dc.contributorAristizabal, Fabio
dc.contributorGarcía Robayo, Dabeiba Adriana
dc.contributorFarmacogenética del Cáncer
dc.creatorCastillo Castillo, Edith Yuliana
dc.date.accessioned2022-08-16T18:55:46Z
dc.date.available2022-08-16T18:55:46Z
dc.date.created2022-08-16T18:55:46Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81919
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractIntroducción: Los bifosfonatos (BP´s) son medicamentos para la prevención y tratamiento de enfermedades metabólicas óseas, inhiben la vía del mevalonato, que genera pérdida de función de los osteoclastos, esta vía también es afectada por las estatinas, medicamentos usados para la prevención y manejo de enfermedades cardiovasculares, sin embargo, son escasos los estudios que evalúan in vitro procesos de osteogénesis en células tratadas con cada uno de estos medicamentos de forma aislada y combinada. Objetivo: evaluar el efecto de Zoledronato, atorvastatina y su combinación, en células madre de pulpa dental (DPSC) y osteoblastos (OB) diferenciados a partir de estas, en la expresión de los genes COL1A1, OSC, BMP2, RUNX2, OSX, OPG, RANKL. Métodos: se realizaron cultivos celulares de DPSC y OB, tratadas con Zolendronato, Atorvastatina y su combinación, para hallar la concentración efectiva 30, 50 y 70; posteriormente se evaluó la expresión de genes relacionados con metabolismo óseo. Resultados: Las curvas dosis respuesta para los tratamientos individuales ATV o ZOL mostraron un comportamiento antagonista dependiente de dosis, combinaciones ATV+ZOL en altas concentraciones inducen muerte celular y para DPSC las menores concentraciones generan un efecto proliferativo. La expresión génica en DPSC fue con tendencia a la osteogénesis a concentraciones bajas de los fármacos individuales y en combinación, para el caso de los OB la respuesta fue inhibitoria principalmente en las combinaciones. Conclusiones: La respuesta a ATV y ZOL son dependientes del tipo celular y la dosis empleada, en las DPSC los dos fármacos tienen acción agonista, y en los osteoblastos diferenciados levemente antagonista. (Texto tomado de la fuente)
dc.description.abstractIntroduction: Bisphosphonates are drugs for the prevention and treatment of bone metabolic diseases, they inhibit the mevalonate pathway, which causes loss of osteoclast function; this pathway is also affected by statins, drugs used for the prevention and management of cardiovascular diseases, however, there are few studies that evaluate in vitro processes of osteogenesis in cells treated with each of these drugs in isolation and in combination. Purpose: To evaluate the effect of Zoledronate, atorvastatin and its combination, on dental pulp stem cells (DPSC) and osteoblasts (OB) differentiated from DPSC on the expression of the genes COL1A1, OSC, BMP2, RUNX2, OSX, OPG and RANKL. Methods: Cell cultures of DPSC and OB were performed, treated with Zolendronate, Atorvastatin and their combination, to find the effective concentration 30, 50 and 70; subsequently, the expression of genes related to bone metabolism was evaluated. Results: The dose response curves for the individual ATV or ZOL treatments showed a dose-dependent antagonistic behavior, and their combinations in high concentrations induce cell death, and for DPSC the lower concentrations generate a proliferative effect. The gene expression in DPSC was with a tendency to osteogenesis at low concentrations of the individual drugs and in combination, in the case of the OB, the response was inhibitory, especially in the combinations. Conclusion: The response to ATV and ZOL are dependent on the cell type and the dose used, in DPSC the two drugs have an agonist action, and in differentiated osteoblasts slightly antagonistic.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Farmacología
dc.publisherDepartamento de Farmacia
dc.publisherFacultad de Ciencias
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationRedCol
dc.relationLaReferencia
dc.relationAbdik, H., Avşar Abdik, E., Turan, D., Doğan, A., Demirci, S., & Şahin, F. (2018). The effects of bisphosphonates on osteonecrosis of jaw bone: a stem cell perspective. Molecular Biology Reports, 0(0), 0. https://doi.org/10.1007/s11033-018-4532-x
dc.relationAghaloo, T. L., Cheong, S., Bezouglaia, O., Kostenuik, P., Atti, E., Dry, S. M., Pirih, F. Q., & Tetradis, S. (2014). RANKL inhibitors induce osteonecrosis of the jaw in mice with periapical disease. Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research, 29(4), 843–854. https://doi.org/10.1002/jbmr.2097
dc.relationAlKhalil, M., Al-Hiari, Y., Kasabri, V., Arabiyat, S., Al-Zweiri, M., Mamdooh, N., & Telfah, A. (2020). Selected pharmacotherapy agents as antiproliferative and anti-inflammatory compounds. Drug Development Research, 81(4), 470–490. https://doi.org/10.1002/ddr.21640
dc.relationAlsalih, A., Dam, A., Lindberg, P., & Truedsson, A. (2021). Medication-related osteonecrosis of the jaws initiated by zoledronic acid and potential pathophysiology. Dentistry Journal, 9(8), 1–13. https://doi.org/10.3390/dj9080085
dc.relationBlack, D. M., & Rosen, C. J. (2016). Postmenopausal Osteoporosis. New England Journal of Medicine, 374(3), 254–262. https://doi.org/10.1056/NEJMcp1513724
dc.relationBoyce, B. F., & Xing, L. (2007). The RANKL/RANK/OPG pathway. Current osteoporosis reports, 5(3), 98–104. https://doi.org/10.1007/s11914-007-0024-y
dc.relationBoyce, B. F., & Xing, L. (2007). Biology of RANK, RANKL, and osteoprotegerin. Arthritis research & therapy, 9 Suppl 1(Suppl 1), S1. https://doi.org/10.1186/ar2165
dc.relationCapulli, M., Paone, R., & Rucci, N. (2014). Osteoblast and osteocyte: Games without frontiers. Archives of Biochemistry and Biophysics, 561(May), 3–12. https://doi.org/10.1016/j.abb.2014.05.003
dc.relationCharles, J. F., & Aliprantis, A. O. (2014). Osteoclasts: More than “bone eaters.” Trends in Molecular Medicine, 20(8), 449–459. https://doi.org/10.1016/j.molmed.2014.06.001
dc.relationDallas, S. L., Prideaux, M., & Bonewald, L. F. (2013). The osteocyte: An endocrine cell . . . and more. Endocrine Reviews, 34(5), 658–690. https://doi.org/10.1210/er.2012-1026
dc.relationDolci, G. S., Ballarini, A., Gameiro, G. H., Onofre de Souza, D., de Melo, F., & Fossati, A. C. M. (2018). Atorvastatin inhibits osteoclastogenesis and arrests tooth movement. American Journal of Orthodontics and Dentofacial Orthopedics, 153(6), 872–882. https://doi.org/10.1016/j.ajodo.2017.09.021
dc.relationEdwards, C. J., & Spector, T. D. (2002). Statins as modulators of bone formation. Arthritis Research, 4(3), 151–153. https://doi.org/10.1186/ar399
dc.relationEndo, Y., Kumamoto, H., Nakamura, M., Sugawara, S., Takahashi, T., Sasaki, K., & Takano-Yamamoto, T. (2017). Underlying Mechanisms and Therapeutic Strategies for Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ). Biological & Pharmaceutical BulletinBiological and Pharmaceutical Bulletin, 40(6), 739–750. https://doi.org/10.1248/bpb.b16-01020
dc.relationFung, P. L., Nicoletti, P., Shen, Y., Porter, S., & Fedele, S. (2015). Pharmacogenetics of Bisphosphonate-associated Osteonecrosis of the Jaw. Oral and Maxillofacial Surgery Clinics of North America, 27(4), 537–546. https://doi.org/10.1016/j.coms.2015.06.005
dc.relationGaviria-Mendoza, A., Machado-Duque, M. E., & Machado-Alba, J. E. (2019). Lipid-lowering drug prescriptions in a group of Colombian patients. Patrones de prescripción de hipolipemiantes en pacientes de Colombia. Biomedica : revista del Instituto Nacional de Salud, 39(4), 759–768. https://doi.org/10.7705/biomedica.4801
dc.relationHong, W., Wei, Z., Qiu, Z., Li, Z., Fu, C., Ye, Z., & Xu, X. (2020). Atorvastatin promotes bone formation in aged apoE-/-mice through the Sirt1-Runx2 axis. Journal of Orthopaedic Surgery and Research, 15(1), 1–9. https://doi.org/10.1186/s13018-020- 01841-0
dc.relationHoriuchi, N., & Maeda, T. (2006). Statins and bone metabolism. Oral Diseases, 12(2), 85– 101. https://doi.org/10.1111/j.1601-0825.2005.01172.x
dc.relationHuang, X., Huang, S., Guo, F., Xu, F., Cheng, P., Ye, Y., … Chen, A. (2016). Dosedependent inhibitory effects of zoledronic acid on osteoblast viability and function in vitro. Molecular Medicine Reports, 13(1), 613–622. https://doi.org/10.3892/mmr.2015.4627
dc.relationInfante, M., Fabi, A., Cognetti, F., Gorini, S., Caprio, M., & Fabbri, A. (2019). RANKL/RANK/OPG system beyond bone remodeling: Involvement in breast cancerand clinical perspectives. Journal of Experimental and Clinical Cancer Research, 38(1), 1–18. https://doi.org/10.1186/s13046-018-1001-2
dc.relationJadhav, S. B., & Jain, G. K. (2010). Statins and osteoporosis: new role for old drugs. Journal of Pharmacy and Pharmacology, 58(1), 3–18. https://doi.org/10.1211/jpp.58.1.0002
dc.relationJiang, N., Chen, M., Yang, G., Xiang, L., He, L., Hei, T. K., … Mao, J. J. (2016). Hematopoietic Stem Cells in Neural-crest Derived Bone Marrow. Scientific Reports, 6, 1–11. https://doi.org/10.1038/srep36411
dc.relationKomori, T. (2018). Runx2, an inducer of osteoblast and chondrocyte differentiation. Histochemistry and Cell Biology, 149(4), 313–323. https://doi.org/10.1007/s00418- 018-1640-6
dc.relationKomori, T. (2020). Functions of osteocalcin in bone, pancreas, testis, and muscle. International Journal of Molecular Sciences, 21(20), 1–15. https://doi.org/10.3390/ijms21207513
dc.relationKook, S. H., Lee, D., Cho, E. S., Heo, J. S., Poudel, S. B., Ahn, Y. H., … Lee, J. C. (2016). Activation of canonical Wnt/β-catenin signaling inhibits H2O2-induced decreases in proliferation and differentiation of human periodontal ligament fibroblasts. Molecular and Cellular Biochemistry, 411(1–2), 83–94. https://doi.org/10.1007/s11010-015- 2570-4
dc.relationKuźnik, A., Październiok-Holewa, A., Jewula, P., & Kuźnik, N. (2020). Bisphosphonates— much more than only drugs for bone diseases. European Journal of Pharmacology, 866(November). https://doi.org/10.1016/j.ejphar.2019.172773
dc.relationLandesberg, R., Woo, V., Cremers, S., Cozin, M., Marolt, D., Vunjak-novakovic, G., … Surgery, M. (2015). HHS Public Access. 62–79. https://doi.org/10.1111/j.1749- 6632.2010.05835.x.Potential
dc.relationLiu, Q., Li, M., Wang, S., Xiao, Z., Xiong, Y., & Wang, G. (2020). Recent Advances of Osterix Transcription Factor in Osteoblast Differentiation and Bone Formation. Frontiers in Cell and Developmental Biology, 8(December). https://doi.org/10.3389/fcell.2020.601224
dc.relationManzano-Moreno, F. J., Ramos-Torrecillas, J., Melguizo-Rodríguez, L., Ruiz, C., IllescasMontes, R., & García-Martínez, O. (2018). Bisphosphonate Modulation of the Gene Expression of Different Markers Involved in Osteoblast Physiology: Possible Implications in Bisphosphonate-Related Osteonecrosis of the Jaw. International Journal of Medical Sciences, 15(4), 359–367. https://doi.org/10.7150/ijms.22627
dc.relationMansueto. P., Vitale. G., Seidita. A., Guarneri. F.P., Pepe I. et al. (2011). Mevalonate pathway: Role of bisphosphonates and statins. Acta Medica Mediterranea, 27(2), 85– 95.
dc.relationMedina Orjuela, A., Terront Lozano, A., Román González, A., Vélez Patiño, J. A., Linares Restrepo, F., Rueda Beltz, C., … Vargas Grajales, F. I. (2018). II Consenso Colombiano para el Manejo de la Osteoporosis Posmenopáusica. Revista Colombiana de Reumatología, 25(3), 184–210. https://doi.org/10.1016/j.rcreu.2018.02.006
dc.relationMoradifard, S., Hoseinbeyki, M., Emam, M. M., Parchiniparchin, F., & Ebrahimi-Rad, M. (2020). Association of the Sp1 binding site and -1997 promoter variations in COL1A1 with osteoporosis risk: The application of meta-analysis and bioinformatics approaches offers a new perspective for future research. Mutation Research - Reviews in Mutation Research, 786, 108339. https://doi.org/10.1016/j.mrrev.2020.108339
dc.relationMorse, L. R., Coker, J., & Battaglino, R. A. (2018). STATINS AND BONE HEALTH : A MINI REVIEW. 14(1), 31–35.
dc.relationMotyl, K. J., Guntur, A. R., Carvalho, A. L., & Rosen, C. J. (2017). Energy Metabolism of Bone. Toxicologic Pathology, 45(7), 887–893. https://doi.org/10.1177/0192623317737065
dc.relationNH, Beth-tasdoganMayer, B., Hussein, H., & Zolk, O. (2017). Interventions for managing medication-related osteonecrosis of the jaw ( Review ) SUMMARY OF FINDINGS FOR THE MAIN COMPARISON. (10). https://doi.org/10.1002/14651858.CD012432.pub2.www.cochranelibrary.com
dc.relationPourgonabadi, S., Ghorbani, A., Tayarani Najarn, Z., & Mousavi, S. H. (2018). In vitro assessment of alendronate toxic and apoptotic effects on human dental pulp stem cells. Iranian Journal of Basic Medical Sciences, 21(9), 905–910. https://doi.org/10.22038/IJBMS.2018.22877.5816
dc.relationPrideaux, M., Findlay, D. M., & Atkins, G. J. (2016). Osteocytes: The master cells in bone remodelling. Current Opinion in Pharmacology, 28, 24–30. https://doi.org/10.1016/j.coph.2016.02.003
dc.relationRattazzi, M., Faggin, E., Buso, R., Di Virgilio, R., Puato, M., Plebani, M., … Pauletto, P. (2016). Atorvastatin Reduces Circulating Osteoprogenitor Cells and T-Cell RANKL Expression in Osteoporotic Women: Implications for the Bone-Vascular Axis. Cardiovascular Therapeutics, 34(1), 13–20. https://doi.org/10.1111/1755-5922.12163
dc.relationRuan, F., Zheng,Ruan, F., Zheng, Q., & Wang, J. (2012). Mechanisms of bone anabolism regulated by statins. Bioscience Reports, 32(6), 511–519. https://doi.org/10.1042/bsr20110118 Qiang, & Wang, J. (2012). Mechanisms of bone anabolism regulated by statins. Bioscience Reports, 32(6), 511–519. https://doi.org/10.1042/bsr20110118
dc.relationRuggiero, S. L., Dodson, T. B., Fantasia, J., Goodday, R., Aghaloo, T., Mehrotra, B., & O’Ryan, F. (2014). American association of oral and maxillofacial surgeons position paper on medication-related osteonecrosis of the jaw - 2014 update. Journal of Oral and Maxillofacial Surgery, 72(10), 1938–1956. https://doi.org/10.1016/j.joms.2014.04.031
dc.relationTaylor, F., Huffman, M. D., Macedo, A. F., Moore, T. H., Burke, M., Smith, G. D., … Ebrahim, S. (2013). Statins for the primary prevention of cardiovascular disease (Review). Cochrane Database of Systematic Reviews, (1), 1–97. https://doi.org/10.1002/14651858.CD004816.pub5.www.cochranelibrary.com
dc.relationTenenbaum, H. C., Shelemay, A., Girard, B., Zohar, R., & Fritz, P. C. (2002). Bisphosphonates and periodontics: potential applications for regulation of bone mass in the periodontium and other therapeutic/diagnostic uses. Journal of periodontology, 73(7), 813–822. https://doi.org/10.1902/jop.2002.73.7.813
dc.relationTing, M., Whitaker, E. J., & Albandar, J. M. (2016). Systematic review of the in vitro effects of statins on oral and perioral microorganisms. European Journal of Oral Sciences, 124(1), 4–10. https://doi.org/10.1111/eos.12239
dc.relationUnal, M., Creecy, A., & Nyman, J. S. (2018). The Role of Matrix Composition in the Mechanical Behavior of Bone. Current Osteoporosis Reports, 16(3), 205–215. https://doi.org/10.1007/s11914-018-0433-0
dc.relationValencia, A., Páez, A., Sampedro, M., Ávila, C., Cardona, J., & Mesa, C. (2012). Publicación Anticipada En Linea. Biomédica, 32(4), 1–27.
dc.relationVon Moos, R., Costa, L., Gonzalez-Suarez, E., Terpos, E., Niepel, D., & Body, J. J. (2019). Management of bone health in solid tumours: From bisphosphonates to a monoclonal antibody. Cancer Treatment Reviews, 76(December 2018), 57–67. https://doi.org/10.1016/j.ctrv.2019.05.003
dc.relationWang, L., Fang, D., Xu, J., & Luo, R. (2020). Various pathways of zoledronic acid against osteoclasts and bone cancer metastasis: a brief review. BMC Cancer, 20(1), 1–10. https://doi.org/10.1186/s12885-020-07568-9
dc.relationZhao, B. J., & Liu, Y. H. (2014). Simvastatin induces the osteogenic differentiation of human periodontal ligament stem cells. Fundamental and Clinical Pharmacology, 28(5), 583– 592. https://doi.org/10.1111/fcp.12050
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEvaluación del efecto de Zoledronato, Atorvastatina y su combinación, en células madre de pulpa dental (DPSC) y osteoblastos diferenciados a partir de DPSC, en la expresión de genes relacionados con la diferenciación celular, maduración e interacciones osteoblasto/osteoclasto
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución