dc.contributor | Romero Castro, Edgar Eduardo | |
dc.contributor | Universidad Nacional de Colombia | |
dc.contributor | CIM@LAB (Computer Imaging and Medical Applications Laboratory) | |
dc.creator | Bravo Higuera, Diego Fernando | |
dc.date.accessioned | 2020-08-13T03:21:19Z | |
dc.date.available | 2020-08-13T03:21:19Z | |
dc.date.created | 2020-08-13T03:21:19Z | |
dc.date.issued | 2020-01-06 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78013 | |
dc.description.abstract | El cáncer colorrectal (CCR) fue la segunda causa más común de muerte por cáncer en el mundo en 2018 y se ha convertido en una prioridad de salud pública mundial. Por lo tanto, la prevención de CCR mediante la detección temprana y la eliminación de lesiones neoplásicas es de suma importancia. Por lo general, el CCR comienza con pequeñas masas benignas o neoplasias comúnmente llamadas pólipos. En la mayoría de los casos, los pólipos evolucionan lentamente en adenocarcinoma o cáncer. La colonoscopia es el examen estándar para diagnosticar y tratar el CCR. Durante este procedimiento, un gastroenterólogo realiza una exploración visual de todo el colon para detectar esas lesiones y definir una actitud terapéutica. Sin embargo, algunos estudios de población a gran escala han informado que aproximadamente el 25% de los pólipos no son detectados durante la colonoscopia. Los pacientes con una tasa de omisión de pólipos pueden desarrollar CCR y en una etapa tardía, la tasa de supervivencia es inferior al 15%. La detección de pólipos es una tarea compleja que depende en gran medida de la experiencia del especialista y fatiga ocular, preparación intestinal del paciente y la variación biológica. Por lo tanto, un sistema automático de detección de pólipos como segundo lector puede ayudar a reducir la tasa de omisión de pólipos, resaltando las posibles regiones polipoides para aumentar la atención de los expertos. Este trabajo presenta un conjunto de métodos automáticos para apoyar el diagnóstico médico, inspirados en las características visuales, información contextual y temporal de las lesiones polipoides mayores de 5 milímetros, esta descripción permite la diferenciación de la clase de pólipo y no pólipo. | |
dc.description.abstract | Colorectal cancer (CRC) was the second most common cause of cancer death in the world in 2018 and it has become a global public health priority. Therefore, the prevention of CRC through the early detection and elimination of neoplastic lesions is of paramount importance. Usually, the CRC begins as small benign masses or neoplasias commonly called polyps. In most cases, polyps slowly evolve in adenocarcinoma or cancer. Colonoscopy is the standard test to diagnose and treat CRC. During this procedure, a visual examination of the entire colon is performed by a gastroenterologist detecting those lesions and defining a therapeutic attitude. However, some large-scale population studies have reported that approximately 25% of polyps are missed during colonoscopy exploration. The patients with a miss-rate of polyps can develop CRC and at a late stage, the survival rate is less than 15%. Polyp detection is a complex task being highly dependent on the specialist experience and fatigue, bowel preparation of the patient, and biological variation. Therefore, an automatic polyp detection system as a second reader could help to reduce the polyp miss rate, highlighting possible polypoid regions to increase the attention of experts. This work presents a set of automatic methods to support medical diagnosis, inspired in the visual features, contextual and temporal information of polypoid lesions larger than 5 millimeters, this description allows the differentiation of the polyp and non-polyp class. | |
dc.language | eng | |
dc.publisher | Bogotá - Medicina - Maestría en Ingeniería Biomédica | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | [1] WHO, “Oms — cáncer,” 2016. www.who.int/mediacentre/factsheets/fs297/es/. | |
dc.relation | [2] Globocan, “Cancers fact sheets : Colorectal cancer,” 2012. | |
dc.relation | [3] A. Jemal, M. M. Center, C. DeSantis, and E. M. Ward, “Global patterns of cancer incidence and mortality rates and trends, " Cancer Epidemiology and Prevention Biomarkers, vol. 19, no. 8, pp. 1893–1907, 2010. | |
dc.relation | [4] “American cancer society - key statistics for colorectal cancer”, accessed February 21, 2018.”
ww.cancer.org/cancer/colonandrectumcancer. | |
dc.relation | [5] J. R. M. Velásquez, C. M. E. Vélez, and F. J. Baños, “Pólipo difícil enfoque y manejo,”Revista Colombiana de Gastroenterología, vol. 27, no. 4, pp. 292–302, 2012. | |
dc.relation | [6] P. in the Paris Workshop, “The Paris endoscopic classification of superficial neoplastic lesions: esophagus, stomach, and colon, " Gastrointestinal Endoscopy, vol. 58, no. 6SUPPL, pp. S3–S43, 2003. | |
dc.relation | [7] F. Haumaier, W. Sterlacci, and M. Vieth, “Histological and molecular classification of gastrointestinal polyps, "Best Practice and Research: Clinical Gastroenterology, vol. 31, no. 4, pp. 369–379, 2017. | |
dc.relation | [8] P. M. Colucci, S. H. Yale, and C. J. Rall, “Colorectal polyps, "Clinical medicine &research, vol. 1, no. 3, pp. 261–262, 2003. | |
dc.relation | [9] A. Axon, M. Diebold, M. Fujino, R. Fujita, R. Genta, J. Gonvers, M. Guelrud, H. Inoue, M. Jung, H. Kashida, et al., “Update on the Paris classification of superficial neoplastic lesions in the digestive tract, "Endoscopy, vol. 37, no. 6, pp. 570–578, 2005. | |
dc.relation | [10] S. Gupta, “Trouble in Paris (classification): polyp morphology is in the eye of the beholder, "American Journal of Gastroenterology, vol. 110, no. 1, pp. 188–191, 2015. | |
dc.relation | [11] S. Kudo, S. Hirota, T. Nakajima, S. Hosobe, H. Kusaka, T. Kobayashi, M. Hinamori, and A. Yagyuu, “Colorectal tumors and pit pattern., "Journal of clinical pathology, vol. 47, no. 10, pp. 880–885, 1994. | |
dc.relation | [12] L. Bujanda, A. Cosme, I. Gil, and J. I. Arenas-Mirave, “Malignant colorectal polyps, "World journal of gastroenterology: WJG, vol. 16, no. 25, p. 3103, 2010. | |
dc.relation | [13] A. Castells, M. Marzo-Castillejo, J. Mascort, F. Amador, M. Andreu, B. Bellas, A. Ferrández, J. Ferrándiz, M. Giráldez, V. Gonzalo, et al., “Clinical practice guideline.prevention of colorectal cancer. 2009 update. Asociación española de gastroenterología,”Gastroenterologia y hepatologia, vol. 32, no. 10, pp. 717–e1, 2009. | |
dc.relation | [14] Ministerio de salud colombia: Gpc cancer colorectal,”2017. www.imss.gob.mx/sites/all/statics/guiasclinicas/234GER.pd. | |
dc.relation | [15] “American society or gastrointestinal endoscopy, “colorectal cancer screening”, accessed April 08, 2020.” www.asge.org. | |
dc.relation | [16] S. J. Winawer, A. G. Zauber, M. N. Ho, M. J. O'Brien, L. S. Gottlieb, S. S. Sternberg, J. D. Waye, M. Schapiro, J. H. Bond, J. F. Panish, et al., “Prevention of colorectal cancer by colonoscopic polypectomy, "New England Journal of Medicine, vol. 329, no. 27, pp. 1977–1981, 1993. | |
dc.relation | [17] A. G. Zauber, S. J. Winawer, M. J. O'Brien, I. Lansdorp-Vogelaar, M. van Ballegooijen, B. F. Hankey, W. Shi, J. H. Bond, M. Schapiro, J. F. Panish, et al., “Colonoscopic polypectomy and long-term prevention of colorectal-cancer deaths, "New England Journal of Medicine, vol. 366, no. 8, pp. 687–696, 2012. | |
dc.relation | [18] A. Bond and S. Sarkar, “New technologies and techniques to improve adenoma detection in colonoscopy, "World Journal of gastrointestinal endoscopy, vol. 7, no. 10, p. 969,2015. | |
dc.relation | [19] S. Gross, A. Buchner, J. Crook, J. Cangemi, M. F. Picco, H. C. Wolfsen, K. DeVault, D. Loeb, M. Raimondo, T. A. Woodward, et al., “A comparison of high definition-image enhanced colonoscopy and standard white-light colonoscopy for colorectal polyp detection, "Endoscopy, vol. 43, no. 12, pp. 1045–1051, 2011. | |
dc.relation | [20] A. Adler, K. Wegscheider, D. Lieberman, A. Aminalai, J. Aschenbeck, R. Drossel, M. Mayr, M. Mroß, M. Scheel, A. Schr ̈oder, et al., “Factors determining the quality of screening colonoscopy: a prospective study on adenoma detection rates, from 12 134examinations (berlin colonoscopy project 3, becop-3), "Gut, vol. 62, no. 2, pp. 236–241,2013. | |
dc.relation | [21] L. M. W. K. Song, D. G. Adler, B. Chand, J. D. Conway, J. M. Croffie, J. A. DiSario, D. S. Mishkin, R. J. Shah, L. Somogyi, W. M. Tierney, et al., “Chromoendoscopy," Gastrointestinal Endoscopy, vol. 66, no. 4, pp. 639–649, 2007. | |
dc.relation | [22] K. Gono, T. Obi, M. Yamaguchi, N. Oyama, H. Machida, Y. Sano, S. Yoshida, Y. Hamamoto, and T. Endo, “Appearance of enhanced tissue features in narrow-band endoscopic imaging, "Journal of biomedical optics, vol. 9, no. 3, pp. 568–578, 2004. | |
dc.relation | [23] Olympus, “Narrowband imaging - a new wave of diagnostic possibilities.”www.keymed.co.uk/index.cfm/page/products.index.cfm/cid/3245/navid/869/parentid/207. | |
dc.relation | [24] L.-M. W. K. Song, S. Banerjee, D. Desilets, D. L. Diehl, F. A. Farraye, V. Kaul, S. R.Kethu, R. S. Kwon, P. Mamula, M. C. Pedrosa, et al., “Autofluorescence imaging, "Gastrointestinal Endoscopy, vol. 73, no. 4, pp. 647–650, 2011. | |
dc.relation | [25] V. K. Dik, L. M. Moons, and P. D. Siersema, “Endoscopic innovations to increase the adenoma detection rate during colonoscopy, "World journal of gastroenterology: WJG, vol. 20, no. 9, p. 2200, 2014. | |
dc.relation | [26] M. Titi, G. Gupta, and P. Sharma, “Advanced colonoscopic imaging: Do new technologies improve adenoma detection?, "Gastroenterol Endosc News, vol. 12, 2014. | |
dc.relation | [27] D. I. Gheonea, A. Saftoiu, T. Ciurea, C. Popescu, C. V. Georgescu, and A. Malos,“Confocal laser endomicroscopy of the colon,”J Gastrointestin Liver Dis, vol. 19,no. 2, pp. 207–11, 2010. | |
dc.relation | [28] D. I. Gheonea, T. Cˆart ̧ˆan ̆a, T. Ciurea, C. Popescu, A. B ̆ad ̆ar ̆au, and A. S ̆aftoiu, “Con-focal laser endomicroscopy and Immuno endoscopy for real-time assessment of vascularization in gastrointestinal malignancies,” World journal of gastroenterology: WJG, vol. 17, no. 1, p. 21, 2011. | |
dc.relation | [29] J. E. East, B. P. Saunders, D. Burling, D. Boone, S. Halligan, and S. A. Taylor, “Surface visualization at ct colonography simulated colonoscopy: effect of varying field of view and retrograde view,” American Journal of Gastroenterology, vol. 102, no. 11, pp. 2529–2535, 2007. | |
dc.relation | [30] J. D. Waye, R. I. Heigh, D. E. Fleischer, J. A. Leighton, S. Gurudu, L. B. Aldrich, J. Li, S. Ramrakhiani, S. A. Edmundowicz, D. S. Early, et al., “A retrograde-viewing device improves detection of adenomas in the colon: a prospective efficacy evaluation(with videos), "Gastrointestinal Endoscopy, vol. 71, no. 3, pp. 551–556, 2010. | |
dc.relation | [31] S. Kondo, Y. Yamaji, H. Watabe, A. Yamada, T. Sugimoto, M. Ohta, K. Ogura, M. Okamoto, H. Yoshida, T. Kawabe, et al., “A randomized controlled trial evaluating the usefulness of a transparent hood attached to the tip of the colonoscope," American Journal of Gastroenterology, vol. 102, no. 1, pp. 75–81, 2007. | |
dc.relation | [32] L. Rabeneck and L. F. Paszat, “Circumstances in which colonoscopy misses cancer, "Frontline gastroenterology, vol. 1, no. 1, pp. 52–58, 2010. | |
dc.relation | [33] C. M. le Clercq, M. W. Bouwens, E. J. Rondagh, C. M. Bakker, E. T. Keulen, R. J.de Ridder, B. Winkens, A. A. Masclee, and S. Sanduleanu, “Postcolonoscopy colorectal cancers are preventable: a population-based study, "Gut, vol. 63, no. 6, pp. 957–963,2014. | |
dc.relation | [34] S. J. Winawer, A. G. Zauber, R. H. Fletcher, J. S. Stillman, M. J. O’Brien, B. Levin, R. A. Smith, D. A. Lieberman, R. W. Burt, T. R. Levin, et al., “Guidelines for colonoscopy surveillance after polypectomy: a consensus update by the us multi-society task force on colorectal cancer and the American cancer society,” CA: a cancer journal for clinicians, vol. 56, no. 3, pp. 143–159, 2006. | |
dc.relation | [35] D. K. Rex, C. J. Kahi, B. Levin, R. A. Smith, J. H. Bond, D. Brooks, R. W. Burt, T. Byers, R. H. Fletcher, N. Hyman, et al., “Guidelines for colonoscopy surveillance after cancer resection: a consensus update by the American cancer society and us multi-society task force on colorectal cancer,” CA: a cancer journal for clinicians, vol. 56, no. 3, pp. 160–167, 2006. | |
dc.relation | [36] D. A. Lieberman, D. K. Rex, S. J. Winawer, F. M. Giardiello, D. A. Johnson, and T. R. Levin, “Guidelines for colonoscopy surveillance after screening and polypectomy: a consensus update by the us multi-society task force on colorectal cancer,” Gastroenterology, vol. 143, no. 3, pp. 844–857, 2012. | |
dc.relation | [37] J. C. Van Rijn, J. B. Reitsma, J. Stoker, P. M. Bossuyt, S. J. Van Deventer, andE. Dekker, “Polyp miss rate determined by tandem colonoscopy: a systematic review,”American Journal of Gastroenterology, vol. 101, no. 2, pp. 343–350, 2006. | |
dc.relation | [38] B. Bressler, L. F. Paszat, Z. Chen, D. M. Rothwell, C. Vinden, and L. Rabeneck, “Rates of new or missed colorectal cancers after colonoscopy and their risk factors: a population-based analysis,” Gastroenterology, vol. 132, no. 1, pp. 96–102, 2007. | |
dc.relation | [39] H. N. Choi, H. H. Kim, J. S. Oh, H. S. Jang, H. S. Hwang, E. Y. Kim, J. G. Kwon, and J. T. Jung, “Factors influencing the miss rate of polyps in a tandem colonoscopy study,” The Korean Journal of Gastroenterology, vol. 64, no. 1, pp. 24–30, 2014. | |
dc.relation | [40] N. H. Kim, Y. S. Jung, W. S. Jeong, H.-J. Yang, S.-K. Park, K. Choi, and D. I.Park, “Miss rate of colorectal neoplastic polyps and risk factors for missed polyps inconsecutive colonoscopies,” Intestinal Research, vol. 15, no. 3, p. 411, 2017. | |
dc.relation | [41] J. M. Cha, “Interval cancers after a negative colonoscopy finding in a Korean population: a small step for gastroenterologists but one giant leap for Koreans,” Intestinalresearch, vol. 12, no. 2, p. 169, 2014. | |
dc.relation | [42] T. J. Lee, C. J. Rees, R. G. Blanks, S. M. Moss, C. Nickerson, K. C. Wright, P. W.James, R. J. McNally, J. Patnick, and M. D. Rutter, “Colonoscopic factors associated with adenoma detection in a national colorectal cancer screening program,” Endoscopy, vol. 46, no. 03, pp. 203–211, 2014. | |
dc.relation | [43] D. A. Leffler, R. Kheraj, A. Bhansali, H. Yamanaka, N. Neeman, S. Sheth, M. Sawhney, J. T. Lamont, and M. D. Aronson, “Adenoma detection rates vary minimally with time of day and case rank: a prospective study of 2139 first screening colonoscopies,” Gastrointestinal Endoscopy, vol. 75, no. 3, pp. 554–560, 2012. | |
dc.relation | [44] K. H. Paeck, W. J. Heo, D. I. Park, Y. H. Kim, S. H. Lee, C. K. Lee, C. S. Eun, and D. S. Han, “Colonoscopy scheduling influences adenoma and polyp detection rates.,” Hepato-gastroenterology, vol. 60, no. 127, pp. 1647–1652, 2013. | |
dc.relation | [45] H. N. Choi, H. H. Kim, J. S. Oh, H. S. Jang, H. S. Hwang, E. Y. Kim, J. G. Kwon, and J. T. Jung, “Factors influencing the miss rate of polyps in a tandem colonoscopy study,” The Korean Journal of Gastroenterology, vol. 64, no. 1, pp. 24–30, 2014. | |
dc.relation | [46] J. Aranda-Hernández, J. Hwang, and G. Kandel, “Seeing better-evidence based re-commendations on optimizing colonoscopy adenoma detection rate,” World journal of gastroenterology, vol. 22, no. 5, p. 1767, 2016. | |
dc.relation | [47] Y.-J. Cho, S.-H. Bae, and K.-J. Yoon, “Multi-classifier-based automatic polyp detection in endoscopic images,” Journal of Medical and Biological Engineering, vol. 36, no. 6, pp. 871–882, 2016. | |
dc.relation | [48] S. Krishnan, X. Yang, K. Chan, S. Kumar, and P. Goh, “Intestinal abnormality detection from endoscopic images,” in Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Vol. 20 Biomedical Engineering Towards the Year 2000 and Beyond (Cat. No. 98CH36286), vol. 2, pp. 895–898, IEEE, 1998. | |
dc.relation | [49] S. A. Karkanis, D. K. Iakovidis, D. E. Maroulis, D. A. Karras, and M. Tzivras, “Computer-aided tumor detection in endoscopic video using color wavelet features,” IEEE transactions on information technology in biomedicine, vol. 7, no. 3, pp. 141–152,2003. | |
dc.relation | [50] M. P. Tjoa and S. M. Krishnan, “Feature extraction for the analysis of colon status from the endoscopic images,” BioMedical Engineering OnLine, vol. 2, no. 1, p. 9, 2003. | |
dc.relation | [51] P. Li, K. L. Chan, and S. M. Krishnan, “Learning a multi-size patch-based hybrid kernel machine ensemble for abnormal region detection in colonoscopic images,” in2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR’05), vol. 2, pp. 670–675, IEEE, 2005. | |
dc.relation | [52] B. V. Dhandra, R. Hegadi, M. Hangarge, and V. S. Malemath, “Analysis of abnormality in endoscopic images using combined hsi color space and watershed segmentation,” in18th International Conference on Pattern Recognition (ICPR’06), vol. 4, pp. 695–698, IEEE, 2006. | |
dc.relation | [53] M. T. Coimbra and J. S. Cunha, “Mpeg-7 visual descriptors—contributions for automated feature extraction in capsule endoscopy,” IEEE transactions on circuits and systems for video technology, vol. 16, no. 5, pp. 628–637, 2006. | |
dc.relation | [54] S. Hwang, J. Oh, W. Tavanapong, J. Wong, and P. C. De Groen, “Polyp detection in colonoscopy video using elliptical shape feature,” in2007 IEEE International Conference on Image Processing, vol. 2, pp. II–465, IEEE, 2007. | |
dc.relation | [55] S. Ameling, S. Wirth, D. Paulus, G. Lacey, and F. Vilarino, “Texture-based polyp de-tection in colonoscopy,” inBildverarbeitung f ̈ur die Medizin 2009, pp. 346–350, Springer, 2009. | |
dc.relation | [56] C. Van Wijk, V. F. Van Ravesteijn, F. M. Vos, and L. J. Van Vliet, “Detection and segmentation of colonic polyps on implicit isosurfaces by second principal curvature flow,” IEEE Transactions on Medical Imaging, vol. 29, no. 3, pp. 688–698, 2010. | |
dc.relation | [57] H. Zhu, Y. Fan, H. Lu, and Z. Liang, “Improved curvature estimation for computer-aided detection of colonic polyps in ct colonography,” Academic Radiology, vol. 18, no. 8, pp. 1024–1034, 2011. | |
dc.relation | [58] J. Bernal, J. Sánchez, and F. Vilarino, “Towards automatic polyp detection with a polyp appearance model,” Pattern Recognition, vol. 45, no. 9, pp. 3166–3182, 2012. | |
dc.relation | [59] J. Silva, A. Histace, O. Romain, X. Dray, and B. Granado, “Toward embedded detection of polyps in wce images for early diagnosis of colorectal cancer,” International Journal of Computer Assisted Radiology and Surgery, vol. 9, no. 2, pp. 283–293, 2014. | |
dc.relation | [60] J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodríguez, and F. Vilarino, “Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs.saliency maps from physicians,” Computerized Medical Imaging and Graphics, vol. 43, pp. 99–111, 2015. | |
dc.relation | [61] Y.-J. Cho, S.-H. Bae, and K.-J. Yoon, “Multi-classifier-based automatic polyp detection in endoscopic images,” Journal of Medical and Biological Engineering, vol. 36, no. 6, pp. 871–882, 2016. | |
dc.relation | [62] N. Tajbakhsh, S. R. Gurudu, and J. Liang, “Automated polyp detection in colonoscopy videos using shape and context information,” IEEE transactions on medical imaging, vol. 35, no. 2, pp. 630–644, 2015. | |
dc.relation | [63] Y. Yuan, D. Li, and M. Q.-H. Meng, “Automatic polyp detection via a novel unified bottom-up and top-down saliency approach,” IEEE Journal of biomedical and health informatics, vol. 22, no. 4, pp. 1250–1260, 2017. | |
dc.relation | [64] R. Zhang, Y. Zheng, T. W. C. Mak, R. Yu, S. H. Wong, J. Y. Lau, and C. C. Poon, “Automatic detection and classification of colorectal polyps by transferring low-level cnn features from nonmedical domain,” IEEE journal of biomedical and health informatics, vol. 21, no. 1, pp. 41–47, 2016. | |
dc.relation | [65] J. Bernal, N. Tajkbaksh, F. J. Sánchez, B. J. Matuszewski, H. Chen, L. Yu, Q. An-germann, O. Romain, B. Rustad, I. Balasingham, et al., “Comparative validation of polyp detection methods in video colonoscopy: results from the miccai 2015 endoscopic vision challenge,” IEEE transactions on medical imaging, vol. 36, no. 6, pp. 1231–1249,2017. | |
dc.relation | [66] D. Jha, P. H. Smedsrud, M. A. Riegler, P. Halvorsen, T. de Lange, D. Johansen, andH. D. Johansen, “Kvasir-seg: A segmented polyp dataset,” inInternational Conferenceon Multimedia Modeling, pp. 451–462, Springer, 2020. | |
dc.relation | [67] H. Pohl and D. J. Robertson, “Colorectal cancers detected after colonoscopy frequently result from missed lesions,” Clinical Gastroenterology and Hepatology, vol. 8, no. 10, pp. 858–864, 2010. | |
dc.relation | [68] K. Garborg, “Colorectal Cancer Screening,” Colorectal Cancer, vol. 95, no. April 2001, pp. 1–15, 2015. | |
dc.relation | [69] T. N. Witte and R. Enns, “The difficult colonoscopy,” Canadian Journal of Gastroenterology, vol. 21, no. 8, pp. 487–490, 2007. | |
dc.relation | [70] Y. Shin, I. Balasingham, and S. Member, “Comparison of Handcraft Feature-based SVM and CNN based Deep Learning Framework for Automatic Polyp Classification,”2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3277–3280, 2017. | |
dc.relation | [71] M. Ganz, X. Yang, and G. Slabaugh, “Automatic segmentation of polyps in colonoscopic narrow-band imaging data,” IEEE Transactions on Biomedical Engineering, vol. 59, no. 8, pp. 2144–2151, 2012. | |
dc.relation | [72] S. Esedoglu and J. Shen, “Digital Inpainting Based on the Mumford-Shah-Euler ImageModel,” European Journal of Applied Mathematics, vol. 4, no. 612, pp. 353–370, 2002. | |
dc.relation | [73] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. S ̈usstrunk, “SLIC superpixels compared to state-of-the-art superpixel methods,” IEEE Transactions on pattern analysis and Machine Intelligence, vol. 34, no. 11, pp. 2274–2281, 2012. | |
dc.relation | [74] O. L. Junior, D. Delgado, V. Gon ̧calves, and U. Nunes, “Trainable classifier-fusion schemes: An application to pedestrian detection,” IEEE Conference on IntelligentTransportation Systems, Proceedings, ITSC, pp. 432–437, 2009. | |
dc.relation | [75] T. Ojala, M. Pietik ̈ainen, and T. M ̈aenp ̈a ̈a, “Multiresolution gray-scale and rotation invariant texture classification with local binary patterns,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 7, pp. 971–987, 2002. | |
dc.relation | [76] R. Haralick, K. Shanmugan, and I. Dinstein, “Textural features for image classification,” 1973. | |
dc.relation | [77] C. Cortes and V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995. | |
dc.relation | [78] F. Chollet, “Xception: Deep learning with depthwise separable convolutions,” Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR2017, vol. 2017-January, pp. 1800–1807, 2017. | |
dc.relation | [79] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale VisualRecognition Challenge,” International Journal of Computer Vision, vol. 115, no. 3, pp. 211–252, 2015. | |
dc.relation | [80] J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian optimization of machine learning algorithms,” in advances in neural information processing systems, pp. 2951–2959, 2012. | |
dc.relation | [81] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: Globocan estimates of incidence and mortality worldwide for 36cancers in 185 countries,” CA: a cancer journal for clinicians, vol. 68, no. 6, pp. 394–424, 2018. | |
dc.relation | [82] American cancer society, “key statistics for colorectal cancer”,”2018. http://www.cancer.org/cancer/colonandrectumcancer/detailedguide/colorectal-cancer-key-statistics, accessed June 12, 2019. | |
dc.relation | [83] W. M. Grady and S. D. Markowitz, “The molecular pathogenesis of colorectal cancer and its potential application to colorectal cancer screening,” Digestive diseases and sciences, vol. 60, no. 3, pp. 762–772, 2015. | |
dc.relation | [84] M. T. Accuracy, “Perspectives in clinical gastroenterology and hepatology,” Clinical Gastroenterology and Hepatology, vol. 12, pp. 1964–1972, 2014. | |
dc.relation | [85] S. G. Patel and D. J. Ahnen, “Prevention of interval colorectal cancers: what every clinician needs to know,” Clinical Gastroenterology and Hepatology, vol. 12, no. 1, pp. 7–15, 2014. | |
dc.relation | [86] P. Wang, T. M. Berzin, J. R. G. Brown, S. Bharadwaj, A. Becq, X. Xiao, P. Liu, L. Li, Y. Song, D. Zhang, et al., “Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomized controlled study,” Gut, vol. 68, no. 10, pp. 1813–1819, 2019. | |
dc.relation | [87] Y. Zheng, R. Zhang, R. Yu, Y. Jiang, T. W. Mak, S. H. Wong, J. Y. Lau, and C. C.Poon, “Localisation of colorectal polyps by convolutional neural network features learnt from white light and narrow-band endoscopic images of multiple databases,” in201840th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4142–4145, IEEE, 2018. | |
dc.relation | [88] N. Hayashi, S. Tanaka, D. G. Hewett, T. R. Kaltenbach, Y. Sano, T. Ponchon, B. P.Saunders, D. K. Rex, and R. M. Soetikno, “Endoscopic prediction of deep submucosal invasive carcinoma: validation of the narrow-band imaging international colorectal endoscopic (nice) classification,” Gastrointestinal Endoscopy, vol. 78, no. 4, pp. 625–632,2013. | |
dc.relation | [89] S.-E. Kudo, K. Wakamura, N. Ikehara, Y. Mori, H. Inoue, and S. Hamatani, “Diagnosis of colorectal lesions with a novel endocytoscopic classification–a pilot study,” Endoscopy, vol. 43, no. 10, pp. 869–875, 2011. | |
dc.relation | [90] M. N. Do and M. Vetterli, “Wavelet-based texture retrieval using generalized Gaussian density and kullback-Leibler distance,” IEEE transactions on image processing, vol. 11, no. 2, pp. 146–158, 2002. | |
dc.relation | [91] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional encoder-decoder architecture for image segmentation,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017. | |
dc.relation | [92] K. Pogorelov, K. R. Randel, C. Griwodz, S. L. Eskeland, T. de Lange, D. Johan-sen, C. Spampinato, D.-T. Dang-Nguyen, M. Lux, P. T. Schmidt, et al., “Kvasir: A multi-class image dataset for computer-aided gastrointestinal disease detection,” in Proceedings of the 8th ACM on Multimedia Systems Conference, pp. 164–169, 2017. | |
dc.relation | [93] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-time object detection,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 779–788, 2016. | |
dc.relation | [94] “American cancer society, “key statistics for colorectal cancer”, accessed January 13, 2020.” www.cancer.org/cancer/colonandrectumcancer. | |
dc.relation | [95] A. Leufkens, M. Van Oijen, F. Vleggaar, and P. Siersema, “Factors influencing the miss rate of polyps in a back-to-back colonoscopy study,” Endoscopy, vol. 44, no. 05, pp. 470–475, 2012. | |
dc.relation | [96] Y. Shin, H. A. Qadir, L. Aabakken, J. Bergsland, and I. Balasingham, “Automatic colon polyp detection using region-based deep CNN and post-learning approaches,” IEEE Access, vol. 6, pp. 40950–40962, 2018. | |
dc.relation | [97] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al., “Imagenet large scale visual recognition challenge,” International journal of computer vision, vol. 115, no. 3, pp. 211–252, 2015. | |
dc.relation | [98] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2818–2826, 2016. | |
dc.relation | [99] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016. | |
dc.relation | [100] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,”arXiv preprint arXiv:1409.1556, 2014. | |
dc.relation | [101] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” In international Conference on Medical image computing and computer-assisted intervention, pp. 234–241, Springer, 2015. | |
dc.relation | [102] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 2881–2890, 2017. | |
dc.relation | [103] Z. Zhang, Q. Liu, and Y. Wang, “Road extraction by deep residual u-net,” IEEE Geoscience and Remote Sensing Letters, vol. 15, no. 5, pp. 749–753, 2018. | |
dc.relation | [104] V. Iglovikov and A. Shvets, “Ternausnet: U-net with vgg11 encoder pre-trained on imagenet for image segmentation,”arXiv preprint arXiv:1801.05746, 2018. | |
dc.relation | [105] M. Everingham and J. Winn, “The pascal visual object classes challenge 2012 (voc2012)development kit,” Pattern Analysis, Statistical Modelling, and Computational Learning, Tech. Rep, 2011. | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Automatic detection of colorectal polyps larger than 5 mm in colonoscopy videos | |
dc.type | Otro | |