 2009. Tolerable versus actual soil erosion rates in Europe. Earth-Science Rev. 94, 23–38. https://doi.org/10.1016/j.earscirev.2009.02.003
dc.relationVerhulst, N., François, I., Govaerts, B., 2010. Conservation agriculture, improving soil quality for sustainable production systems?, in: Rattan, L., Stewart, B.A. (Eds.), Food Security and Soil Quality. Taylor y Francis Group, London and New York, p. 418.
dc.relationXing, Y., Niu, X., Wang, N., Jiang, W., Gao, Y., Wang, X. 2020. The correlation between soil nutrient and potato quality in Loess Plateau of China based on PLSR. Sustainability. 12, 1588. https://doi.org/10.3390/su12041588
dc.relationWaas, T., Hugé, J., Block, T., Wright, T., Benitez-Capistros, F., Verbruggen, A., 2014. Sustainability assessment and indicators: Tools in a decision-making strategy for sustainable development. Sustainability 6, 5512–5534. https://doi.org/10.3390/su6095512
dc.relationWalkley, A., Black, I.A., 1934. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. https://doi.org/10.1097/00010694-193401000-00003
dc.relationWalraevens, K., Tewolde, T.G., Amare, K., Hussein, A., Berhane, G., Baert, R., Ronsse, S., Kebede, S., Van Hulle, L., Deckers, J., Martens, K., Van Camp, M., 2015. Water balance components for sustainability assessment of groundwater-dependent agriculture: example of the mendae plain (Tigray, Ethiopia). L. Degrad. Dev. 26, 725–736. https://doi.org/10.1002/ldr.2377
dc.relationWang, L., Palta, J. A., Chen, W., Chen, Y., Deng, X., 2018. Nitrogen fertilization improved water-use efficiency of winter wheat through increasing water use during vegetative rather than grain filling. Agricultural Water Management, 197, 41–53. http://doi.org/10.1016/j.agwat.2017.11.010
dc.relationWang, Y., Fan, J., Cao, L., Zheng, X., Ren, P., Zhao, S., 2018. The influence of tillage practices on soil detachment in the red soil region of China. Catena 165, 272–278. https://doi.org/10.1016/j.catena.2018.02.011
dc.relationWayne, W. D. 2002., Bioestatistics: A foundation for analysis in the health sciences. John Wiley and Sons, Inc. New York.
dc.relationWCED (World Comission on Environment and Develpment). 1987. Our common future. Oxford University Press
dc.relationWeidema, B. P., 2000. Agricultural data for life Cycle Assessments, Vol 2. Agricultural Economics Research Institute (LEI). La Haya.
dc.relationWeldeslassie, T., Naz, H., Singh, S., Oves, M., 2018. Chemical contaminants for soil, air and aquatic ecosystem, in: Oves, M., Khan, M. Z., Ismail, I. M. I. (Eds), Modern age environmental problems and their remediation. Springer (1st ed.). http://doi.org/10.1007/978-3-319-64501-8
dc.relationWest, T.O., Marland, G., 2002. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 91, 217–232. https://doi.org/10.1016/S0167-8809(01)00233-X
dc.relationWise, MA., Calvin, K.V., Thomson, A.M., Clarke, L.E., Bond-Lamberty, B., Sands, R.D., Smith, S.J., Janetos, A.C., Edmonds, J.A., 2009. Implications of Limiting CO2 Concentrations for Land Use and Energy. Science. 324:1183-1186. May 29, 2009
dc.relationWorld Comission on Environment and Development WCED., 1987. Our common future. Oxford University Press
dc.relationWszelaczyńska, E., Pobereżny, J., Spychaj-Fabisiak, E., Janowiak, J., 2012. Effect of organic and nitrogen fertilization on selected components in potato tubers grown in a simplified crop rotation. J. Elemntology 1153–1165. https://doi.org/10.5601/jelem.2014.19.3.381
dc.relationYang, J.M., Yang, J.Y., Dou, S., Yang, X.M., Hoogenboom, G., 2013. Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in northeastern China using DSSAT and CENTURY-based soil model. Nutr. Cycl. Agroecosystems 95, 287–303. https://doi.org/10.1007/s10705-013-9563-z
dc.relationYang, Q., Meng, F.R., Zhao, Z., Chow, T.L., Benoy, G., Rees, H.W., Bourque, C.P.A., 2009. Assessing the impacts of flow diversion terraces on stream water and sediment yields at a watershed level using SWAT model. Agric. Ecosyst. Environ. 132, 23–31. https://doi.org/10.1016/j.agee.2009.02.012
dc.relationYao, Y., Gao, B., Zhang, M., Inyang, M., Zimmerman, A.R., 2012. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere 89, 1467–1471. https://doi.org/10.1016/j.chemosphere.2012.06.002
dc.relationYli-Viikari, A., Risku-Norja, H., Aakkula, J., 2012. Sustainability Indicators: Providing Policy Indications or Just Adding Informative Chaos? J. Sustaible Agric. 36, 127–150. https://doi.org/10.1080/10440046.2011.611749
dc.relationYli-Viikari, A., Risku-Norja, H., Aakkula, J., 2012. Sustainability Indicators: Providing Policy Indications or Just Adding Informative Chaos? J. Sustaible Agric. 36, 127–150. https://doi.org/10.1080/10440046.2011.611749
dc.relationYouker, R. E., McGuinness, J. L., 1957. A short method of obtaining mean weightdiameter values of aggregate analyses of soils. Soil Science 83(4), 291–294. Recuperado de https://journals.lww.com/soilsci/Citation/1957/04000/A_SHORT_METHOD_OF_OBTAINING_MEAN_WEIGHT_DIAMETER.4.aspx
dc.relationZahm, F., Viaux, P., Vilain, L., Girardin, P., y Mouchet, C. 2008. Assessing farm sustainability with the IDEA method - From the concept of agriculture sustainability to case studies on farms. Sustainable Development, 16(4), 271–281. http://doi.org/10.1002/sd.380
dc.relationZegada-lizarazu, W., Monti, A., 2010. Energy crops in rotation. A review. Biomass and Bioenergy 35, 12–25. https://doi.org/10.1016/j.biombioe.2010.08.001
dc.relationZhang, T.Q., Zheng, Z.M., Lal, R., Lin, Z.Q., Sharpley, A.N., Shober, A.L., Smith, D., Tan, C.S., Van Cappellen, P., 2018. Environmental Indicator Principium with Case References to Agricultural Soil, Water, and Air Quality and Model-Derived Indicators. J. Environ. Qual. 47, 191. https://doi.org/10.2134/jeq2017.10.0398
dc.relationZhang, X., Xu, M., Sun, N., Xiong, W., Huang, S., Wu, L., 2016. Modelling and predicting crop yield, soil carbon and nitrogen stocks under climate change scenarios with fertiliser management in the North China Plain. Geoderma 265, 176–186. https://doi.org/10.1016/j.geoderma.2015.11.027
dc.relationZörb, C., Senbayram, M., 0|Peiter, E., 2014. Potassium in agriculture - Status and perspectives. J. Plant Physiol. 171, 656–669. https://doi.org/10.1016/j.jplph.2013.08.008
dc.relationZornoza, R., Acosta, J.A., Bastida, F., Domínguez, S.G., Toledo, D.M., Faz, A., 2015. Identification of sensitive indicators to assess the interrelationship between soil quality, management practicesand human health. Soil 1, 173–185. https://doi.org/10.5194/soil-1-173-2015
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación de la sostenibilidad orientada a experimentos agrícolas asociados al suelo
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución