dc.contributorCarvajal Quintero, Sandra Ximena
dc.contributorYounes Velosa, Camilo
dc.contributorEnvironmental Energy and Education Policy E3P
dc.creatorBedoya Sánchez, Santiago
dc.date.accessioned2022-07-19T16:46:38Z
dc.date.accessioned2022-09-21T17:01:40Z
dc.date.available2022-07-19T16:46:38Z
dc.date.available2022-09-21T17:01:40Z
dc.date.created2022-07-19T16:46:38Z
dc.date.issued2022-06
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81711
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3397385
dc.description.abstractComo respuesta a los retos de la transición energética para Colombia en el horizonte del año 2.030, existe un interés en evaluar y analizar las implicaciones y oportunidades que poseen las disrupciones tecnológicas dentro del mercado y operación del sistema eléctrico colombiano. Nuevas oportunidades de negocio, junto con nuevos paradigmas de operación del sistema eléctrico son algunos motivadores en el papel dinamizador del usuario final. El objetivo de este trabajo busca proponer tendencias tecnológicas y regulatorias para el surgimiento y despliegue de la infraestructura de medición inteligente bajo la infraestructura AMI, fundamentada en el estudio exhaustivo del estado del arte y el aprendizaje de experiencias nacionales e internacionales. Por su parte, los resultados muestran que la proyección por medio de los modelos de simulación empleados permite incluir estrategias de despliegue masivo siguiendo las bondades del modelo de difusión general; además, permite evaluar el impacto e incidencia sobre la oferta y la demanda eléctrica. Los resultados obtenidos muestran que el despliegue de medición AMI para el sector residencial urbano se proyecta entre aproximadamente 64% y 88,7% para el año 2.030; para el año 2.035 los escenarios muestran despliegues cercanos entre 85,3% y 98,4%. La proyección de demanda eléctrica, con respecto al Sistema Interconectado Nacional SIN, muestra tendencias de reducción entre aproximadamente 9,2%, y 13,1% para el año 2.030; por su parte, para el año 2.035 la proyección muestra incrementos de reducción entre el 12,6% y 14,7% según los 3 escenarios analizados. Por último, la participación de demanda con autogeneración distribuida a pequeña escala muestra escenarios de participación en el Sistema Interconectado Nacional de entre el 4,7% y 6,6% para el año 2.030; sin embargo, para el año 2.035 se tiene un aumento significativo de entre el 21,7% y 28,3%. (Texto tomado de la fuente)
dc.description.abstractIn response to the challenges of the energy transition for Colombia on the horizon of the year 2030, there is an interest in evaluating and analyzing the implications and opportunities that technological interruptions have within the market and operation of the Colombian electricity system. New business opportunities, along with new operating paradigms for the electrical system are some of the motivators in the dynamic role of the end user. The objective of this work seeks to propose technological and regulatory trends for the emergence and use of smart metering infrastructure under the AMI infrastructure, based on the exhaustive study of the state of the art and learning from national and international experiences. On the other hand, the results show that the projection through the simulation models used allows including strategies of massive use following the benefits of the general diffusion model; In addition, it allows evaluating the impact and incidence on electricity supply and demand. The results obtained show that the use of AMI measurement for the urban residential sector is projected between approximately 64% and 88.7% for the year 2030; for the year 2035 the scenarios show uses close to between 85.3% and 98.4%. The projection of electricity demand, with respect to the National Interconnected System SIN, shows reduction trends between approximately 9.2% and 13.1% for the year 2030; for its part, for the year 2035 the projection shows increases in reduction between 12.6% and 14.7% according to the 3 scenarios analyzed. Finally, the share of demand with small-scale distributed self-generation shows participation scenarios in the National Interconnected System of between 4.7% and 6.6% for the year 2030; however, for the year 2035 there is a significant increase of between 21.7% and 28.3%.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisherFacultad de Ingeniería y Arquitectura
dc.publisherManizales, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Manizales
dc.relationW. Jewell, V. Namboodiri, V. Aravinthan, and B. Karimi, “Communication Requirements and Integration Options for Smart Grid Deployment,” 2012.
dc.relationP. Van Aubel and E. Poll, “Smart metering in the Netherlands: What, how, and why,” Int. J. Electr. Power Energy Syst., vol. 109, no. January, pp. 719–725, 2019, doi: 10.1016/j.ijepes.2019.01.001.
dc.relationM. Anda and J. Temmen, “Smart metering for residential energy efficiency: The use of community based social marketing for behavioural change and smart grid introduction,” Renew. Energy, vol. 67, pp. 119–127, 2014, doi: 10.1016/j.renene.2013.11.020.
dc.relationY. Wang, H. Qiu, Y. Tu, Q. Liu, Y. Ding, and W. Wang, “A review of smart metering for future Chinese grids,” Energy Procedia, vol. 152, pp. 1194–1199, 2018, doi: 10.1016/j.egypro.2018.09.158.
dc.relationM. P. Mchenry, “Technical and governance considerations for advanced metering infrastructure / smart meters : Technology , security , uncertainty , costs , bene fi ts , and risks,” Energy Policy, vol. 59, pp. 834–842, 2013, doi: 10.1016/j.enpol.2013.04.048.
dc.relationA. Gopstein, C. Nguyen, D. S. Byrnett, K. Worthington, and C. Villarreal, “Framework and Roadmap for Smart Grid Interoperability Standards Regional Roundtables Summary Report Framework and Roadmap for Smart Grid Interoperability Standards Regional Roundtables Summary Report,” 2020.
dc.relationColombia Inteligente, “Lineamientos estratégicos virtualización de la información acciones para la masificación de la medida en AMI,” 2018.
dc.relationE. Ancillotti, R. Bruno, and M. Conti, “The role of communication systems in smart grids : Architectures , technical solutions and research challenges,” Comput. Commun., vol. 36, no. 17–18, pp. 1665–1697, 2013, doi: 10.1016/j.comcom.2013.09.004.
dc.relationM. E. Kallman and S. Frickel, “Nested logics and smart meter adoption: Institutional processes and organizational change in the diffusion of smart meters in the United States,” Energy Res. Soc. Sci., vol. 57, no. July, p. 101249, 2019, doi: 10.1016/j.erss.2019.101249.
dc.relationS. Wang et al., “A Randomized Response Model For Privacy Preserving Smart Metering,” IEEE Trans Smart Grid, vol. 3, no. 2, pp. 1317–1324, 2012.
dc.relationK. Shuaib, Z. Trabelsi, M. Abed-Hafez, A. Gaouda, and M. Alahmad, “Resiliency of smart power meters to common security attacks,” Procedia Comput. Sci., vol. 52, no. 1, pp. 145–152, 2015, doi: 10.1016/j.procs.2015.05.049.
dc.relationN. C. Jaramillo, C. J. F. Cardona, and J. D. V. Henao, “Smart meters adoption: Recent advances and future trends,” DYNA, vol. 81, no. 183, pp. 221–230, 2014, doi: 10.15446/dyna.v81n183.38148.
dc.relationIEA DSM, “Business models for a more effective market uptake of EE energy services for SMEs and communities,” 2014.
dc.relationJ. F. Alves, G. Dantas, D. Viana Ferreira, and N. De Castro, Estado da arte da difusão de recursos energéticos distribuídos em quatro estados norte-americanos, vol. 72. 2017.
dc.relationK. A. Choksi, S. Jain, and N. M. Pindoriya, “Feature based clustering technique for investigation of domestic load profiles and probabilistic variation assessment: Smart meter dataset,” Sustain. Energy, Grids Networks, vol. 22, p. 100346, 2020, doi: 10.1016/j.segan.2020.100346.
dc.relationN. Shaukat et al., “A survey on consumers empowerment, communication technologies, and renewable generation penetration within Smart Grid,” Renew. Sustain. Energy Rev., vol. 81, no. April 2016, pp. 1453–1475, 2018, doi: 10.1016/j.rser.2017.05.208.
dc.relationK. Ehrhardt-Martinez, K. A. Donnelly, and J. A. Laitner, “Advanced metering initiatives and residential feedback programs: A meta-review for household electricity-saving opportunities,” 2010.
dc.relationZ. Li, F. Yang, S. Mohagheghi, Z. Wang, J. C. Tournier, and Y. Wang, “Toward smart distribution management by integrating advanced metering infrastructure,” Electr. Power Syst. Res., vol. 105, pp. 51–56, 2013, doi: 10.1016/j.epsr.2013.07.008.
dc.relationM. Azaza and F. Wallin, “Smart meter data clustering using consumption indicators: Responsibility factor and consumption variability,” Energy Procedia, vol. 142, pp. 2236–2242, 2017, doi: 10.1016/j.egypro.2017.12.624.
dc.relationF. Serra, “El enfoque sistémico y la dinámica de sistemas como metodología de la NTE para el estudio,” Civilizar, vol. 03, no. 03, pp. 119–134, 2016.
dc.relationJ. Sterman, Business Dynamics, Massachuse. 2000.
dc.relationJ. D. W. Morecroft, Strategic Modelling and Business Dynamics, Second Edi. 2015.
dc.relationF. Szulanski and J. Forrester, “La Dinámica de Sistemas,” 1999.
dc.relationN. Castaño and C. Franco, “Formulación de políticas para la penetración de las Smart Grid en Colombia,” 9° Encuentro Colomb. Dinámica Sist. 14, p. 6, 2011, [Online]. Available: http://www.urosario.edu.co/urosario_files/e0/e075e58e-7ac0-4448-bb66-1875d31e2f44.pdf.
dc.relationJ. de M. Donado Campos, S. Dormido Canto, and F. Morilla García, “Fundamentos de la dinámica de sistemas y modelos de dinámica de sistemas en epidemiología,” 2005.
dc.relationG. P. Richardson, “Problemas con los diagramas de ciclos causales,” Science (80-. )., 1982.
dc.relationT. Morales Vega, “Infraestructura de medicion avanzada para microrredes electricas,” Universidad Distrital Francisco José de Caldas, 2018.
dc.relationS. Pawar and B. F. Momin, “Smart Electricity Meter Data Analytics: A Brief Review,” IEEE Trans. Smart Grid, 2017.
dc.relationM. J. Rodríguez Nieto and L. Veléz Cataño, “Economic opportunities of AMI implementation: A review,” pp. 1–33, 2019, [Online]. Available: https://repository.eafit.edu.co/handle/10784/15198.
dc.relationS. Milena, T. Gutiérrez, J. R. García, and R. C. Gandarillas, “Sistemas de medición avanzada en Colombia : beneficios , retos y oportunidades Advanced metering infrastructure in Colombia : benefits , challenges and opportunities,” Ing. y Desarro., vol. 36, no. 617, 2018.
dc.relationC. J. D. Molina, S. O. D. Edison, B. A. L. Fernanda, and Z. U. J. Alejandro, “Challenges and opportunities of smart grids implementation: A case of Colombia electricity sector,” 2019 FISE-IEEE/CIGRE Conf. - Living Energy Transition, FISE/CIGRE 2019, pp. 0–5, 2019, doi: 10.1109/FISECIGRE48012.2019.8985022.
dc.relationC. I. P. on C. IPCC, “Climate Change 2022: Impacts, Adaptation and Vulnerability,” 2022.
dc.relationN. Uribe-Pérez, L. Hernández, D. de la Vega, and I. Angulo, “State of the Art and Trends Review of Smart Metering in Electricity Grids,” Appl. Sci., vol. 6, no. 3, pp. 1–24, 2016, doi: 10.3390/app6030068.
dc.relationC. Vitiello, S, Vasiljevska, J, Filiou, “Benchmarking smart metering deployment in the EU-27 with a focus on electricity,” 2014.
dc.relationA. Parrado Duque and G. Ordoñez Plata, “Propuesta de arquitectura de medición inteligente en sistemas de distribución con generación distribuida en redes eléctricas de baja tensión,” Univ. Ind. Santander, 2018.
dc.relationL. A. Silva Rubio et al., “Medición y Gestión Inteligente de Consumo Eléctrico,” 2016. [Online]. Available: http://www.sic.gov.co/sites/default/files/files/medicion_energia.pdf.
dc.relationJ. R. Paredes and S. H. Lee, “Las redes inteligentes de energía y su implementación en ciudades sostenibles,” Banco inteamericano Desarro., pp. 1–81, 2012, [Online]. Available: http://www.iadb.org/wmsfiles/products/publications/documents/37228055.pdf.
dc.relationM. E. El-Hawary, “The smart grid - State-of-the-art and future trends,” Electr. Power Components Syst., vol. 42, no. 3–4, pp. 239–250, 2014, doi: 10.1080/15325008.2013.868558.
dc.relationSmart Grids Colombia, “Smart Grids Colombia Vision 2030 Parte I: Antecedentes y Marco Conceptual del Análisis, Evaluación y Recomendaciones para la Implementación de Redes Inteligentes en Colombia,” 2016.
dc.relationL. F. Rodríguez Cotés, “Arquitectura de Red de la Infraestructura de Medición Avanzada (AMI) para el Desarrollo de Redes Inteligentes en Colombia,” Universidad Piloto de Colombia, 2013.
dc.relationK. Sharma and L. Mohan Saini, “Performance analysis of smart metering for smart grid: An overview,” Renew. Sustain. Energy Rev., vol. 49, pp. 720–735, 2015, doi: 10.1016/j.rser.2015.04.170.
dc.relationA. Rodriguez-Calvo, R. Cossent, and P. Frías, “Integration of PV and EVs in unbalanced residential LV networks and implications for the smart grid and advanced metering infrastructure deployment,” Int. J. Electr. Power Energy Syst., vol. 91, pp. 121–134, 2017, doi: 10.1016/j.ijepes.2017.03.008.
dc.relationF. A. Perez, “Identificación de retos TIC de los consumidores como actores activos en el marco de Smart Grid y propuesta de estrategia para afrontarlos en el contexto colombiano,” 2019.
dc.relationL. C. S. Rocha, G. Aquila, E. de O. Pamplona, A. P. de Paiva, B. G. Chieregatti, and J. de S. B. Lima, “Photovoltaic electricity production in Brazil: A stochastic economic viability analysis for small systems in the face of net metering and tax incentives,” J. Clean. Prod., vol. 168, pp. 1448–1462, 2017, doi: 10.1016/j.jclepro.2017.09.018.
dc.relationG. Rennie, B. K. Hartnett, V. Reyes, D. Siegert, D. Sandoval, and M. Banda, “Análisis de brechas y oportunidades de innovación en el sector energético en América Latina y el Caribe,” 2020.
dc.relationD. Watts, M. F. Valdés, D. Jara, and A. Watson, “Potential residential PV development in Chile: The effect of Net Metering and Net Billing schemes for grid-connected PV systems,” Renew. Sustain. Energy Rev., vol. 41, pp. 1037–1051, 2015, doi: 10.1016/j.rser.2014.07.201.
dc.relationG. Zeisler Badal and J. Rojas Roldán, “Análisis Técnico , Económico Y Legal De La Implementación Del Sistema Net Metering En Chile : Aplicación En 2 Viviendas De La Región Metropolitana Felipe Andrés Órdenes Odi Profes,” Universidad de Chile, 2012.
dc.relationC. Comisión de Regulación de Energía y Gas, Resolución 038 de 2014. 2014, p. 65.
dc.relationC. de R. de E. y G. CREG, Proyecto de resolución 131 de 2020. 2020, pp. 1–31.
dc.relationComision de Regulacion de Energia y Gas CREG, Proyecto de resolución 219 de 2020. 2021.
dc.relationC. de R. de E. y G. CREG, Resolución 101 001 de 2022, no. Rees 1997. Colombia, 2022, p. 1997.
dc.relationC. de R. de E. y G. CREG, Resolución 025 de 1995. Colombia, 1995, p. 141.
dc.relationC. de R. de E. y G. CREG, Resolución 068 de 2004. 2004.
dc.relationC. de R. de E. y G. CREG, Resolución 096 de 2004. 2004.
dc.relationC. de R. de E. y G. CREG and C. Comisión de Regulación de Energía y Gas, Resolucion 097 de 2008. 2008, p. 135.
dc.relationC. de R. de E. y G. CREG, Resolución 015 de 2018. 2018, p. 239.
dc.relationC. de R. de E. y G. CREG, Resolución 180 de 2014. 2014.
dc.relationC. de R. de E. y G. CREG, Resolución 191 de 2014. 2014.
dc.relationC. Comisión de Regulación de Energía y Gas, Resolución 119 de 2007. 2007, pp. 1–29.
dc.relationCongreso de Colombia, Ley 1715, no. May. 2014.
dc.relationMinisterio de minas y Energía, Resolución 011 de 2015. 2015, pp. 1–25.
dc.relationDepartamento Administrativo de la Función Pública, Decreto 2492 de 2014. 2014, pp. 1–3.
dc.relationMinisterio de Minas y Energía, Resolución 40072 de 2018. Ministerio de Minas y Energía, 2018, p. 7.
dc.relationMinisterio de Minas y Energía, Resolución 40483 de 2019. Colombia, 2019.
dc.relationM. de M. y Energía, Resolución 40142 de 2020. 2020.
dc.relationD. A. de la F. Pública, Decreto 1073 de 2015. Colombia, 2015, pp. 1–400.
dc.relationM. de M. y Energía, Decreto 348 de 2017. Colombia, 2017, pp. 1–3.
dc.relationIcontec, NTC 6079. Colombia, 2021, pp. 1–140.
dc.relationJ. Salinas, A. Escobar, and Grupo de Investigación Xué, “Aspectos generales de las redes eléctricas inteligentes en Colombia,” Matriz Energ. en la Región Cent., p. 133, 2020, [Online]. Available: https://regioncentralrape.gov.co/matriz-energetica/.
dc.relationL. M. Banguera Gomez, “Estudio, análisis y modelamiento de los sistemas eléctricos de distribución en el contexto de redes eléctricas inteligentes industria 4.0 y automatización dentro de convenio marco de cooperación interinstitucional 080 de 2019 entre la UNIVERSIDAD DISTRITA,” p. 119, 2020, [Online]. Available: https://repository.udistrital.edu.co/handle/11349/24730.
dc.relationU. P. Bolivariana and T. D. de Energía, “Análisis del sistema energético y de las smart grids en colombia,” 2013.
dc.relationD. Rojas Delgado and C. A. Jaramillo Carmona, “Diseño de una Metodología de Selección de Equipos de Medición del Consumo de Energía Eléctrica para ‘Smart Metering’ en los Diferentes Estratos Sociales de Cali,” pp. 14–16, 2016.
dc.relationR. Rashed Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey on Advanced Metering Infrastructure,” Int. J. Electr. Power Energy Syst., vol. 63, pp. 473–484, 2014, doi: 10.1016/j.ijepes.2014.06.025.
dc.relationS. Aleksic and V. Mujan, “Exergy cost of information and communication equipment for smart metering and smart grids,” Sustain. Energy, Grids Networks, vol. 14, pp. 1–11, 2018, doi: 10.1016/j.segan.2018.01.002.
dc.relationK. S. Reddy, M. Kumar, T. K. Mallick, H. Sharon, and S. Lokeswaran, “A review of Integration, Control, Communication and Metering (ICCM) of renewable energy based smart grid,” Renew. Sustain. Energy Rev., vol. 38, pp. 180–192, 2014, doi: 10.1016/j.rser.2014.05.049.
dc.relationC. A. Díaz Andrare et al., “Arquitectura de una red HAN (Home Area Network) orientada a servicios sobre Smart Grid,” UNIVERSIDAD ICESI FACULTAD, 2013.
dc.relationF. Klopfert and G. Wallenborn, Empowering consumers through smart metering, vol. 32, no. 0. 2011.
dc.relationA. Tabandeh, A. Abdollahi, and M. Rashidinejad, “Reliability constrained congestion management with uncertain negawatt demand response firms considering repairable advanced metering infrastructures,” Energy, vol. 104, pp. 213–228, 2016, doi: 10.1016/j.energy.2016.03.118.
dc.relationComisión de Regulación de Energía y Gas CREG, “Tendencias y oportunidades de la distribución de energía eléctrica,” 2018.
dc.relationD. Crossley, “The Role of Advanced Metering and Load Control in Supporting Electricity Networks: Research Report No 5, Task XV,” Technology, no. 5, p. 104, 2008.
dc.relationE. Inga Ortega and J. Rodríguez, “Estrategias de Negocio Para Medición Inteligente Acoplando Energías Renovables,” ResearchGate, no. May 2014, 2013.
dc.relationH. Liu et al., “The application of smart meter in the management of electric vehicle charging facilities,” Procedia Comput. Sci., vol. 175, pp. 774–777, 2020, doi: 10.1016/j.procs.2020.07.115.
dc.relationD. Paul, W. Zhong, and S. K. Bose, “Applications Energy efficiency aware load distribution and electricity cost volatility control for cloud service providers,” J. Netw. Comput. Appl., vol. 59, pp. 185–197, 2016, doi: 10.1016/j.jnca.2015.08.012.
dc.relationS. Kessler, C. M. Flath, and K. Böhm, “Allocative and strategic effects of privacy enhancement in smart grids,” Inf. Syst., vol. 53, pp. 170–181, 2014, doi: 10.1016/j.is.2014.09.007.
dc.relationM. Fadaeenejad, A. M. Saberian, M. Fadaee, M. A. M. Radzi, H. Hizam, and M. Z. A. Abkadir, “The present and future of smart power grid in developing countries,” Renew. Sustain. Energy Rev., vol. 29, pp. 828–834, 2014, doi: 10.1016/j.rser.2013.08.072.
dc.relationS. Li, F. Luo, J. Yang, G. Ranzi, and J. Wen, “A personalized electricity tariff recommender system based on advanced metering infrastructure and collaborative filtering,” Int. J. Electr. Power Energy Syst., vol. 113, no. May, pp. 403–410, 2019, doi: 10.1016/j.ijepes.2019.05.042.
dc.relationJ. McDonald, “Leader or follower: Developing the smart grid business case,” IEEE Power Energy Mag., vol. 6, no. 6, Nov. 2008, doi: 10.1109/MPE.2008.929699.
dc.relationE. Yaacoub and A. Abu-Dayya, “Automatic meter reading in the smart grid using contention based random access over the free cellular spectrum,” Comput. Networks, vol. 59, pp. 171–183, 2014, doi: 10.1016/j.bjp.2013.10.009.
dc.relationM. Nabeel, X. Ding, S. Seo, and E. Bertino, “Scalable end-to-end security for advanced metering infrastructures,” Inf. Syst., vol. 53, pp. 213–223, 2015, doi: 10.1016/j.is.2015.01.004.
dc.relationS. Sultan, “Privacy-preserving metering in smart grid for billing, operational metering, and incentive-based schemes: A survey,” Comput. Secur., vol. 84, pp. 148–165, 2019, doi: 10.1016/j.cose.2019.03.014.
dc.relationM. Shrestha, C. Johansen, J. Noll, and D. Roverso, “A Methodology for Security Classification applied to Smart Grid Infrastructures,” Int. J. Crit. Infrastruct. Prot., vol. 28, p. 100342, 2020, doi: 10.1016/j.ijcip.2020.100342.
dc.relationG. Chrysostomou, V. Shikhin, and A. Shikhina, “Electrical Energy Supply Control Support via Meters Data Ellipsoidal Approximation in Smart Grids,” Procedia Comput. Sci., vol. 103, no. October 2016, pp. 287–294, 2017, doi: 10.1016/j.procs.2017.01.109.
dc.relationA. Faruqui, K. Arritt, and S. Sergici, “The impact of advanced metering infrastructure on energy conservation : A case study of two utilities,” Electr. J., vol. 30, no. 3, pp. 56–63, 2017, doi: 10.1016/j.tej.2017.03.006.
dc.relationA. F. A. Aziz, S. N. Khalid, M. W. Mustafa, H. Shareef, and G. Aliyu, “Artificial intelligent meter development based on advanced metering infrastructure technology,” Renew. Sustain. Energy Rev., vol. 27, pp. 191–197, 2013, doi: 10.1016/j.rser.2013.06.051.
dc.relationM. F. Mohamed, M. El-Gayyar, A. E. R. Shabayek, and H. Nassar, “Data reduction in a cloud-based AMI framework with service-replication,” Comput. Electr. Eng., vol. 69, pp. 212–223, 2018, doi: 10.1016/j.compeleceng.2018.02.042.
dc.relationA. Hansen, J. Staggs, and S. Shenoi, “Security analysis of an advanced metering infrastructure,” Int. J. Crit. Infrastruct. Prot., vol. 18, pp. 3–19, 2017, doi: 10.1016/j.ijcip.2017.03.004.
dc.relationN. Ansari and C. H. Lo, “Decentralized controls and communication for autonomous distribution networks in Smart Grid,” 2017.
dc.relationN. Uribe-Pérez, I. Angulo, D. de la Vega, T. Arzuaga, A. Arrinda, and I. Fernández, “On-field evaluation of the performance of IP-based data transmission over narrowband PLC for smart grid applications,” Int. J. Electr. Power Energy Syst., vol. 100, no. March, pp. 350–364, 2018, doi: 10.1016/j.ijepes.2018.02.030.
dc.relationR. Razavi, A. Gharipour, M. Fleury, and I. J. Akpan, “Occupancy detection of residential buildings using smart meter data: A large-scale study,” Energy Build., vol. 183, pp. 195–208, 2019, doi: 10.1016/j.enbuild.2018.11.025.
dc.relationB. Newell, D. M. Marsh, and D. Sharma, “Enhancing the resilience of the Australian National Electricity Market: Taking a systems approach in policy development,” Ecol. Soc., vol. 16, no. 2, 2011, doi: 10.5751/ES-04132-160215.
dc.relationS. Feuerriegel, P. Bodenbenner, and D. Neumann, “Value and granularity of ICT and smart meter data in demand response systems,” Energy Econ., vol. 54, pp. 1–10, 2016, doi: 10.1016/j.eneco.2015.11.016.
dc.relationC. Andrés, D. Andrade, and J. C. Hernández, “Smart Grid : Las TICs y la modernización de las redes de energía eléctrica – Estado del Arte,” vol. 9, pp. 53–81, 2011.
dc.relationV. E. Pérez Vélez, “Estudio preliminar sobre la viabilidad de la implementación de medidores inteligentes de energía en los estratos 1, 2 y 3 de Cali,” Universidad del Valle, 2013.
dc.relationI. C. G. Ribeiro, C. Albuquerque, A. A. D. A. Rocha, and D. Passos, “A framework to build an advanced metering infrastructure resilient to DAP failures in smart grids,” Futur. Gener. Comput. Syst., vol. 99, pp. 11–26, 2019, doi: 10.1016/j.future.2019.03.021.
dc.relationY. He, N. Jenkins, and J. Wu, “Smart Metering for Outage Management of Electric Power Distribution Networks,” Energy Procedia, vol. 103, no. April, pp. 159–164, 2016, doi: 10.1016/j.egypro.2016.11.266.
dc.relationDCSI (Distribution Control Systems Inc), Instructor Training Manual: TWACS BASICS. 2004.
dc.relationM. Alberto et al., “Detection and identification of energy theft in advanced metering infrastructures,” Electr. Power Syst. Res., vol. 182, no. February, 2020, doi: 10.1016/j.epsr.2020.106258.
dc.relationR. Jiménez, T. Serebrisky, and J. Mercado, “Dimensionando las pérdidas de electricidad en los sistemas de transmisión y distribución en América Latina y el Caribe - Reporte del Banco Interamericano de Desarrollo,” 2014.
dc.relationE. Villar-Rodriguez, J. Del Ser, I. Oregi, M. N. Bilbao, and S. Gil-Lopez, “Detection of non-technical losses in smart meter data based on load curve profiling and time series analysis,” Energy, vol. 137, pp. 118–128, 2017, doi: 10.1016/j.energy.2017.07.008.
dc.relationT. Ahmad, “Non-technical loss analysis and prevention using smart meters,” Renew. Sustain. Energy Rev., vol. 72, no. January, pp. 573–589, 2017, doi: 10.1016/j.rser.2017.01.100.
dc.relationS. C. Yip, K. S. Wong, W. P. Hew, M. T. Gan, R. C. W. Phan, and S. W. Tan, “Detection of energy theft and defective smart meters in smart grids using linear regression,” Int. J. Electr. Power Energy Syst., vol. 91, pp. 230–240, 2017, doi: 10.1016/j.ijepes.2017.04.005.
dc.relationP. Yi, T. Zhu, Q. Zhang, Y. Wu, and L. Pan, “Puppet attack: A denial of service attack in advanced metering infrastructure network,” J. Netw. Comput. Appl., vol. 59, pp. 325–332, 2016, doi: 10.1016/j.jnca.2015.04.015.
dc.relationM. Cardona, J. M. Gallego, J. J. García, and J. A. Franco, “Prepaid electricity and in-home displays: An alternative for the most vulnerable households in Colombia,” Electr. J., vol. 33, no. 8, p. 106824, 2020, doi: 10.1016/j.tej.2020.106824.
dc.relationS. Oh, J. S. Haberl, and J. Baltazar, “Energy & Buildings Analysis methods for characterizing energy saving opportunities from home automation devices using smart meter data,” Energy Build., vol. 216, p. 109955, 2020, doi: 10.1016/j.enbuild.2020.109955.
dc.relationD. L. S. Mendes, R. A. L. Rabelo, A. F. S. Veloso, J. J. P. C. Rodrigues, and J. V. dos Reis Junior, “An adaptive data compression mechanism for smart meters considering a demand side management scenario,” J. Clean. Prod., vol. 255, p. 120190, 2020, doi: 10.1016/j.jclepro.2020.120190.
dc.relationN. K. Singh and V. Mahajan, “End-User Privacy Protection Scheme from Cyber Intrusion in Smart Grid Advanced Metering Infrastructure,” Int. J. Crit. Infrastruct. Prot., p. 100410, 2021, doi: 10.1016/j.ijcip.2021.100410.
dc.relationN. George, S. Nithin, and S. K. Kottayil, “Hybrid Key Management Scheme for Secure AMI Communications,” Procedia Comput. Sci., vol. 93, no. September, pp. 862–869, 2016, doi: 10.1016/j.procs.2016.07.260.
dc.relationM. H. Albadi and E. F. El-Saadany, “A summary of demand response in electricity markets,” Electr. Power Syst. Res., vol. 78, no. 11, pp. 1989–1996, 2008, doi: 10.1016/j.epsr.2008.04.002.
dc.relationL. I. Minchala-Avila, J. Armijos, D. Pesántez, and Y. Zhang, “Design and Implementation of a Smart Meter with Demand Response Capabilities,” Energy Procedia, vol. 103, no. April, pp. 195–200, 2016, doi: 10.1016/j.egypro.2016.11.272.
dc.relationN. A. Funde, M. M. Dhabu, A. Paramasivam, and P. S. Deshpande, “Motif-based association rule mining and clustering technique for determining energy usage patterns for smart meter data,” Sustain. Cities Soc., vol. 46, no. January, p. 101415, 2019, doi: 10.1016/j.scs.2018.12.043.
dc.relationC. A. Ramírez Escobar, “Los precios del mecado mayorista de electricidad como expresión de la participación activa de la demanda: Aplicación de la economía experimental,” Universidad Politecnica de Valencia, 2012.
dc.relationS. E. D. C. SEDC, “Empowering Residential and SME Consumers Residential & SME Demand-Side Flexibility,” 2016. [Online]. Available: http://www.smarten.eu/wp-content/uploads/2016/10/SEDC-White-Paper-Empowering-Residential-and-SME-Consumers.pdf.
dc.relationM. R. Jabłońska, “Microgrids Technology review for the creation of urban prosumers societies,” Stud. Proc. Polish Assoc. Knowl. Manag., vol. 12, 2014.
dc.relationY. Parag and B. K. Sovacool, “Electricity market design for the prosumer era,” Sussex Res. Online, vol. 1, 2016.
dc.relationG. R. Telles Esteves, F. L. Cyrino Oliveira, C. H. Antunes, and R. C. Souza, “An overview of electricity prepayment experiences and the Brazilian new regulatory framework,” Renew. Sustain. Energy Rev., vol. 54, pp. 704–722, 2016, doi: 10.1016/j.rser.2015.10.002.
dc.relationA. B. M. S. Ali, Smart grids: Oppotunities, Developments, and Trends, vol. 55, no. 5. 2010.
dc.relationM. T. Craig, P. Jaramillo, B. M. Hodge, N. J. Williams, and E. Severnini, “A retrospective analysis of the market price response to distributed photovoltaic generation in California,” Energy Policy, vol. 121, no. February, pp. 394–403, 2018, doi: 10.1016/j.enpol.2018.05.061.
dc.relationC. Cambini and G. Soroush, “Designing grid tariffs in the presence of distributed generation,” Util. Policy, vol. 61, no. October, p. 100979, 2019, doi: 10.1016/j.jup.2019.100979.
dc.relationT. Nelson, E. McCracken-Hewson, P. Whish-Wilson, and S. Bashir, “Price dispersion in Australian retail electricity markets,” Energy Econ., vol. 70, pp. 158–169, 2018, doi: 10.1016/j.eneco.2017.12.026.
dc.relationO. Edenhofer, R. Pichs-Madruga, and Y. Sokona, Fuentes de energía renovables y mitigación del cambio climatico. 2011.
dc.relationJ. Gomez Marín, S. Carvajal, and A. Arango Manrique, “Programas de gestión de demanda de electricidad para el sector residencial en Colombia: Enfoque Sistémico,” Energética, vol. 0, no. 46, pp. 73–83, 2015.
dc.relationF. Ni, P. H. Nguyen, J. F. G. Cobben, H. E. Van den Brom, and D. Zhao, “Three-phase state estimation in the medium-voltage network with aggregated smart meter data,” Int. J. Electr. Power Energy Syst., vol. 98, no. February 2017, pp. 463–473, 2018, doi: 10.1016/j.ijepes.2017.12.033.
dc.relationA. Romero Grass, T. Mach, S. Guzmán, M. A. Velásquez, and Á. Zambrano, “Foco 3, fase I: Descentralización y Digitalización de la Industria y la Gestión Eficiente de la Demanda,” 2019. [Online]. Available: https://www.minenergia.gov.co/documents/10192/24202647/Foco+3+-+Fase+1+Informe+Final.pdf.
dc.relationL. B. Tjernberg, “Possibilities of demand side management with Smart Meters,” 23rd Int. Conf. Electr. Distrib., no. June, pp. 15–18, 2015.
dc.relationE. Cagno, G. J. L. Micheli, and G. Di Foggia, “Smart metering projects: an interpretive framework for successful implementation Smart metering projects,” Int. J. Energy Sect. Manag., 2018.
dc.relationJ. Gao, Y. Xiao, J. Liu, W. Liang, and C. L. P. Chen, “A survey of communication/networking in Smart Grids,” Futur. Gener. Comput. Syst., vol. 28, no. 2, pp. 391–404, 2012, doi: 10.1016/j.future.2011.04.014.
dc.relationComision de Regulacion de Energia y Gas CREG, Resolución 30 de 2018. 2018, p. 13.
dc.relationJ. F. Martins, A. Goncalves Pronto, V. Delgado Gomes, and M. Sanduleac, “Smart Meters and Advanced Metering Infrastructure,” 2019.
dc.relationS. Chakraborty, S. Das, T. Sidhu, and A. K. Siva, “Smart meters for enhancing protection and monitoring functions in emerging distribution systems,” Int. J. Electr. Power Energy Syst., vol. 127, no. October 2020, p. 106626, 2021, doi: 10.1016/j.ijepes.2020.106626.
dc.relationJ. C. Vaschetti, F. Magnago, and V. H. Sauchelli, “Control Automático de Voltaje en Sistemas Eléctricos de Potencia basado en Sistemas Expertos Automatic Voltage Control in Electrical Power System based on Expert Systems .,” Inf. Tecnológica, vol. 23, no. 5, pp. 69–84, 2012, doi: 10.4067/S0718-07642012000500008.
dc.relationS. Wan Yen, S. Morris, M. A. G. Ezra, and T. Jun Huat, “Effect of smart meter data collection frequency in an early detection of shorter-duration voltage anomalies in smart grids,” Int. J. Electr. Power Energy Syst., vol. 109, no. January, pp. 1–8, 2019, doi: 10.1016/j.ijepes.2019.01.039.
dc.relationA. Pujara, V. G. Vilas, S. M. Bakre, and V. Muralidhara, “A novel approach for UI charge reduction using AMI based load prioritization in smart grid,” J. Electr. Syst. Inf. Technol., vol. 4, no. 2, pp. 338–346, 2017, doi: 10.1016/j.jesit.2017.01.001.
dc.relationS. Medina Hurtado and J. García Aguado, “Predicción de demanda de energía en colombia mediante un sistema de inferencia difuso neuronal,” Energética, pp. 15–24, 2005.
dc.relationM. Pau et al., “A cloud-based smart metering infrastructure for distribution grid services and automation,” Sustain. Energy, Grids Networks, vol. 15, no. 2018, pp. 14–25, 2018, doi: 10.1016/j.segan.2017.08.001.
dc.relationA. Rafinia, N. Rezaei, and J. Moshtagh, “Optimal design of an adaptive under-frequency load shedding scheme in smart grids considering operational uncertainties,” Int. J. Electr. Power Energy Syst., vol. 121, no. April, 2020, doi: 10.1016/j.ijepes.2020.106137.
dc.relationM. Ansarin, Y. Ghiassi-Farrokhfal, W. Ketter, and J. Collins, “Cross-subsidies among residential electricity prosumers from tariff design and metering infrastructure,” Energy Policy, vol. 145, no. March, p. 111736, 2020, doi: 10.1016/j.enpol.2020.111736.
dc.relationN. T. Mbungu, R. C. Bansal, R. M. Naidoo, M. Bettayeb, M. W. Siti, and M. Bipath, “A dynamic energy management system using smart metering,” Appl. Energy, vol. 280, no. June, 2020, doi: 10.1016/j.apenergy.2020.115990.
dc.relationF. Abate, M. Carratù, C. Liguori, and V. Paciello, “A low cost smart power meter for IoT,” Meas. J. Int. Meas. Confed., vol. 136, pp. 59–66, 2019, doi: 10.1016/j.measurement.2018.12.069.
dc.relationB. Yildiz, J. I. Bilbao, J. Dore, and A. B. Sproul, “Recent advances in the analysis of residential electricity consumption and applications of smart meter data,” Appl. Energy, vol. 208, no. October, pp. 402–427, 2017, doi: 10.1016/j.apenergy.2017.10.014.
dc.relationM. M. Eissa, “Developing incentive demand response with commercial energy management system (CEMS) based on diffusion model, smart meters and new communication protocol,” Appl. Energy, vol. 236, no. February 2018, pp. 273–292, 2019, doi: 10.1016/j.apenergy.2018.11.083.
dc.relationS. Kumar V., J. Prasad, and R. Samikannu, “Overview, issues and prevention of energy theft in smart grids and virtual power plants in Indian context,” Energy Policy, vol. 110, no. August, pp. 365–374, 2017, doi: 10.1016/j.enpol.2017.08.032.
dc.relationA. Babuta, B. Gupta, A. Kumar, and S. Ganguli, “Power and energy measurement devices: A review, comparison, discussion, and the future of research,” Meas. J. Int. Meas. Confed., vol. 172, no. August 2020, p. 108961, 2021, doi: 10.1016/j.measurement.2020.108961.
dc.relationD. A. Patiño Salazar, “Guia de Construcción de Relaciones Sistémicas para la Resolución de Problemas de Tecnologías de la Información y la Comunicación,” Pontificia Universidad Católica del Ecuador, 2012.
dc.relationJ. A. Castro Molina, “Modelo Basado en Dinámica de Sistemas para Evaluar la Articulación de las Áreas de Salud y Socorro de la Cruz Roja Colombiana Seccional Antioquia en la Atención de Emergencias,” Universidad de San Buenaventura, 2015.
dc.relationS. X. Carvajal-Quintero, “Análisis de servicios potencia eléctricos en ambientes de complementarios en sistemas de mercados,” Universidad Nacional de Colombia, 2013.
dc.relationD. Lopez-García, “Caracterización de un esquema remunerativo para la participación de la demanda en la prestación del servicio complementario de control de frecuencia en el mercado eléctrico colombiano,” Universidad Nacional de Colombia, 2019.
dc.relationJ. F. García Franco, “Diseño de Programas de Uso Racional y Eficiente de la Energía Eléctrica en Zonas No Interconectadas en Colombia,” 2020, [Online]. Available: https://repositorio.unal.edu.co/handle/unal/78113#.X6CfvRgbPYI.mendeley.
dc.relationJ. Arias-Gaviria, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Understanding dynamics and policy for renewable energy diffusion in Colombia,” Renew. Energy, vol. 139, pp. 1111–1119, 2019, doi: 10.1016/j.renene.2019.02.138.
dc.relationS. Carvajal-Quintero, A. Arango-Manrique, and S. Arango-Aramburo, “Evaluation of incentives for voltage and reactive control using distributed generation in the Colombian electricity system: A system dynamics approach,” 2012 IEEE Int. Symp. Altern. Energies Energy Qual. SIFAE 2012 - Conf. Proc., no. 1, pp. 1–6, 2012, doi: 10.1109/SIFAE.2012.6478894.
dc.relationC. A. Arbeláez Velásquez, “Análisis de los patrones de adopción de una tecnología de teletrabajo en una unidad de una ies,” Universidad Pontificia Bolivariana, 2020.
dc.relationN. Castaño, “Una aproximación a la adopción de medidores inteligentes en el mercado eléctrico colombiano y su influencia en la demanda,” Univ. Nac. Colomb., p. 105, 2013, [Online]. Available: http://http//www.bdigital.unal.edu.co/9393/.
dc.relationU. Bariss, G. Bazbauers, A. Blumberga, and D. Blumberga, “System dynamics modeling of households’ electricity consumption and cost-income ratio: A case study of Latvia,” Environ. Clim. Technol., vol. 20, no. 1, pp. 36–50, 2017, doi: 10.1515/rtuect-2017-0009.
dc.relationS. X. Carvajal, S. Arango, and E. R. Larsen, “Evaluation of a payments proposal for blackstart services in the Colombian electricity system: A system dynamics approach,” Int. J. Electr. Power Energy Syst., vol. 53, no. 1, pp. 382–389, 2013, doi: 10.1016/j.ijepes.2013.05.006.
dc.relationT. Kadoya et al., “Utilizing system dynamics modeling to examine impact of deregulation on generation capacity growth,” Proc. IEEE, vol. 93, no. 11, pp. 2060–2068, 2005, doi: 10.1109/JPROC.2005.857487.
dc.relationS. Member, “Economic Mechanisms to Promote Distributed Resource Supply in a Colombian Microgrid : System Dynamics Approach,” Simp. Int. sobre Calid. la Energ. Eléctrica, vol. 879498, no. 576, pp. 1–8, 2013.
dc.relationS. Carvajal-Quintero, A. Arango-Manrique, S. Arango-Aramburo, and C. Younes-Velosa, “A study of incentives to increase the use of DG in Colombia based on a system dynamics modeling,” A study Incent. to increase use DG Colomb. based a Syst. Dyn. Model., vol. 31, no. 2, pp. 58–65, 2011.
dc.relationS. Ximena, C. Quintero, / Juan, D. M. Jiménez, J. David, and M. Jiménez, “The impact of distributed generation on the colombian electrical power system: a dynamic-system approach,” Tecnura, vol. 17, no. 35, pp. 77–89, 2013.
dc.relationA. Arango-Manrique, “Evaluación Técnica y de Mercado de la Operación de una Microrred en Modo Aislado dentro de un Sistema Eléctrico de Potencia con Ambiente Desregulado,” Universidad Nacional de Colombia, 2017.
dc.relationJ. D. Marín-Jiménez, S. X. Carvajal-Quintero, and S. Arango-Aramburo, “Implementation proposal for an ancillary service for Island Operation Capability in Colombia: A system dynamics approach,” Int. J. Electr. Power Energy Syst., vol. 113, no. February 2018, pp. 288–297, 2019, doi: 10.1016/j.ijepes.2019.05.035.
dc.relationJ. D. Marín-Jiménez, S. X. Carvajal-Quintero, and J. M. Guerrero, “Island operation capability in the Colombian electrical market: a promising ancillary service of distributed energy resources,” TecnoLógicas, vol. 21, no. 42, pp. 169–185, 2018, doi: 10.22430/22565337.786.
dc.relationJ. D. Marín Jiménez and S. X. Carvajal Quintero, “Modelo híbrido de simulación para la implementación del servicio complementario de capacidad de operación por Islas utilizando dinámica de sistemas y aprendizaje automático,” Espacios, vol. 38, no. 53, 2017.
dc.relationS. X. C. Quintero and S. A. Aramburo, “Simulación para la evaluación de una propuesta de remuneración del servicio de arranque autónomo en Colombia,” Rev. Fac. Ing., no. 59, pp. 267–276, 2011.
dc.relationS. Ahmad and R. bin Mat Tahar, “Using system dynamics to evaluate renewable electricity development in Malaysia,” Kybernetes, vol. 43, no. 1, pp. 24–39, Jan. 2014, doi: 10.1108/K-10-2012-0092.
dc.relationA. Ford, K. Vogstad, and H. Flynn, “Simulating price patterns for tradable green certificates to promote electricity generation from wind,” Energy Policy, vol. 35, no. 1, pp. 91–111, 2007, doi: 10.1016/j.enpol.2005.10.014.
dc.relationJ. Arias Gaviria, “Modelamiento y simulación de curvas de aprendizaje para tecnologías de energía renovable en Colombia,” (Doctoral Diss. Univ. Nac. Colomb. Medellín), p. 123, 2014, [Online]. Available: http://www.bdigital.unal.edu.co/43657/.
dc.relationI. O. Waindi and A. Khalid, “Renewable Energy in East Africa: An Introductory Evaluation Using a Systems Approach to Assess Alternatives to Providing Electricity,” J. African Bus., vol. 12, no. 3, pp. 387–418, Sep. 2011, doi: 10.1080/15228916.2011.621854.
dc.relationM. Assili, M. H. Javidi D.B., and R. Ghazi, “An improved mechanism for capacity payment based on system dynamics modeling for investment planning in competitive electricity environment,” Energy Policy, vol. 36, no. 10, pp. 3703–3713, 2008, doi: 10.1016/j.enpol.2008.06.034.
dc.relationS. Arango, “Simulation of alternative regulations in the Colombian electricity market,” Socioecon. Plann. Sci., vol. 41, no. 4, pp. 305–319, 2007, doi: 10.1016/j.seps.2006.06.004.
dc.relationA. Botterud and M. Korpas, “A dynamic simulation model for long-term analysis of the power market,” 14th PSCC, Sess., vol. 12, no. June, pp. 24–28, 2002, [Online]. Available: http://www.pscc-central.org/uploads/tx_ethpublications/s12p04.pdf.
dc.relationG. Pasaoglu Kilanc and I. Or, “A decision support tool for the analysis of pricing, investment and regulatory processes in a decentralized electricity market,” Energy Policy, vol. 36, no. 8, pp. 3036–3044, 2008, doi: 10.1016/j.enpol.2008.03.034.
dc.relationP. Ochoa and A. van Ackere, “Policy changes and the dynamics of capacity expansion in the Swiss electricity market,” Energy Policy, vol. 37, no. 5, pp. 1983–1998, 2009, doi: 10.1016/j.enpol.2009.01.044.
dc.relationA. Ford, “System dynamics and the electric power industry,” Syst. Dyn. Rev., vol. 13, no. 1, pp. 57–85, 1997, doi: 10.1002/(sici)1099-1727(199721)13:1<57::aid-sdr117>3.3.co;2-2.
dc.relationH. Qudrat‐Ullah and M. Karakul, “Modelling for policy assessment in the electricity supply sector of Pakistan,” Int. J. Energy Sect. Manag., vol. 1, no. 3, pp. 240–256, Jan. 2007, doi: 10.1108/17506220710821125.
dc.relationE. Cimren, A. Bassi, and J. Fiksel, “T21-Ohio, a system dynamics approach to policy assessment for sustainable development: A waste to profit case study,” Sustainability, vol. 2, no. 9, pp. 2814–2832, 2010, doi: 10.3390/su2092814.
dc.relationJ. Zhao, E. Mazhari, N. Celik, and Y. J. Son, “Hybrid agent-based simulation for policy evaluation of solar power generation systems,” Simul. Model. Pract. Theory, vol. 19, no. 10, pp. 2189–2205, 2011, doi: 10.1016/j.simpat.2011.07.005.
dc.relationW. P. Series and J. D. Sterman, “System Thinkung and Modeling For A System Dynamics : Systems Thinking and Modeling for a Complex World,” Eur. J. Comput. Sci., vol. 21, no. 3, pp. 35–39, 2003.
dc.relationC. Antón Martín, “Modelos de difusión: una revisión,” An. Estud. económicos y Empres., no. 11, pp. 35–64, 1996.
dc.relationJ. I. López-Sánchez and J. L. Arrollo Barriguete, “Modelos matemáticos de difusión tecnológica,” no. January 2005, 2014.
dc.relationF. C. L. Rodríguez Ruz, “Análisis de incentivos a la energía solar en una ciudad utilizando modelos de proyección de energía,” Universidad de Chile, 2017.
dc.relationS. A. Riaño Bermudez, “Análisis de los impactos e implementación de la medida inteligente en el sector eléctrico colombiano,” Universidad de los Andes, 2019.
dc.relationD. A. Cardona-arbeláez et al., “La curva de aprendizaje y su contribución al desempeño del talento humano en las organizaciones : una revisión teórica,” p. 6945, 2021, doi: 10.19053/20278306.v10.n1.2019.10010.
dc.relationM. Roncancio Avila, D. Reina Moreno, A. Hualpa Zuñiga, H. Felizzola Jimenez, and C. Arango Londoño, “Using learning curves and confidence intervals in a time study for the calculation of standard times,” Inge Cuc, vol. 13, no. 2, pp. 18–27, 2017, doi: 10.17981/ingecuc.13.2.2017.02.
dc.relationF. Parra, “Métodos de Clasificación,” in Estadística y Machine Learning con R, 2019, pp. 1–64.
dc.relationV. González López, “Análisis del Modelo de Bass,” 2017.
dc.relationO. G. Mejía Flores, C. G. Méndez Medrano, and M. F. Proaño Castro, “Modelos matemáticos de difusión de productos tecnológicos y aplicaciones de estos, al mercado,” pp. 263–271, 2018.
dc.relationM. Castaño-Gomez and J. J. García-Rendón, “Análisis de los incentivos económicos en la capacidad instalada de energía solar fotovoltaica en Colombia Manuela Castaño-Gómez y John Jairo García-Rendón,” Lect. Econ., no. 93, 2020.
dc.relationB. Ochoa, “Alcance de un modelo de generación distribuida de energías renovables integrada a la red eléctrica pública en La república Argentina.,” 2018.
dc.relationM. Ambiente and Y. Territorio, “INFORME FINAL Licitación ID : 608897-98-LE19 ‘ Consultoría para el análisis de modelos de cambio escenarios de electrificación vehicular ,’” 2019.
dc.relationP. Denholm, E. Drury, and R. Margolis, “The Solar Deployment System (SolarDS) Model: Documentation and Sample Results,” Natl. Renew. Energy Lab., no. September, p. 52, 2009, [Online]. Available: http://www.nrel.gov/docs/fy10osti/45832.pdf.
dc.relationB. Hidalgo, M. Yanes, and M. Ambiente, “Modelos de difusión de tecnologías energéticas renovable,” vol. 40, pp. 30–41, 2019.
dc.relationJ. P. Lozano Celis and W. C. Guzmán Espitia, “Evaluación de Demanda de Energía Eléctrica según Hábitos de Consumo Actuales en la Ciudad de Bogotá,” Bull. Seismol. Soc. Am., vol. 106, no. 1, pp. 6465–6489, 2016, [Online]. Available: http://www.bssaonline.org/content/95/6/2373%5Cnhttp://www.bssaonline.org/content/95/6/2373.short%0Ahttp://www.bssaonline.org/cgi/doi/10.1785/0120110286%0Ahttp://gji.oxfordjournals.org/cgi/doi/10.1093/gji/ggv142%0Ahttp://link.springer.com/10.1007/s00024-01.
dc.relationM. de minas y energias, “Energy Demand Situation in Colombia,” 2017.
dc.relationM. Z. Carvajal, “Políticas para la autogestión de electricidad en el sector residencial urbano de Colombia,” 2014.
dc.relationMinisterio de Minas y Energía-UPME, Guía para el consumo consciente, racional y eficiente de la energía. 2014.
dc.relationR. Región Administrativa y de Planeación Especial, “Balance Energético Potencial Energético De Generación En La Región Central,” 2020.
dc.relationC. para la E. y el M. A. CORPOEMA and C. U. S.A., “Caracterización Energética del Sector Residencial Urbano y Rural en Colombia,” Bogotá D.C., 2011.
dc.relationA. M. D. E. Bogotá, “Consumos energéticos urbanos por usos y actividades económicas por UPZ en Bogotá DC 2009-2012-2015,” Bogotá D.C., 2017.
dc.relationU. N. de Colombia, “Determinación del Consumo Final de Energía en los Sectores Residencial Urbano y Comercial y Determinación de Consumos para Equipos Domésticos de Energía Eléctrica y Gas,” 2006.
dc.relationCongreso de la República de Colombia, “Ley 1753 de 2015,” D. Of., vol. 49538, no. 49, pp. 1–44, 2015, [Online]. Available: https://docs.supersalud.gov.co/PortalWeb/Juridica/Leyes/Ley 1753 de 2015.pdf.
dc.relationComisión de Regulación de Energía y Gas - CREG, Resolución 232 de 2015. 2015, pp. 1–4.
dc.relationMinisterio de Minas y Energía de Colombia, “Decreto 1543 de 2017,” pp. 14–17, 2017.
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleEstrategias técnico - regulatorias para la implementación de la infraestructura AMI en el horizonte 2030 en Colombia
dc.typeTesis


Este ítem pertenece a la siguiente institución