dc.contributorDonato Rondón, John Charles
dc.contributorGonzalez Trujillo, Juan David
dc.creatorCórdoba Ariza, Paula Gabriela
dc.date.accessioned2020-07-22T14:43:53Z
dc.date.available2020-07-22T14:43:53Z
dc.date.created2020-07-22T14:43:53Z
dc.date.issued2020-02
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77820
dc.description.abstractDeforestation is a phenomenon that affects the integrity of aquatic ecosystems. However, little is known about how this process affects trophic interactions of organisms, especially in the tropics. Food webs are considered as a tool for understanding the effect of disturbances on ecosystems. In the case of streams, they help to understand the dynamics between the riverine ecosystems and the terrestrial ecosystems in their basins, and to assess and propose mitigation and conservation strategies. This project seeks to characterize the food web of a stream located in the Serrania de La Lindosa in the dry and the wet season, inferring the role of allochthonous contributions of organic matter from the riparian forest on the trophic dynamics of streams ecosystems. The aim was to answer the question: Which could be the changes in trophic dynamics and then the changes in the availability of allochthonous resources? This was achieved through analyzing the stable isotopes signatures in the different compartments of the ecosystem and will be complemented by an analysis of gut contents in aquatic invertebrates, crustaceans, amphibians and fishes. Mathematical tools for the analysis of aquatic communities, as well as graphs and Bayesian models, elucidated the importance of autochthonous resources in the diet of consumers both in the dry season and in the wet season. However, it was recognized that through different mechanisms, allochthonous contributions are essential for the functioning of the ecosystems studied and could indirectly influence trophic dynamics. The answer to the research question, and the results of this thesis, allowed us to move forward to a better understanding and to anticipate the complex changes that are occurring due to the loss and degradation of the riparian forest of this region.
dc.description.abstractLa deforestación es un fenómeno que afecta fuertemente la integridad de los ecosistemas acuáticos. Sin embargo, poco se conoce acerca de cómo este proceso influye en las interacciones tróficas de los organismos, especialmente en los trópicos. Las redes tróficas son consideradas como una herramienta para el entendimiento del efecto de los disturbios en los ecosistemas. En el caso de los ríos, permiten comprender las dinámicas entre los ecosistemas fluviales y los ecosistemas terrestres de sus cuencas, evaluando y proponiendo estrategias de mitigación. Esta investigación buscó caracterizar la red trófica de un ecosistema fluvial en la serranía La Lindosa en la temporada seca y de aguas altas, infiriendo el rol de los aportes alóctonos de materia orgánica del bosque de ribera sobre la dinámica trófica de los ecosistemas fluviales, en particular, se buscó responder a la pregunta: ¿Cuáles podrían ser los cambios en las dinámicas tróficas luego de los cambios en la disponibilidad de recursos alóctonos? Esto se llevó a cabo mediante el análisis de isótopos estables en los distintos compartimentos del ecosistema, el cual fue complementado con un análisis de contenidos estomacales en invertebrados acuáticos, crustáceos, anfibios y peces. Herramientas matemáticas para el análisis de las comunidades acuáticas, así como grafos y modelos bayesianos, dilucidaron la importancia de los recursos autóctonos en la dieta de los consumidores tanto en época seca como en temporada de lluvias. No obstante, se reconoció que a través de distintos mecanismos los aportes alóctonos son esenciales para el funcionamiento de los ecosistemas estudiados y podrían incidir de manera indirecta en las dinámicas tróficas. La respuesta a la pregunta de investigación, y culminación exitosa de esta tesis, permitió avanzar hacia el entender y anticipar los complejos cambios que están ocurriendo como consecuencia de la pérdida y degradación del bosque de la ribera en ríos de esta región.
dc.languagespa
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Biología
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAcuña, V., Giorgi, A., Muñoz, I., Uehlinger, U., & Sabater, S. (2004). Flow extremes and benthic organic matter shape the metabolism of a headwater Mediterranean stream. Freshwater Biology, 49, 960–971.
dc.relationAllan, J. D. (2004). Influence of land use and landscape setting on the ecological status of rivers. Limnetica, 23(3–4), 187–198. https://doi.org/10.1146/annurev.ecolsys.35.120202.110122
dc.relationAndramunio-Acero, C. P. (2013). Dinámica sucesional y ecología trófica de la comunidad perifítica en dos ambientes del sistema lagunar de Yahuarcaca (Amazonas, Colombia). Universidad Nacional de Colombia.
dc.relationAndramunio-Acero, C. P., & Caraballo, P. (2012). Análisis de las relaciones tróficas en un lago de inundación de la amazonia colombiana. Revista Colombiana de Ciencia Animal - RECIA, 4(1), 102. https://doi.org/10.24188/recia.v4.n1.2012.298
dc.relationArango, M. I., Nivia, A., Zapata, G., Giraldo, M. I., Bermúdez, J. G., & Albarracín, H. (2011). Geología y geoquímica de la plancha 350 San José del Guaviare. Medellín.
dc.relationArchangelsky, M., & Brand, C. (2014). A new species of luchoelmis spangler and Staines (Coleoptera: Elmidae) from Argentina and its probable larva. Zootaxa, 3779(5), 563–572. https://doi.org/10.11646/zootaxa.3779.5.6
dc.relationArmenteras, D., Rodríguez, N., & Retana, J. (2009). Are conservation strategies effective in avoiding the deforestation of the Colombian Guyana Shield? Biological Conservation, 142(7), 1411–1419. https://doi.org/10.1016/j.biocon.2009.02.002
dc.relationArmenteras, D., Rodríguez, N., & Retana, J. (2013). Landscape Dynamics in Northwestern Amazonia: An Assessment of Pastures, Fire and Illicit Crops as Drivers of Tropical Deforestation. PLoS ONE, 8(1). https://doi.org/10.1371/journal.pone.0054310
dc.relationAtuesta-Ibargüen, D. J. (2019). Composición florística y formas de vida de las macrófitas acuáticas de la serranía de La Lindosa (Guaviare), Guayana colombiana. Caldasia, 41(2), 301–312. https://doi.org/10.15446/caldasia.v41n2.71615
dc.relationBaptista, D. F., Buss, D. F., Dias, L. G., Nessimian, J. L., Da Silva, E. R., De Moraes Neto, A. H. A., … Andrade, L. R. (2006). Functional feeding groups of Brazilian Ephemeroptera nymphs: Ultrastructure of mouthparts. Annales de Limnologie, 42(2), 87–96. https://doi.org/10.1051/limn/2006013
dc.relationBarker, J. E., Hutchens, J. J., & Luken, J. O. (2014). Macroinvertebrates associated with water hyacinth roots and a root analog. Freshwater Science, 33(1), 159–167. https://doi.org/10.1086/674173
dc.relationBaselga, Andrés. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19(1), 134–143. https://doi.org/10.1111/j.1466-8238.2009.00490.x
dc.relationBaselga, Andres, Orme, D., Villeger, S., De Bortoli, J., & Leprieur, F. (2018). betapart: Partitioning Beta Diversity into Turnover and Nestedness Components. Retrieved from https://cran.r-project.org/package=betapart
dc.relationBastow, J. L., Sabo, J. L., Finlay, J. C., & Power, M. E. (2002). A basal aquatic-terrestrial trophic link in rivers: Algal subsidies via shore-dwelling grasshoppers. Oecologia, 131(2), 261–268. https://doi.org/10.1007/s00442-002-0879-7
dc.relationBaxter, C. V., Fausch, K. D., & Saunders, W. C. (2005). Tangled webs: Reciprocal flows of invertebrate prey link streams and riparian zones. Freshwater Biology, 50(2), 201–220. https://doi.org/10.1111/j.1365-2427.2004.01328.x
dc.relationBegon, M., Townsend, C. R., & Harper, J. L. (2006). Ecology: from individuals to ecosystems. Wiley-Blackwell
dc.relationBeisel, J., Usseglio-polatera, P., Thomas, S., & Moreteau, J. (1998). Stream community structure in relation to spatial variation : the influence of mesohabitat characteristics, 73–88.
dc.relationBello González, O. C., Spies, M., & Téllez Martínez, B. (2013). Estado del conocimiento de la familia Chironomidae ( Insecta : Diptera ) en Cuba. Dugesiana, 20(2), 233–242.
dc.relationBersier, L.-F., Banašek-Richter, C., & Cattin, M.-F. (2002). Quantitative descriptors of food-web matrices. Ecology, 83(9), 2394–2407.
dc.relationBlondel, J. (2003). Guilds or functional groups: does it matter? Oikos, 100(2), 223–231.
dc.relationBoyero, L., Ramírez, A., Dudgeon, D., & Pearson, R. G. (2009). Are tropical streams really different? J. N. Am. Benthol. Soc., 28(2), 397–403. https://doi.org/10.1899/08
dc.relationBrett, M. T., Bunn, S. E., Chandra, S., Galloway, A. W. E., Guo, F., Kainz, M. J., … Wehr, J. D. (2017). How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology, 62(5), 833–853. https://doi.org/10.1111/fwb.12909
dc.relationBrito, E. F., Moulton, T. P., De Souza, M. L., & Bunn, S. E. (2006). Stable isotope analysis indicates microalgae as the predominant food source of fauna in a coastal forest stream, south-east Brazil. Austral Ecology, 31(5), 623–633. https://doi.org/10.1111/j.1442-9993.2006.01610.x
dc.relationBryant, M. D., Gomi, T., & Piccolo, J. J. (2007). Structures linking physical and biological processes in headwater streams of the Maybeso Watershed, southeast Alaska. Forest Science, 53(2), 371–383. https://doi.org/10.1093/forestscience/53.2.371
dc.relationBunn, S. E., Davies, P. M., & Mosisch, T. D. (1999). Ecosystem measures of river health and their response to riparian and catchment degradation. Freshwater Biology, 41(2), 333–345. https://doi.org/10.1046/j.1365-2427.1999.00434.x
dc.relationBunn, Stuart E., Leigh, C., & Jardine, T. D. (2013). Diet-tissue fractionation of δ15N by consumers from streams and rivers. Limnology and Oceanography, 58(3), 765–773. https://doi.org/10.4319/lo.2013.58.3.0765
dc.relationBurrell, T. K., O’Brien, J. M., Graham, S. E., Simon, K. S., Harding, J. S., & McIntosh, A. R. (2014). Riparian shading mitigates stream eutrophication in agricultural catchments. Freshwater Science, 33(1), 73–84. https://doi.org/10.1086/674180
dc.relationCampos, M. R. (2014). Crustáceos decápodos de agua dulce de Colombia. Bogotá D.C.: Universidad Nacional de Colombia.
dc.relationCárdenas López, D., Castaño Arboleda, N., Zubieta Vega, M., & Jaramillo Echeverry, M. (2008). Flora de las formaciones rocosas de la Serranía de La Lindosa. Bogotá.
dc.relationCastro-Rebolledo, M. I., Muñoz-Gracia, I., & Donato-Rondón, J. C. (2013). Food web of a tropical high mountain stream: effects of nutrient addition. Acta Biológica Colombiana, 19(1), 34. https://doi.org/10.15446/abc.v19n1.38265
dc.relationCeneviva-Bastos, Monica, & Casatti, L. (2014). Shading effects on community composition and food web structure of a deforested pasture stream: Evidences from a field experiment in Brazil. Limnologica, 46, 9–21. https://doi.org/10.1016/j.limno.2013.11.005
dc.relationCeneviva-Bastos, Monica, Casatti, L., & Uieda, V. S. (2012). Can seasonal differences influence food web structure on preserved habitats? Responses from two Brazilian streams. Community Ecology, 13(2), 243–252. https://doi.org/10.1556/ComEc.13.2012.2.15
dc.relationCeneviva-Bastos, Mônica, Prates, D. B., de Mei Romero, R., Bispo, P. C., & Casatti, L. (2017). Trophic guilds of EPT (Ephemeroptera, Plecoptera, and Trichoptera) in three basins of the Brazilian Savanna. Limnologica, 63, 11–17. https://doi.org/10.1016/j.limno.2016.12.004
dc.relationChao, A., Gotelli, N. J., Hsieh, T. C., Sander, E. L., Ma, K. H., Colwell, R. K., & Ellison, A. M. (2014). Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecological Monographs, 84(1), 45–67. https://doi.org/10.1890/13-0133.1
dc.relationChao, A., & Jost, L. (2012). Coverage-based rarefaction and extrapolation: Standardizing samples by completeness rather than size. Ecology, 93(12), 2533–2547. https://doi.org/10.1890/11-1952.1
dc.relationChará-Serna, A. M., Chará, J. D., Zúñiga, M. D. C., Pedraza, G. X., & Giraldo, L. P. (2010). Clasificación trófica de insectos acuáticos en ocho quebradas protegidas de la ecorregión cafetera colombiana. Universitas Scientiarum, 15(1), 27–36. https://doi.org/10.11144/javeriana.sc15-1.tcoa
dc.relationChará-Serna, A. M., Chará, J. D., Zúñiga, M. del C., Pearson, R. G., & Boyero, L. (2012). Diets of leaf litter-associated invertebrates in three tropical streams. Annales de Limnologie - International Journal of Limnology, 48(2), 139–144. https://doi.org/10.1051/limn/2012013
dc.relationChaves-Ulloa, R., Umaña-Villalobos, G., & Springer, M. (2014). Downstream effects of hydropower production on aquatic macroinvertebrate assemblages in two rivers in Costa Rica. Revista de Biologia Tropical, 62(Suppl. 2l), 179–201.
dc.relationCheshire, K., Boyero, L., & Pearson, R. G. (2005). Food webs in tropical Australian streams: Shredders are not scarce. Freshwater Biology, 50(5), 748–769. https://doi.org/10.1111/j.1365-2427.2005.01355.x
dc.relationClarke, K. R. (1988). Detecting change in benthic community structure. In R. Oger (Ed.), Proceedings of invited papers, fourteenth international biometric conference, Namur, Belgium. (pp. 131–142). Société Adolphe Quételet.
dc.relationCoat, S., Monti, D., Bouchon, C., & Lepoint, G. (2009). Trophic relationships in a tropical stream food web assessed by stable isotope analysis. Freshwater Biology, 54(5), 1028–1041. https://doi.org/10.1111/j.1365-2427.2008.02149.x
dc.relationCollins, P. A., & Paggi, J. C. (1997). Feeding ecology of Macrobrachium borelli (Nobili)(Decapoda: Palaemonidae) in the flood valley of the River Paraná, Argentina. Hydrobiologia, 362(1–3), 21–30.
dc.relationCranston, P. S. & Epler, J. (2013). The larvae of Tanypodinae (Diptera: Chironomidae) of the Holarctic region — Keys and diagnoses. In: T. Andersen, P. S. Cranston & J. H. Epler (Eds.), Chironomidae of the Holarctic Region: Keys and Diagnoses. Insect Systematics and Evolution Supplements, 66, 39-136.
dc.relationCummins, K. W. (1973). Trophic relations of aquatic insects. Annual Review of Entomology, 18(220), 183–206. https://doi.org/10.1146/annurev.en.18.010173.001151
dc.relationCummins, K. W. (2016). Functional Analysis of Stream Macroinvertebrates. In Limnology - Some New Aspects of Inland Water Ecology Functional (pp. 65–78). https://doi.org/http://dx.doi.org/10.5772/57353
dc.relationda Silva Laurindo, F., Calcidoni Moreira, D., Lucas Bochini, G., & Silveira Ruiz, S. (2008). Hábitos alimentares de larvas de Chironomidae (Insecta: Diptera) do córrego Vargem Limpa, Bauru, SP, Brasil. Biotemas, 21(2), 155–159.
dc.relationDávalos, L. M., Holmes, J. S., Rodríguez, N., & Armenteras, D. (2014). Demand for beef is unrelated to pasture expansion in northwestern Amazonia. Biological Conservation, 170(November 2019), 64–73. https://doi.org/10.1016/j.biocon.2013.12.018
dc.relationDavies, P. M., Bunn, S. E., & Hamilton, S. K. (2008). Primary production in tropical streams and rivers. Tropical Stream Ecology. https://doi.org/10.1016/B978-012088449-0.50004-2
dc.relationDawson, T. E., & Brooks, P. D. (2001). Fundamentals of stable isotope chemistry and measurement. In Stable isotope techniques in the study of biological processes and functioning of ecosystems (pp. 1–18). Springer.
dc.relationDemars, B. O. L., Kemp, J. L., Friberg, N., Usseglio-Polatera, P., & Harper, D. M. (2012). Linking biotopes to invertebrates in rivers: Biological traits, taxonomic composition and diversity. Ecological Indicators, 23, 301–311. https://doi.org/10.1016/j.ecolind.2012.04.011
dc.relationDobson, M., Magana, A., Mathooko, J. M., & Ndegwa, F. K. (2002). Detritivores in Kenyan highland streams: More evidence for the paucity of shredders in the tropics? Freshwater Biology, 47(5), 909–919. https://doi.org/10.1046/j.1365-2427.2002.00818.x
dc.relationDomínguez, E., & Fernández, H. R. (2009). Macroinvertebrados bentónicos sudamericanos. Sistemática y biología. (E. Domínguez & H. R. Fernández, Eds.) (1st ed.). Tucumán - Argentina: Fundación Miguel Lillo.
dc.relationDomínguez, E., Zúñiga, M. del C., & Molineri, C. (2002). ESTADO ACTUAL DEL CONOCIMIENTO Y DISTRIBUCIÓN DEL ORDEN EPHEMEROPTERA (INSECTA) EN LA REGIÓN AMAZÓNICA. Caldasia, 24(2), 459–469.
dc.relationDosskey, M. G., Vidon, P., Gurwick, N. P., Allan, C. J., Duval, T. P., & Lowrance, R. (2010). The role of riparian vegetation in protecting and improving chemical water quality in streams. Journal of the American Water Resources Association, 46(2). https://doi.org/10.1111/j.1752-1688.2010.00419.x
dc.relationDunne, J. A. (2006). The network structure of food webs. In M. Pascual & J. A. Dunne (Eds.), Ecological Networks: Linking Structure to Dynamics in Food Webs (pp. 27–86). Oxford University Press. Retrieved from papers://aa15ed4a-8b41-4036-84a6-41087bba0cd6/Paper/p2193
dc.relationDunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Network structure and biodiversity loss in food webs: Robustness increases with connectance. Ecology Letters, 5(4), 558–567. https://doi.org/10.1046/j.1461-0248.2002.00354.x
dc.relationEcheverry Cadavid, N. de J. (2016). Plan de desarrollo departamental 2016-2019. San José del Guaviare. Retrieved from https://ceo.uniandes.edu.co/images/Documentos/Plan de Desarrollo Guaviare 2016 - 2019.pdf
dc.relationElosegi, A., & Sabater, S. (2009). Conceptos y técnicas en ecología fluvial. Fundación BBVa.
dc.relationElton, C. S. (1927). Animal ecology. University of Chicago Press.
dc.relationEstes, J. A., Terborgh, J., Brashares, J. S., Power, M. E., Berger, J., Bond, W. J., … David, A. (2011). Trophic Downgrading of Planet Earth. Science, 301(July), 301–307. https://doi.org/10.1126/science.1205106
dc.relationFindlay, S., Quinn, J. M., Hickey, C. W., Burrell, G., & Downes, M. (2001). Effects of land use and riparian flowpath on delivery of dissolved organic carbon to streams. Limnology and Oceanography, 46(2), 345–355. https://doi.org/10.4319/lo.2001.46.2.0345
dc.relationFinlay, J. C., & Kendall, C. (2008). Stable isotope tracing of temporal and spatial variability in organic matter sources to freshwater ecosystems. Stable Isotopes in Ecology and Environmental Science, Second Edition, 283–333.
dc.relationFogaça, F. N. O., Gomes, L. C., & Higuti, J. (2013). Percentage of Impervious Surface Soil as Indicator of Urbanization Impacts in Neotropical Aquatic Insects. Neotropical Entomology, 42(5), 483–491. https://doi.org/10.1007/s13744-013-0155-z
dc.relationFrança, J. S., Gregório, R. S., D’Arc De Paula, J., Gonçalves Júnior, J. F., Ferreira, F. A., & Callisto, M. (2009). Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Marine and Freshwater Research, 60(10), 990–998. https://doi.org/10.1071/MF08247
dc.relationGabbud, C., Robinson, C. T., & Lane, S. N. (2019). Sub-basin and temporal variability of macroinvertebrate assemblages in Alpine streams: when and where to sample? Hydrobiologia, 830(1), 179–200. https://doi.org/10.1007/s10750-018-3862-y
dc.relationGallegos Sánchez, S. A. (2013). Effect of riparian vegetation cover and season on aquatic macroinvertebrate assemblages in the Ecuadorian Andes. Norwegian University of Life Sciences.
dc.relationGarvey, J. E., & Whiles, M. (2016). Trophic ecology. Boca Ratón: CRC Press.
dc.relationGelman, A., & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7(4), 457–511. https://doi.org/10.2307/2246134
dc.relationGiraldo-Cañas, D. (2001). Relaciones fitogeográficas de las sierras y afloramientos rocosos de la Guayana colombiana: un estudio preliminar. Revista Chilena de Historia Natural. https://doi.org/10.4067/S0716-078X2001000200012
dc.relationGobernación del Guaviare. (2012). Plan de Desarrollo Departamento del Guaviare 2012 - 2015. San José del Guaviare. Retrieved from http://cdim.esap.edu.co/BancoMedios/Imagenes/guaviareplandedesarrollo2012-2015.pdf
dc.relationGomes, P. I. A., & Wai, O. W. H. (2015). In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality. Water Environment Research, 87(8), 758–768. https://doi.org/10.2175/106143015x14362865225997
dc.relationGonzález-Trujillo, J D. (2016). Trait-based responses of caddisfly assemblages to the partial channelization of a High-Andean stream. Hydrobiologia, 766(1), 381–392. https://doi.org/10.1007/s10750-015-2474-z
dc.relationGonzález-Trujillo, Juan David, & Donato-Rondon, J. C. (2016). Changes in invertebrate assemblage structure as affected by the flow regulation of a páramo river. Annales de Limnologie, 52, 307–316. https://doi.org/10.1051/limn/2016018
dc.relationGounand, I., Little, C. J., Harvey, E., & Altermatt, F. (2018). Cross-ecosystem carbon flows connecting ecosystems worldwide. Nature Communications, 9(4825), 1–8. https://doi.org/10.1038/s41467-018-07238-2
dc.relationGracia, P. C. (2012). Papel trófico del microbial loop en un lago de inundación en la Amazonia Central. Acta Biológica Colombiana, 17(1), 103.
dc.relationGranados-Martínez, C., & Batista, A. (2017). Macroinvertebrados acuáticos. In C. A. Lasso & M. A. Morales-Betancourt (Eds.), III. Fauna De Caño Cristales, sierra de La Macarena, Meta, Colombia. Serie Editorial Fauna Silvestre Neotropical (1st ed., pp. 47–65). Bogotá D.C. Colombia.: Insituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
dc.relationGranados-Martínez, C., Lasso, C. A., & Núñez-Avellaneda, Marcela Morales-Betancourt, M. A. (2018). Macroinvertebrados acuáticos de los ríos Guayabero medio, bajo Losada y bajo Duda, sierra de La Macarena, Meta, Colombia. In C. A. Lasso, M. A. Morales-Betancourt, & I. D. Escobar-Martínez (Eds.), V. Biodiversidad de la sierra de La Macarena, Meta, Colombia. Parte I. Ríos Guayabero medio, bajo Losada y bajo Duda (pp. 97–120). Bogotá D.C. Colombia.: Insituto de Investigación de Recursos Biológicos Alexander von Humboldt.
dc.relationGranados-Martínez, C., & Montoya, D. (2017). Macroinvertebrados acuáticos. In F. Trujillo & C. A. Lasso (Eds.), Biodiversidad del río Bita, Vichada, Colombia. (Serie Edit, pp. 120–142). Bogotá D.C. Colombia.: Insituto de Investigación de Recursos Biológicos Alexander von Humboldt, Fundación Omacha.
dc.relationGuo, F., Kainz, M. J., Sheldon, F., & Bunn, S. E. (2016). The importance of high-quality algal food sources in stream food webs - current status and future perspectives. Freshwater Biology, 61(6), 815–831. https://doi.org/10.1111/fwb.12755
dc.relationHamada, N., Thorp, J. H., & Rogers, D. C. (2019). Thorp and Covich’s Freshwater Invertebrates, Fourth Edition: Keys to Neotropical Hexapoda, Volume Three. (N. Hamada, J. H. Thorp, & D. C. Rogers, Eds.), Thorp and Covich’s Freshwater Invertebrates (Fourth Edition) (Fourth Edi). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-804223-6.09001-6
dc.relationHammond, D. S. (2005). Tropical forests of the Guiana Shield: Ancient forests of the modern world. Tropical Forests of the Guiana Shield: Ancient Forests in a Modern World. NWFS Consulting, 15595 NW Oak Hill Dr., Beaverton, OR 97006, United States: CABI Publishing. Retrieved from https://www.scopus.com/inward/record.uri?eid=2-s2.0-84890306726&partnerID=40&md5=bc6592235345efa3b2faf7aa86a7a27c
dc.relationHeino, J. (2008). Patterns of functional biodiversity and function-environment relationships in lake littoral macroinvertebrates. Limnology and Oceanography, 53(4), 1446–1455. https://doi.org/10.4319/lo.2008.53.4.1446
dc.relationHenriques-Oliveira, A. L., Nessimian, J. L., & Dorvillé, L. F. (2003). Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Brazilian Journal of Biology = Revista Brasleira de Biologia, 63(2), 269–281. https://doi.org/10.1590/S1519-69842003000200012
dc.relationHines, J., van der Putten, W. H., De Deyn, G. B., Wagg, C., Voigt, W., Mulder, C., … Eisenhauer, N. (2015). Towards an integration of biodiversity-ecosystem functioning and food web theory to evaluate relationships between multiple ecosystem services. Advances in Ecological Research (1st ed., Vol. 53). Elsevier Ltd. https://doi.org/10.1016/bs.aecr.2015.09.001
dc.relationHolzenthal, R. W., & Calor, A. R. (2017). Catalog of the Neotropical Trichoptera (Caddisflies). ZooKeys, 654, 1–566. https://doi.org/10.3897/zookeys.654.9516
dc.relationHorn, H. S. (1966). Measurement of" overlap" in comparative ecological studies. The American Naturalist, 100(914), 419–424.
dc.relationHsieh, T. C., Ma, K. H., & Chao, A. (2016). iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7(12), 1451–1456. https://doi.org/10.1111/2041-210X.12613
dc.relationHudson, L. N., Emerson, R., Jenkins, G. B., Layer, K., Ledger, M. E., Pichler, D. E., … Reuman, D. C. (2013). Cheddar: Analysis and visualisation of ecological communities in R. Methods in Ecology and Evolution, 4(1), 99–104. https://doi.org/10.1111/2041-210X.12005
dc.relationHuttunen, K. L., Mykrä, H., Oksanen, J., Astorga, A., Paavola, R., & Muotka, T. (2017). Habitat connectivity and in-stream vegetation control temporal variability of benthic invertebrate communities. Scientific Reports, 7(1), 1–9. https://doi.org/10.1038/s41598-017-00550-9
dc.relationHynes, H. B. N. (1975). The stream and its valley. SIL Proceedings, 1922-2010, 19(1), 1–15. https://doi.org/10.1080/03680770.1974.11896033
dc.relationIDEAM. (2018). Boletín de alertas tempranas de deforestación (AT-D) : Cuarto trimestre de 2018 No. 17. Retrieved from http://documentacion.ideam.gov.co/openbiblio/bvirtual/023856/17_BoletinAT-D.pdf
dc.relationIngs, T. C., Montoya, J. M., Bascompte, J., Blüthgen, N., Brown, L., Dormann, C. F., … Woodward, G. (2009). Ecological networks - Beyond food webs. Journal of Animal Ecology. https://doi.org/10.1111/j.1365-2656.2008.01460.x
dc.relationIwata, T., Nakano, S., & Inoue, M. (2003). Impacts of past Riparian Deforestation on Stream Communities in a Tropical Rain Forest in Borneo. Ecological Applications, 13(2), 461–473. https://doi.org/10.1890/1051-0761(2003)013[0461:IOPRDO]2.0.CO;2
dc.relationJacob, U., Mintenbeck, K., Brey, T., Knust, R., & Beyer, K. (2005). Stable isotope food web studies: A case for standardized sample treatment. Marine Ecology Progress Series, 287(1), 251–253. https://doi.org/10.3354/meps287251
dc.relationJardine, T. D., Hadwen, W. L., Hamilton, S. K., Hladyz, S., Mitrovic, S. M., Kidd, K. A., … Bunn, S. E. (2014). Understanding and overcoming baseline isotopic variability in running waters. River Research and Applications, 30(2), 155–165. https://doi.org/10.1002/rra.2630
dc.relationJepsen, D. B., & Winemiller, K. O. (2002). Structure of tropical river food webs revealed by stable isotope ratios. Oikos, 96, 46–55. https://doi.org/10.1034/j.1600-0706.2002.960105.x
dc.relationKawaguchi, Y., Taniguchi, Y., & Nakano, S. (2003). Terrestrial invertebrate inputs determine the local abundance of stream fishes in a forested stream. Ecology, 84(3), 701–708. https://doi.org/10.1890/0012-9658(2003)084[0701:TIIDTL]2.0.CO;2
dc.relationKiffney, P. M., Richardson, J. S., & Bull, J. P. (2003). Responses of Periphyton and Insects to Experimental Manipulation of Riparian Buffer Width along Forest Streams. Source Journal of Applied Ecology, 40(6), 1060–1076. Retrieved from http://www.jstor.org/stable/3506043
dc.relationKnight, A. W., & Bottorff, R. L. (1984). The Importance of Riparian Vegetation. Ecology, 2(June), 160–167. Retrieved from http://books.google.com/books?hl=en&lr=&id=UhjbO_CC_VoC&oi=fnd&pg=PA160&dq=THE+IMPORTANCE+OF+RIPARIAN+VEGETATION+to+stream+ecosystems&ots=O-amv6ZG1F&sig=RmZDCZ9dTGzAXosbILZvdeUGgm0
dc.relationKruskal, J. B. (1964). Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika, 29(1), 1–27. https://doi.org/10.1007/BF02289565
dc.relationLafferty, K. D., & Kuris, A. M. (2002). Trophic strategies, animal diversity and body size. Trends in Ecology and Evolution. https://doi.org/10.1016/S0169-5347(02)02615-0
dc.relationLasso, C. A., & Morales-Betancourt, M. A. (2017). III. Fauna De Caño Cristales, sierra de La Macarena, Meta, Colombia. Serie Editorial Fauna Silvestre Neotropical. (C. A. Lasso & M. A. Morales-Betancourt, Eds.) (1st ed.). Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (IAvH).
dc.relationLasso, C. A., Morales-Betancourt, M. A., & Escobar-Martínez, I. D. (2019). Biodiversidad de la sierra de La Macarena, Meta, Colombia. Parte I. Ríos Guayabero medio, bajo Losada y bajo Duda. Bogotá: Insituto de Investigación de Recursos Biológicos Alexander von Humboldt. https://doi.org/10.21068/a2018n02
dc.relationLau, D. C. P., Leung, K. M. Y., & Dudgeon, D. (2008). Experimental dietary manipulations for determining the relative importance of allochthonous and autochthonous food resources in tropical streams. Freshwater Biology, 53(1), 139–147. https://doi.org/10.1111/j.1365-2427.2007.01873.x
dc.relationLau, D. C. P., Leung, K. M. Y., & Dudgeon, D. (2009a). Are autochthonous foods more important than allochthonous resources to benthic consumers in tropical headwater streams? Journal of the North American Benthological Society, 28(2), 426–439. https://doi.org/10.1899/07-079.1
dc.relationLau, D. C. P., Leung, K. M. Y., & Dudgeon, D. (2009b). What does stable isotope analysis reveal about trophic relationships and the relative importance of allochthonous and autochthonous resources in tropical streams? A synthetic study from Hong Kong. Freshwater Biology, 54(1), 127–141. https://doi.org/10.1111/j.1365-2427.2008.02099.x
dc.relationLayman, C. A., Araujo, M. S., Boucek, R., Hammerschlag-Peyer, C. M., Harrison, E., Jud, Z. R., … Bearhop, S. (2012). Applying stable isotopes to examine food-web structure: An overview of analytical tools. Biological Reviews, 87(3), 545–562. https://doi.org/10.1111/j.1469-185X.2011.00208.x
dc.relationLayman, C. A., Giery, S. T., Buhler, S., Rossi, R., Penland, T., Henson, M. N., … Archer, S. K. (2015). A Primer on the History of Food Web Ecology: Fundamental Contributions of Fourteen Researchers. FOOWEB.
dc.relationLaython, M. (2017). Los Coleópteros Acuáticos (Coleoptera: Insecta ) en Colombia , Distribución y Taxonomía. Universidad Nacional de Colombia.
dc.relationLeroux, S. J., & Loreau, M. (2008). Subsidy hypothesis and strength of trophic cascades across ecosystems. Ecology Letters, 11(11), 1147–1156. https://doi.org/10.1111/j.1461-0248.2008.01235.x
dc.relationLeroux, S. J., & Loreau, M. (2015). Theoretical perspectives on bottom-up and top-down interactions across ecosystems. In T. C. Hanley & K. J. La Pierre (Eds.), Trophic Ecology: Bottom-Up and Top-Down Interactions Across Aquatic and Terrestrial Systems (pp. 3–28). Cambridge University Press. https://doi.org/10.1017/CBO9781139924856.002
dc.relationLigeiro, R., Melo, A. S., & Callisto, M. (2010). Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshwater Biology, 55(2), 424–435. https://doi.org/10.1111/j.1365-2427.2009.02291.x
dc.relationLindeman, R. L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23(4), 399–417.
dc.relationLoreau, M. (2005). Foreword. In A. Belgrano, U. Scharler, J. Dunne, & R. Ulanowicz (Eds.), Aquatic food webs : an ecosystem approach (p. 262).
dc.relationLuque, F. J., Patarroyo-Baéz, J. J., & González-Trujillo, J. D. (2019). Auto-ecological traits of Bryconops giacopinii (Iguanodectidae) from la Serranía de la Lindosa, San José de Guaviare, Colombia. Acta Biologica Colombiana, 24(2), 255–263. https://doi.org/10.15446/abc.v24n2.70450
dc.relationMacArthur, R. (1955). Fluctuations of Animal Populations and a Measure of Community Stability. Ecology, 36(3), 533–536. https://doi.org/10.2307/1929601
dc.relationMajdi, N., Hette-tronquart, N., Auclair, E., Bec, A., & Chouvelon, T. (2018). There’s no harm in having too much : A comprehensive toolbox of methods in trophic ecology. Food Webs, 16(September). https://doi.org/10.1016/j.fooweb.2018.e00100
dc.relationMarcatelli, A. M., Baxter, C. V., Mineau, M. M., & Hall, R. O. (2011). Quantity and quality: unifying food web and exosystem perspectives on the role of resource subsidies in freswhaters. Ecology, 92(6), 1215–1225. https://doi.org/10.1890/10-2240.1
dc.relationMartín-López, B., Iniesta-Arandia, I., García-Llorente, M., Palomo, I., Casado-Arzuaga, I., Del Amo, D. G., … Montes, C. (2012). Uncovering ecosystem service bundles through social preferences. PLoS ONE. https://doi.org/10.1371/journal.pone.0038970
dc.relationMarzack, L. B., Thompson, R. M., & Rhicharson, J. S. (2007). Meta-Analysis: Trophic Level , Habitat , and Productivity Shape the Food Web Effects of Resource Subsidies. Ecology, 88(1), 140–148.
dc.relationMay, R. M. (1972). Will a large complex system be stable? Nature, 238(5364), 413–414. https://doi.org/10.1038/238413a0
dc.relationMay, R. M. (1973). Stability and complexity in model ecosystems. Monographs in Population Biology. https://doi.org/10.1109/TSMC.1978.4309856
dc.relationMcCann, K. S. (2000). The diversity - stability debate. Nature, 405(May), 228–233.
dc.relationMcCutchan, J. H., Lewis, W. M., Kendall, C., & McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102(2), 378–390. https://doi.org/10.1034/j.1600-0706.2003.12098.x
dc.relationMcQueen, D. J., Post, J. R., & Mills, E. L. (1986). Trophic relationships in freshwater pelagic ecosystems. Canadian Journal of Fisheries and Aquatic Sciences, 43(8), 1571–1581. https://doi.org/10.1139/f86-195
dc.relationMemmott, J. (2009). Food webs: a ladder for picking strawberries or a practical tool for practical problems? Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524), 1693–1699. https://doi.org/10.1098/rstb.2008.0255
dc.relationMendes, F., Kiffer, W. P., & Moretti, M. S. (2017). Structural and functional composition of invertebrate communities associated with leaf patches in forest streams: a comparison between mesohabitats and catchments. Hydrobiologia, 800(1), 115–127. https://doi.org/10.1007/s10750-017-3249-5
dc.relationMerritt, R.W., Dadd, R. H., & Walker, E. D. (1992). Feeding Behavior, Natural Food, And Nutritional Relationships Of Larval Mosquitos. Annual Review of Entomology, 37(1), 349–376. https://doi.org/10.1146/annurev.ento.37.1.349
dc.relationMerritt, Richard W., Cummins, K. W., & Berg, M. B. (Eds.). (2008). An introduction to the aquatic insects of North America, 4th edn. Kendall/Hunt (4th ed.). Dubuque: Kendall/Hunt Pub. Co.
dc.relationMihuc, T., & Toetz, D. (1994). Determination of Diets of Alpine Aquatic Insects Using Stable Isotopes and Gut Analysis. The American Midland Naturalist, 131(1), 146–155.
dc.relationMonroy, D., Arias, J. E., Barón, O., Murcia, U., & Armenteras, D. (2019). Presiones ejercidas sobre la Serranía de la Lindosa, Guaviare: Cambios de cobertura e incidencia de fuegos entre 2012 Y 2018. Acta Biológica Colombiana, 24(2), 372–378. https://doi.org/10.15446/abc.v24n2.72435
dc.relationMoon, D. C., Moon, J., & Keagy, A. (2010). Direct and Indirect Interactions. Nature Education Knowledge, 3(10), 50.
dc.relationMora-Day, J., & Blanco-Belmonte, L. (2008). Macroinvertebrados acuáticos del alto río Paragua, cuenca del río Caroní, Estado Bolívar, Venezuela. In J. C. Señaris, C. A. Lasso, & A. L. Flores (Eds.), Evaluación Rápida de la Biodiversidad de los Ecosistemas Acuáticos de la Cuenca Alta del Río Paragua, Estado Bolívar, Venezuela. RAP Bulletin of Biological Assessment 49. (pp. 97–109). Arlington, VA, USA: Conservation International.
dc.relationMuñoz, I., Romaní, A. M., Rodrigues-Capítulo, A., Gonzáles Esteban, J., & Garcia-Berthou, E. (2009). Relaciones tróficas en el ecosistema fluvial. In A. Elosegi & S. Sabater (Eds.), Conceptos y Técnicas en Ecología fluvial. (pp. 347–366). Bilbao, España: Fundacion BBVA.
dc.relationNaiman, R. J., Decamps, H., & McClain, M. E. (2010). Riparia: ecology, conservation, and management of streamside communities. Academic Press.
dc.relationNakano, S., & Murakami, M. (2001). Reciprocal subsidies: Dynamic interdependence between terrestrial and aquatic food webs. Proceedings of the National Academy of Sciences, 98(1), 166–170. https://doi.org/10.1073/pnas.98.1.166
dc.relationNeres-Lima, V., Brito, E. F., Krsulović, F. A. M., Detweiler, A. M., Hershey, A. E., & Moulton, T. P. (2016). High importance of autochthonous basal food source for the food web of a Brazilian tropical stream regardless of shading. International Review of Hydrobiology, 101(3–4), 132–142. https://doi.org/10.1002/iroh.201601851
dc.relationNeres-Lima, V., Machado-Silva, F., Baptista, D. F., Oliveira, R. B. S., Andrade, P. M., Oliveira, A. F., … Moulton, T. P. (2017). Allochthonous and autochthonous carbon flows in food webs of tropical forest streams. Freshwater Biology, 62(6), 1012–1023. https://doi.org/10.1111/fwb.12921
dc.relationOksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., … Wagner, H. (2017). vegan: Community Ecology Package. Retrieved from https://cran.r-project.org/package=vegan
dc.relationPardo, I., & Armitage, P. D. (1997). Species assemblages as descriptors of mesohabitats. Hydrobiologia, 344(1–3), 111–128.
dc.relationPereira, G., Garcia, J. V., Marcano, A., Lasso-Alcalá, O. M., & Martínez-Escarbassiere, R. (2006). Los macroinvertebrados bentónicos de la confluencia de los ríos Orinoco y Ventuari. In C. A. Lasso, J. C. Señaris, L. E. Alonso, & A. L. Flores (Eds.), Evaluación Rápida de la Biodiversidad de los Ecosistemas Acuáticos en la Confluencia de los ríos Orinoco y Ventuari, Estado Amazonas (Venezuela). Boletín RAP de Evaluación Biológica 30. (1st ed., pp. 96–106). Washington, DC. USA.: Conservation International.
dc.relationPhillips, D. L., Newsome, S. D., & Gregg, J. W. (2005). Combining sources in stable isotope mixing models: Alternative methods. Oecologia, 144(4), 520–527. https://doi.org/10.1007/s00442-004-1816-8
dc.relationPilotto, F., Bertoncin, A., Harvey, G. L., Wharton, G., & Pusch, M. T. (2014). Diversification of stream invertebrate communities by large wood. Freshwater Biology, 59(12), 2571–2583. https://doi.org/10.1111/fwb.12454
dc.relationPimm, S. L. (1982). Food webs. In Food webs (pp. 1–11). Springer.
dc.relationPost, D. M. (2002a). The long and short of food-chain length. Trends in Ecology & Evolution, 17(6), 266–277. https://doi.org/10.1016/S1097-2765(02)00657-3
dc.relationPost, D. M. (2002b). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83(3), 703–718. https://doi.org/10.2307/3071875
dc.relationPrat, N., González-Trujillo, J. D., & Ospina-Torres, R. (2014). Clave para la determinación de exuvias pupales de los quironómidos (Diptera: Chironomidae) de ríos altoandinos tropicales. Revista de Biologia Tropical, 62(4), 1385–1406.
dc.relationRamírez, A., & Gutiérrez-Fonseca, P. E. (2014). Functional feeding groups of aquatic insect families in Latin America: A critical analysis and review of existing literature. Revista de Biologia Tropical, 62(Suppl. 2), 155–167. https://doi.org/10.15517/rbt.v62i0.15785
dc.relationRamírez, A., Pringle, C. M., & Wantzen, K. M. (2008). Tropical stream conservation. In Tropical Stream Ecology (pp. 285–304). https://doi.org/10.1016/B978-012088449-0.50012-1
dc.relationReid, D. J., Quinn, G. P., Lake, P. S., & Reich, P. (2008). Terrestrial detritus supports the food webs in lowland intermittent streams of south-eastern Australia: A stable isotope study. Freshwater Biology, 53(10), 2036–2050. https://doi.org/10.1111/j.1365-2427.2008.02025.x
dc.relationReis da Silva, A., Albrecht, M. P., & Bunn, S. E. (2020). Food web pathways for fish communities in small tropical streams. Freshwater Biology, 0(December 2019), 1–15. https://doi.org/10.1111/fwb.13471
dc.relationRichardson, J. S., & Béraud, S. (2014). Effects of riparian forest harvest on streams: A meta-analysis. Journal of Applied Ecology, 51(6), 1712–1721. https://doi.org/10.1111/1365-2664.12332
dc.relationRichardson, J. S., & Danehy, R. J. (2007). A Synthesis of the Ecology of Headwater Streams and Their Riparian Zones in Temperate Forests. Forest Science, 53(2), 131–147.
dc.relationRipple, W. J., Estes, J. A., Schmitz, O. J., Constant, V., Kaylor, M. J., Lenz, A., … Wolf, C. (2016). What is a Trophic Cascade? Trends in Ecology and Evolution, 31(11), 842–849. https://doi.org/10.1016/j.tree.2016.08.010
dc.relationRodríguez, N., Armenteras, D., Molowny-Horas, R., & Retana, J. (2012). Patterns and trends of forest loss in the Colombian Guyana. Biotropica, 44(1), 123–132. https://doi.org/10.1111/j.1744-7429.2011.00770.x
dc.relationRomero, G. Q., & Srivastava, D. S. (2010). Food-web composition affects cross-ecosystem interactions and subsidies. Journal of Animal Ecology, 79(5), 1122–1131. https://doi.org/10.1111/j.1365-2656.2010.01716.x
dc.relationRooney, N., McCann, K., Gellner, G., & Moore, J. C. (2006a). Structural asymmetry and the stability of diverse food webs. Nature, 442(7100), 265–269. https://doi.org/10.1038/nature04887
dc.relationRooney, N., McCann, K., Gellner, G., & Moore, J. C. (2006b). Structural asymmetry and the stability of diverse food webs. Nature, 442(7100), 265–269. https://doi.org/10.1038/nature04887
dc.relationRosa, B. F. J. V., Dias-Silva, M. V.D., & Alves, R. G. (2013). Composition and Structure of the Chironomidae (Insecta: Diptera) Community Associated with Bryophytes in a First-Order Stream in the Atlantic Forest, Brazil. Neotropical Entomology, 42(1), 15–21. https://doi.org/10.1007/s13744-012-0086-0
dc.relationSaint-Béat, B., Baird, D., Asmus, H., Asmus, R., Bacher, C., Pacella, S. R., … Niquil, N. (2015). Trophic networks: How do theories link ecosystem structure and functioning to stability properties? A review. Ecological Indicators, 52, 458–471. https://doi.org/10.1016/j.ecolind.2014.12.017
dc.relationSalerno, P. E., Ron, S. R., Señaris, J. C., Rojas-Runjaic, F. J. M., Noonan, B. P., & Cannatella, D. C. (2012). Ancient tepui summits harbor young rather than old lineages of endemic frogs. Evolution, 66(10), 3000–3013. https://doi.org/10.1111/j.1558-5646.2012.01666.x
dc.relationSantos, I. G. A. Dos. (2014). Colonização de macroinvertebrados bentônicos em detritos foliares em riacho de primeira ordem da reserva biológica de Saltinho- Pernambuco. Universidade Federal de Pernambuco.
dc.relationSaulino, H., Corbi, J., & Trivinho-Strixino, S. (2014). Aquatic insect community structure under the influence of small dams in a stream of the Mogi-Guaçu river basin , state of São Paulo. Brazilian Journal of Biology, 74(1), 79–88.
dc.relationSchindler, D. E., & Smits, A. P. (2017). Subsidies of Aquatic Resources in Terrestrial Ecosystems. Ecosystems, 20(1), 78–93. https://doi.org/10.1007/s10021-016-0050-7
dc.relationSemana. (2018, November 30). Campesinos de San José del Guaviare cambian la tala por el turismo. Semana. Retrieved from https://sostenibilidad.semana.com/medio-ambiente/articulo/campesinos-de-san-jose-del-guaviare-cambian-la-tala-por-el-turismo/42243
dc.relationSganga, V. J. (2011). Variabilidad espacial y estructura de las comunidades de Trichoptera ( Insecta ) en arroyos del Parque Provincial Salto Encantado del Valle. “Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. http://digital.bl.fcen.uba.ar.”
dc.relationSilva, D. R. O., Ligeiro, R., Hughes, R. M., & Callisto, M. (2014). Visually determined stream mesohabitats influence benthic macroinvertebrate assessments in headwater streams. Environmental Monitoring and Assessment, 186(9), 5479–5488. https://doi.org/10.1007/s10661-014-3797-3
dc.relationSINCHI. (2016). Zonificación ambiental y ordenamiento de la reserva forestal de la Amazonía, creada mediante la Ley 2a de 1959, en el departamento de Guaviare. Informe final. Versión 2.0, del convenio 047 de 2009. Bogotá D.C.
dc.relationSoininen, J., Bartels, P., Heino, J., Luoto, M., & Hillebrand, H. (2015). Toward more integrated ecosystem research in aquatic and terrestrial environments. BioScience, 65(2), 174–182. https://doi.org/10.1093/biosci/biu216
dc.relationSouki, M. El, Blanco-belmonte, L., Lasso, C. A., & Mora-day, J. (2015). gradiente espacial del alto río Cuyuní , Guayana venezolana Artículo Composición y distribución de la comunidad de insectos acuáticos en un gradiente espacial del alto río Cuyuní , Guayana venezolana, (November). https://doi.org/10.13140/RG.2.1.3141.2565
dc.relationSpinelli, G. R., Wirth, W. W., Spinelli, G. R., & Wirth, W. W. (1991). The Neotropical Predaceous Midges of the genus Bezzia ( Diptera : Ceratopogonidae ) Part IV . The dentifemur and venustula Groups.
dc.relationStock, B. C., Jackson, A. L., Ward, E. J., Parnell, A. C., Phillips, D. L., & Semmens, B. X. (2018). Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ, 6, e5096. https://doi.org/10.7717/peerj.5096
dc.relationStock, B. C., & Semmens, B. X. (2016). MixSIAR GUI User Manual. https://doi.org/10.5281/zenodo.1209993
dc.relationSulzman, E. W. (2008). Stable isotope chemistry and measurement: a primer. Stable Isotopes in Ecology and Environmental Science, Second Edition, 1–21.
dc.relationSweeney, B. W., & Newbold, J. D. (2014). Streamside forest buffer width needed to protect stream water quality, habitat, and organisms: A literature review. Journal of the American Water Resources Association, 50(3), 560–584. https://doi.org/10.1111/jawr.12203
dc.relationTamaris-Turizo, C. E., Pinilla-A, G. A., & Muñoz, I. (2018). Trophic network of aquatic macroinvertebrates along an altitudinal gradient in a Neotropical mountain river. Revista Brasileira de Entomologia, 62(3), 180–187. https://doi.org/10.1016/j.rbe.2018.07.003
dc.relationTerry, J. C. D., Morris, R. J., & Bonsall, M. B. (2017). Trophic interaction modifications: an empirical and theoretical framework. Ecology Letters, 20(10), 1219–1230. https://doi.org/10.1111/ele.12824
dc.relationThompson, R. M., Brose, U., Dunne, J. A., Hall, R. O., Hladyz, S., Kitching, R. L., … Tylianakis, J. M. (2012). Food webs: Reconciling the structure and function of biodiversity. Trends in Ecology and Evolution, 27(12), 689–697. https://doi.org/10.1016/j.tree.2012.08.005
dc.relationThompson, R. M., Dunne, J. A., & Woodward, G. (2012). Freshwater food webs: Towards a more fundamental understanding of biodiversity and community dynamics. Freshwater Biology, 57(7), 1329–1341. https://doi.org/10.1111/j.1365-2427.2012.02808.x
dc.relationTomanova, S., Goitia, E., & Helešic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in neotropical streams. Hydrobiologia, 556(1), 251–264. https://doi.org/10.1007/s10750-005-1255-5
dc.relationTonkin, J. D., Altermatt, F., Finn, D. S., Heino, J., Olden, J. D., Pauls, S. U., & Lytle, D. A. (2018). The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshwater Biology, 63(1), 141–163. https://doi.org/10.1111/fwb.13037
dc.relationTorres-Bejarano, A. M., Duque, S. R., & Caraballo, P. (2014). Papel trófico del zooplancton a través del análisis de isótopos estables en un lago de inundación en la Amazonia Colombiana. Caldasia, 36(2), 331–344.
dc.relationTrivinho-Strixino, S. (2011). Larvas de Chironomidae: Guia de identificação. São Carlos: Depto Hidrobiologia/Lab. Entomologia Aquática/UFSCar.
dc.relationUrbano-Bonilla, A., De Souza, L., Maldonado-Ocampo, J. A., & Zamudio, J. E. (2017). Sistemas hidrográficos de la SERRANÍA DE LA LINDOSA, GUAVIARE, COLOMBIA PECES de quebradas de cabecera de la cuenca alta del RÍO INÍRIDA y quebradas de cabecera tributarios del RÍO GUAVIARE, (February).
dc.relationVan der Sleen, P., & Albert, J. S. (Eds.). (2018). Field Guide to the Fishes of the Amazon, Orinoco, and Guianas. New Jersey: Princeton University Press.
dc.relationVanegas, R. D. D., Ocampo, G. R. R., & Rodríguez, P. (2006). Plan de Manejo Zona de Preservación Serranía de La Lindosa y su área de influencia / 2006 – 2018 –Documento Técnico. San José del Guaviare.
dc.relationVannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., & Cushing, C. E. (1980). The River Continuum Concept. Canadian Journal of Fisheries and Aquatic Sciences. https://doi.org/10.1139/f80-017
dc.relationWiederholm, T. (Ed.). (1983). Chironomidae of the Holarctic region Keys and diagnoses. Part I - Larvae. Entomologica scandinavica, supplement.
dc.relationWilkerson, E., Hagan, J. M., Siegel, D., & Whitman, A. A. (2006). The effectiveness of different buffer widths for protecting headwater stream temperature in Maine. Forest Science, 52(3), 221–231.
dc.relationAcosta, R., & Prat, N. (2010). Chironomid assemblages in high altitude streams of the Andean region of Peru. Fundamental and Applied Limnology, 177(1), 57–79. https://doi.org/10.1127/1863-9135/2010/0177-0057
dc.relationZubieta Vega, M., Vargas Ávila, G., Giraldo Benavides, B., Gallego Cano, A., Jiménez Montoya, A., Jaramillo Luis, F., & Barón, M. (2005). Los servicios ambientales :una alternativa en proceso de discusión y concertación para el norte amazónico colombiano. Instituto Amazónico de Investigaciones Científicas SINCHI. Retrieved from http://hdl.handle.net/20.500.12324/18978
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleCambios en la red trófica ligados a la pérdida del bosque de ribera en un ecosistema fluvial en la Serranía de La Lindosa (San José Del Guaviare, Colombia)
dc.typeOtro


Este ítem pertenece a la siguiente institución