dc.contributor | Sofrony Esmeral, Jorge | |
dc.contributor | Grupo de Investigación y Desarrollo Aeroespacial (GIDA) | |
dc.contributor | Grupo de Investigación en Electrónica y Tecnologías para la Defensa (TESDA) | |
dc.creator | Rodriguez Pirateque, German Wedge | |
dc.date.accessioned | 2022-04-18T15:37:52Z | |
dc.date.available | 2022-04-18T15:37:52Z | |
dc.date.created | 2022-04-18T15:37:52Z | |
dc.date.issued | 2021 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81455 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | Las necesidades de apropiación tecnológica y la estructuración de misiones espaciales
en el contexto colombiano traen consigo la demanda de servicios y trabajos colaborativos
y especializados, para los diferentes segmentos de un sistema espacial, como bien se está
identificando en la estructuración del Programa Espacial Colombiano. Frente a estos
derroteros, la presente investigación aborda el reto de apropiación del conocimiento en el
diseño de misión, el control del segmento espacial y en especial el reto de proponer estrategias
de control a sistemas satelitales multiagente, ya que los sistemas convencionales
por su costo, centralización y modos de control conservadores, restringen el desempeño
individual y grupal para las nuevas alternativas de sistemas en red que se presentan con
los satélites de pequeña escala. En este sentido y mediante el uso de la metodología en V,
se abordan los procesos de diseño de misión, así como el diseño de controladores individuales
y grupales para la orientación y traslación de satélites en misiones de observación
terrestre. Lo anterior con el fin de aprovechar la reducción de costos y flexibilidad operacional
que brinda el uso de satélites de pequeña escala; a pesar de su limitada capacidad
operacional/física, la cual hace necesario disponer de más de un agente para lograr los
objetivos de servicio. Esta necesidad inherente, demanda la posibilidad de interconectar
agentes en red y explorar arquitecturas de control con estrategias de cooperación, consenso
y técnicas robustas de control en red, que permitan afrontar las no linealidades,
incertidumbres y errores que limitan su coordinación y cooperación. Según lo expuesto,
se definen diferentes arquitecturas de control frente a perturbaciones, limitaciones de actuación
e incertidumbres, donde se identifican y caracterizan parámetros de desempeño
individual y grupal ante diferentes tipos de misión, comportamientos adaptativos, políticas
de consenso y cooperación, en dos etapas: La primera con el análisis, diseño y
desarrollo de misiones, modelos y controladores, útiles para la definición del sistema y
las arquitecturas de control formuladas; y la segunda mediante la evaluación e integración
de algoritmos de control y consenso, validados con el método de Montecarlo y la
aplicación de los índices propuestos como métricas de desempeño de la red. Adicionalmente,
se incluye el diseño e implementación de una interfaz gráfica para la instrucción
y entrenamiento en el diseño de misión y configuración de agentes, como complemento a
los controladores y arquitecturas propuestas para la apropiación de tecnologías de control
modernas y el manejo de sistemas satelitales de pequeña escala, como medios para
la democratización y el despliegue del concepto del New Space en el territorio colombiano. (Texto tomado de la fuente) | |
dc.description.abstract | The needs for technological appropriation and structuration of space missions in the Colombian
context bring with them the demand for collaborative and specialized services
and works, for the different segments of a space system, as is being well identified in
the structuration of the Colombian Space Program. Facing these objectives, this research
addresses the challenge of knowledge appropriation in mission design, space segment control,
and especially the challenge of proposing control strategies for multi-agent satellite
systems, since conventional systems due to their cost, centralization, and conservative
control modes, restrict individual and group performance for the new network system
alternatives that come with small-scale satellites. In this sense and using the V methodology,
the mission design processes are addressed, as well as the design of individual and
group controllers for the orientation and translation of satellites in terrestrial observation
missions. The foregoing to take advantage of the cost reduction and operational flexibility
provided using small-scale satellites; despite its limited operational / physical capacity,
which makes it necessary to have more than one agent to achieve service objectives. This
inherent need demands the possibility of interconnecting agents in the network and exploring
control architectures with cooperation strategies, consensus, and robust network
control techniques, which allow facing the non-linearities, uncertainties and errors that
limit their coordination and cooperation. According to the above, different control architectures
are defined against disturbances, actuation limitations and uncertainties, where
individual and group performance parameters are identified and characterized in front
of different types of mission, adaptive behaviors, consensus and cooperation policies, in
two stages: The first with the analysis, design and development of missions, models and
controllers, useful for defining the system and formulated control architectures; and the
second through the evaluation and integration of control and consensus algorithms, validated
with the Montecarlo method and the application of the indexes proposed as network
performance metrics. Further, the design and implementation of a graphical interface
for instruction and training in mission design and agent configuration is included, as a
complement to the controllers and architectures proposed for the appropriation of modern
control technologies and the management of small-scale satellite systems, as means
for the democratization and deployment of the New Space concept in Colombian territory. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica | |
dc.publisher | Departamento de Ingeniería Mecánica y Mecatrónica | |
dc.publisher | Facultad de Ingeniería | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | M. F. Abbod, D. A. Linkens, M. Mahfouf, and G. Dounias. Survey on the use of smart and adaptive
engineering systems in medicine. Artificial Intelligence in Medicine, 26(3):179–209, 2002. | |
dc.relation | M. Abbott. The Role of Small Satellites in NASA and NOAA Earth Observation Programs. 2000. | |
dc.relation | Agencia Espacial Mexicana. Introducción a los Sistemas Espaciales. pages 1–54, Mexico, 2013.
Secretaría de comunicaciones y trasportes. | |
dc.relation | K. Ahmadi Dastgerdi, F. Pazooki, and J. Roshanian. Model Reference Adaptive Control (MRAC)
of a Small Satellite in the Presence of Parameters Uncertainties. Scientia Iranica, 0(0):0–0, 2020. | |
dc.relation | U. Ahsun and D. W. Miller. Dynamics and control of electromagnetic satellite formations. PhD
thesis, 2007. | |
dc.relation | G. Allende-Alba, O. Montenbruck, J. S. Ardaens, M. Wermuth, and U. Hugentobler. Estimating
maneuvers for precise relative orbit determination using GPS. Advances in Space Research,
59(1):45–62, 2017. | |
dc.relation | J. Alvarez and B. Walls. Constellations , Clusters , and Communication Technology : Expanding
Small Satellite Access to Space. 2016 | |
dc.relation | M. Alvarez Reyna, J. Pucheta, and J. Fraire. Determinación precisa de posición y orientación
relativa en satélites de arquitectura segmentada. Ajea, (4):4–6, 2019 | |
dc.relation | C. Araguz, E. Bou-Balust, and E. Alarcón. Applying autonomy to distributed satellite systems:
Trends, challenges, and future prospects. Systems Engineering, 21(5):401–416, 2018 | |
dc.relation | ARMY. United States Army Futures Command, 2020 | |
dc.relation | K. J. Astrom and T. HÄgglund. Advanced PID control, volume 26. 2006 | |
dc.relation | K. J. Astrom and L. Rundqwist. Integrator windup and how to avoid it. pages 1693–1698, 1989 | |
dc.relation | K. J. Astrom and B. Wittenmark. Adaptive Control. Lund Institute of Technology, Mineola, New
York, dover publ edition, 1995 | |
dc.relation | S. Bandyopadhyay, G. P. Subramanian, R. Foust, D. Morgan, S.-J. Chung, and F. Hadaegh. A
Review of Impending Small Satellite Formation Flying Missions. 53rd AIAA Aerospace Sciences
Meeting, (January):1–17, 2015 | |
dc.relation | X. C. Baolin Wu. Satellite Formation Keeping Using Robust Constrained Model Predictive Control.
pages 13–18, 2005 | |
dc.relation | A. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines. 5G network slicing using SDN and
NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 2020 | |
dc.relation | C. Barbu, R. Reginatto, A. R. Teel, and L. Zaccarian. Anti-windup for exponentially unstable
linear systems with inputs limited in magnitude and rate. Proceedings of the American Control
Conference, 2(June):1230–1234, 2000 | |
dc.relation | F. Beer, R. Johnston, and P. Cornwell. Mecánica Vectorial Para Ingenieros ,Dinamica. 2010 | |
dc.relation | G. Belascuen and N. Aguilar. Design, Modeling and Control of a Reaction Wheel Balanced
Inverted Pendulum. 2018 IEEE Biennial Congress of Argentina, ARGENCON 2018, (June 2018),
2019 | |
dc.relation | N. Bellini. Magnetic Actuators for Nanosatellite Attitude Control. Technical report, Universita’
Di Bologna Scuola, 2014 | |
dc.relation | G. Bianchini, A. Garulli, and A. Giannitrapani. A class of globally stabilizing feedback controllers
for the orbital rendezvous problem. International journal of robust and nonlinear control, 2017 | |
dc.relation | E. Blasch, K. Pham, G. Chen, G. Wang, C. Li, X. Tian, and D. Shen. Distributed QOS Awareness
in satellite communication network with optimal routing ( Q u ASOR ). IEEE, pages 1–11, 2014 | |
dc.relation | J. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel. Multi-saturation anti-windup
structure for satellite control. Proceedings of the 2010 American Control Conference, ACC 2010,
(1):5979–5984, 2010 | |
dc.relation | J. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel. Anti-windup design for satellite
control with microthrusters. AIAA Guidance, Navigation, and Control Conference and Exhibit,
(August), 2018 | |
dc.relation | V. Bohlouri, Z. Khodamoradi, S. Hamid, and J. Naini. Spacecraft attitude control using model
- based disturbance feedback control strategy. Journal of the Brazilian Society of Mechanical
Sciences and Engineering, 9, 2018 | |
dc.relation | M. Brambilla, E. Ferrante, and M. Birattari. Swarm robotics : A review from the swarm engineering
perspective. In IRIDIA – Technical Report Series ISSN, volume 7, pages 1–41. 2012 | |
dc.relation | A. Braukhane, M. Arza, M. Bacher, M. Calaprice, H. Fiedler, V. Koehne, H. R. McGuire, and J. J.
Rivera. FormSat, a scalable formation flying communication satellite system. IEEE Aerospace
Conference Proceedings, (1), 2010 | |
dc.relation | S. C. Burleigh, T. De Cola, S. Morosi, S. Jayousi, E. Cianca, and C. Fuchs. From Connectivity
to Advanced Internet Services: A Comprehensive Review of Small Satellites Communications and
Networks. Wireless Communications and Mobile Computing, 2019(May), 2019 | |
dc.relation | T. F. Burns and H. Flashner. Adaptive Control Applied to Momentum Unloading Using the Low
Earth Orbital Environment. Journal of Guidance, Control, and Dynamics, 15(2), 1992 | |
dc.relation | P. J. Camillo and F. L. Markley. Orbit-averaged behavior of magnetic control laws for momentum
unloading. Journal of Guidance, Control, and Dynamics, 3(6):563–568, 1980 | |
dc.relation | P. Campo and M. Morari. Robust Control of Processes Subject to Saturation Nonlinearitues.
Computers chem. Engng., 14(4/5):343–358, 1990 | |
dc.relation | Y. Y. Cao, Z. Lin, and D. G. Ward. An antiwindup approach to enlarging domain of attraction
for linear systems subject to actuator saturation. IEEE Transactions on Automatic Control,
47(1):140–145, 2002 | |
dc.relation | J. Carnahan. CubeSat Design Specification Rev13. The CubeSat Program, Cal Poly SLO 4, 2014 | |
dc.relation | M. Casasco, G. Saavedra Criado, S.Weikert, J. Eggert, M. Hirth, T. Ott, and H. Su. Pointing error
budgeting for high pointing accuracy mission using the pointing error engineering tool. AIAA
Guidance, Navigation, and Control (GNC) Conference, pages 1–21, 2013 | |
dc.relation | M. Casasco, S. Salehi, S. Weikert, J. Eggert, M. Hirth, H. Su, and T. Ott. Pointing Error
Engineering Framework. Technical Report May, European Space Agency, Paris, France, 2014 | |
dc.relation | S. Castaño. Control I+PD, 2015 | |
dc.relation | Y. Castellanos and G. W. Rodriguez-Pirateque. UAV systems for multipurpose heterogeneous
networks : a review of design , development and performance. Aeronautics and Aerospace Open
Access Journal Review, 4(3):121–140, 2020 | |
dc.relation | R. Cepeda. Sistema De Control Robusto, Basado En Cuaterniones Para Un Satélite De Órbita
Ba, 2010 | |
dc.relation | S. Chávez. Diseño Conceptual de un Simulador de Navegación Aeroespacial y Prototipo Inicial.
Technical report, Instituto Nacional de Astrofísica, Óptica y Electrónica, 2012 | |
dc.relation | X. Chen, H. Sun, and J. Zhang. Reaction-wheel momentum dumping by hybrid control of magnetorquers
and thrusters. AIAA Guidance, Navigation, and Control Conference, (August 2010),
2010 | |
dc.relation | Z. Chen and Y. Zeng. A Swarm Intelligence Networking Framework for Small Satellite Systems.
Communications and Network, 5(September):171–175, 2013 | |
dc.relation | S. Cheng, H. Dong, L. Yu, D. Zhang, and J. Ji. Consensus of Second-order Multi-agent Systems
with Directed Networks Using Relative Position Measurements Only. International Journal of
Control, Automation and Systems, 17(1):85–93, 2019 | |
dc.relation | S.-J. Chung, U. Ahsun, and J.-J. E. Slotine. Application of Synchronization to Formation Flying
Spacecraft: Lagrangian Approach. Journal of Guidance, Control, and Dynamics, 32(2):512–526,
2009 | |
dc.relation | E. Cortes-G, D. Mendoza, and G. W. Rodriguez Pirateque. Design and construction of test
benches for small scale aerospace systems. IEEE Andescon, Andescon 2020, pages 52–57, 2020 | |
dc.relation | E. D. Cortés García. Experimentación del control de actitud en un prototipo de CubeSat con
ruedas de reacción, 2019 | |
dc.relation | W. Dandan, Z. Qianghui, and Z. H. U. Wei. Adaptive Event-Based Consensus of Multi-Agent
Systems with General Linear Dynamics . J Syst Sci Complex, 31:120–129, 2018 | |
dc.relation | E. L. De Angelis, F. Giulietti, A. H. De Ruiter, and G. Avanzini. Spacecraft attitude control using
magnetic and mechanical actuation. Journal of Guidance, Control, and Dynamics, 39(3):564–573,
2016 | |
dc.relation | N. C. De Freitas, P. P. Filho, C. D. De Moura, and M. P. Silva. AgentGeo: Multi-Agent System
of Satellite Images Mining. IEEE Latin America Transactions, 14(3):1343–1351, 2016 | |
dc.relation | I. del Portillo, B. G. Cameron, and E. F. Crawley. A technical comparison of three low earth orbit
satellite constellation systems to provide global broadband. Acta Astronautica, 159(December
2018):123–135, 2019 | |
dc.relation | A. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic rendezvous in graphs.
Algorithmica (New York), 46(1):69–96, 2006 | |
dc.relation | A. V. Doroshin. Attitude Dynamics , Control and Stabilization Of Spacecraft / Satellites. Technical
report, 2018 | |
dc.relation | R. Duarte. Modeling and Simulation of the ECOSat-III Attitude Determination and Control
System. Technical Report April, Técnico LISBOA, Lisbon, Portugal, 2016 | |
dc.relation | A. M. El-Naggar. DOP prediction over Egypt from SP3 file for long-term. Alexandria Engineering
Journal, 51(3):221–228, 2012 | |
dc.relation | A. A. El-samahy and M. A. Shamseldin. Brushless DC motor tracking control using selftuning
fuzzy PID control and model reference adaptive control. Ain Shams Engineering Journal,
9(3):341–352, 2018 | |
dc.relation | S. Engelen. Swarm Satellites: Design, Characteristics and Applications, volume 91. 2016 | |
dc.relation | S. Engelen, E. Gill, and C. Verhoeven. On the reliability, availability, and throughput of satellite
swarms. IEEE Transactions on Aerospace and Electronic Systems, 50(2):1027–1037, 2014 | |
dc.relation | S. Engelen, E. K. A. Gill, and C. J. M. Verhoeven. Systems engineering challenges for satellite
swarms. IEEE Aerospace Conference Proceedings, 2011 | |
dc.relation | ESA-ESTEC. Stars sensors terminology and performance specification. European Cooperation for
Sapce Standarization, 60(20C), 2008 | |
dc.relation | C. H. Esparza and R. A. Núñez. Controlador adaptativo PD por modelo de referencia para
una mesa vibratoria biaxial basada en el mecanismo biela-manivela. Informacion Tecnologica,
25(2):189–202, 2014 | |
dc.relation | P. A. Ferguson. Distributed Estimation and Control Technologies for Formation Flying Spacecraft.
pages 1–120, 2003 | |
dc.relation | D. E. Forero Martinez. Diseño del Bloque de Estimación de un Sistema ADCS para un Pico Satélite
de Estándar CubeSat Usando Filtro de Partículas como Técnica de Estimación. Technical report,
Universidad Distrital Francisco José de Caldas, Bogotá D.C, 2015 | |
dc.relation | A. Francisco, J. Somma, D. Dra, M. Lorena, T. Presentada, P. Optar, and A. L. Título. Cuaterniones
y ángulos de Euler para describir rotaciones en R3, 2018 | |
dc.relation | M. Fugmann and S. Klinkner. An Automated Constellation Design & Mission Analysis Tool for
Finding the Cheapest Mission Architecture. SSC20-I-07 Mission Architecture, 34th Annual Small
Satellite Conference, I(07):1–12, 2020 | |
dc.relation | A. García Santiago. Diseño de un sistema de control de orientacion utilizando Ruedas de Reacción.
Technical report, Universidad Nacional Autónoma de México, México, 2017 | |
dc.relation | J. Garrido Jurado. Diseño de sistemas de control multivariable por desacoplo con controladores
PID. PhD thesis, 2012 | |
dc.relation | X. Ge, Q. L. Han, D. Ding, X. M. Zhang, and B. Ning. A survey on recent advances in distributed
sampled-data cooperative control of multi-agent systems. Neurocomputing, 275:1684–1701, 2018 | |
dc.relation | M. Gerla and K. Xu. Integrating Mobile Swarms with Large-scale Sensor Networks Using Satellites.
IEEE, pages 2816–2820, 2004 | |
dc.relation | F. Giulietti, A. A. Quarta, and P. Tortora. Optimal control laws for momentum-wheel desaturation
using magnetorquers. Journal of Guidance, Control, and Dynamics, 29(6):1464–1468, 2006 | |
dc.relation | J. M. Gomes Da Silva and S. Tarbouriech. Anti-windup design with guaranteed regions of stability
for discrete-time linear systems. Proceedings of the American Control Conference, 50(1):106–111,
2005 | |
dc.relation | J. M. Gomes da Silva, S. Tarbouriech, Jr., and G. Garcia. Local Stabilization of Linear Systems
Under Amplitude and Rate Saturating Actuators. IEEE transactions on automatic control,
48(5):842–847, 2003 | |
dc.relation | G. Goodwin, S. Graebe, and A. Salgado. Basic Control Systems Design. Eshbach’s Handbook of
Engineering Fundamentals, Fifth Edition, pages 760–801, 2000 | |
dc.relation | G. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design. Prentice Hall, Valparaiso,
Chile, 2000 | |
dc.relation | K. Gordon. A flexible attitude control system for three-axis stabilized nanosatellites. Berlin, 2018 | |
dc.relation | F. Graf, T. Ott, J. P. Lejault, and W. Fichter. Precision pointing estimator design for minimum
absolute, window- and stability-time errors, volume 19. IFAC, 2013 | |
dc.relation | M. Grasso, A. Renga, G. Fasano, M. D. Graziano, M. Grassi, and A. Moccia. Design of an endto-
end demonstration mission of a Formation-Flying Synthetic Aperture Radar (FF-SAR) based
on microsatellites. Advances in Space Research, 2020 | |
dc.relation | A. Guiggiani, I. Kolmanovsky, P. Patrinos, and A. Bemporad. Constrained Model Predictive Control
of spacecraft attitude with reaction wheels desaturation. 2015 European Control Conference,
ECC 2015, 0(1):1382–1387, 2015 | |
dc.relation | M. M. Gulzar, S. T. H. Rizvi, M. Y. Javed, U. Munir, and H. Asif. Multi-Agent Cooperative
Control Consensus: A Comparative Review. Electronics, 7(2):22, 2018 | |
dc.relation | C. Guo, C. Peng, J. Zhang, and D. Peng. A survey on networked control systems subject to limited
network resources. 26th Chinese Control and Decision Conference, CCDC 2014, (1):4958–4965,
2014 | |
dc.relation | J. Guo, G. Tao, and Y. Liu. A multivariable MRAC scheme with application to a nonlinear
aircraft model. Automatica, 47(4):804–812, 2011 | |
dc.relation | P. Gurfil, J. Herscovitz, and M. Pariente. SSC12-VII-2 The SAMSON Project – Cluster Flight
and Geolocation with Three Autonomous Nano-satellites. 2014 | |
dc.relation | S. Guzman and E. Mojica-Nava. La teorıa evolutiva como solucion al control de formacion. Vision
Electronica, 9(1):1–5, 2015 | |
dc.relation | C. D. Hall. Spacecraft Attitude Dynamics and Control (AE4313). 2000 | |
dc.relation | Z. M. Han, Z. Y. Lin, M. Y. Fu, and Z. Y. Chen. Distributed coordination in multi-agent systems:
a graph Laplacian perspective. Frontiers of Information Technology and Electronic Engineering,
16(6):429–448, 2015 | |
dc.relation | R. Hanus. A new technique for preventing control windup. Journal A, 21(1):15–20, 1980 | |
dc.relation | J. Hespanha, P. Naghshtabrizi, and Y. Xu. A Survey of Recent Results in Networked Control
Systems. Proceedings of the IEEE, 95(1):138–162, 2007 | |
dc.relation | M. Hirth, H. Su, T. Ott, M. Casasco, and S. Salehi. The pointing error engineering tool (PEET):
from prototype to release version. Technical Report March, European Space Agency 29, Paris,
France, 2016 | |
dc.relation | Q. Hu, X. Shao, and L. Guo. Adaptive fault-Tolerant attitude tracking control of spacecraft with
prescribed performance. IEEE/ASME Transactions on Mechatronics, 23(1):331–341, 2018 | |
dc.relation | Q. Hu, Y. Shi, and X. Shao. Adaptive fault-tolerant attitude control for satellite reorientation
under input saturation. Aerospace Science and Technology, 78:171–182, 2018 | |
dc.relation | Z. Ismail and R. Varatharajoo. A study of reaction wheel configurations for a 3-axis satellite
attitude control, 2010 | |
dc.relation | D. Ivanov, U. Monakhova, and M. Ovchinnikov. Nanosatellites swarm deployment using decentralized
differential drag-based control with communicational constraints. Acta Astronautica,
159(October 2018):646–657, 2019 | |
dc.relation | D. Izzo and L. Pettazzi. Autonomous and Distributed Motion Planning for Satellite Swarm.
Journal of Guidance, Control, and Dynamics, 30(2):449–459, 2007 | |
dc.relation | A. Jahn. Resource management techniques applied to satellite communications networks. pages
1–8, 1998 | |
dc.relation | C. D. Johnson. Nuevos Actores Nuevos Actores. Denver, Colorado, secure wor edition, 2019 | |
dc.relation | P. Kapasouris. Design for performance enhancement in feedback control systems with multiple
saturating nonlinearities, 1988 | |
dc.relation | J. T. King, J. Kolbeck, J. S. Kang, M. Sanders, and M. Keidar. Performance analysis of nano-sat
scale μCAT electric propulsion for 3U CubeSat attitude control. Acta Astronautica, 178(October
2020):722–732, 2021 | |
dc.relation | S. Knorn, Z. Chen, and R. H. Middleton. Overview: Collective control of multiagent systems.
IEEE Transactions on Control of Network Systems, 3(4):334–347, 2015 | |
dc.relation | A. W. Koenig and S. D’Amico. Robust and Safe N-Spacecraft Swarming in Perturbed Near-
Circular Orbits. Journal of Guidance, Control, and Dynamics, 41(8):1643–1662, 2018 | |
dc.relation | E. M. C. Kong, D. W. Kwon, S. A. Schweighart, L. M. Elias, R. J. Sedwick, D. W. Miller, and
T.-s. Case. Electromagnetic Formation Flight for Multisatellite Arrays. 41(4), 2004 | |
dc.relation | J. R. Kopacz, R. Herschitz, and J. Roney. Small satellites an overview and assessment. Acta
Astronautica, 170(January):93–105, 2020 | |
dc.relation | M. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett. A unified framework for the study of
anti-windup designs. Automatica, 30(12):1869–1883, 1994 | |
dc.relation | G. Krieger, M. Zink, M. Bachmann, B. Bräutigam, D. Schulze, M. Martone, P. Rizzoli, U. Steinbrecher,
J. Walter Antony, F. De Zan, I. Hajnsek, K. Papathanassiou, F. Kugler, M. Rodriguez Cassola,
M. Younis, S. Baumgartner, P. López-Dekker, P. Prats, and A. Moreira. TanDEM-X: A
radar interferometer with two formation-flying satellites. Acta Astronautica, 89:83–98, 2013 | |
dc.relation | R. Kristiansen, P. J. Nicklasson, and J. T. Gravdahl. Formation modelling and 6DOF spacecraft
coordination control. Proceedings of the American Control Conference, pages 4690–4696, 2007 | |
dc.relation | S. Kumar, D. Sahay, S. R. Hegde, S. Sandya, A. K. Jha, and T. C. Mahalingesh. Design and
development of 3-axis reaction wheel for STUDSAT-2. IEEE Aerospace Conference Proceedings,
2015-June(Di):1–13, 2015 | |
dc.relation | S. Kumar, D. Sahay, S. R. Hegde, S. Sandya, A. K. Jha, and T. C. Mahalingesh. Design and
development of 3-axis reaction wheel for STUDSAT-2. IEEE Aerospace Conference Proceedings,
2015-June(Di):1–13, 2015 | |
dc.relation | U. Kvell, M. Puusepp, F. Kaminski, J. E. Past, K. Palmer, T. A. Grönland, and M. Noorma. Nanosatelliitide
orbiidi muutmine mikroelektromehaaniliste külmgaasi tõukemootoritega. Proceedings
of the Estonian Academy of Sciences, 63(2S):279–285, 2014 | |
dc.relation | E. Lansard, E. Frayssinhes, and J. L. Palmade. Global design of satellite constellations: A multicriteria
performance comparison of classical walker patterns and new design patterns. Acta Astronautica,
42(9):555–564, 1998 | |
dc.relation | W. Larson. Applied Space Systems Engineering. Space tech edition, 2009 | |
dc.relation | W. J. Larson and J. R. Wertz. Space mission analysis and design. United States of America,
1999 | |
dc.relation | K. Lee and F. Malerba. Catch-up cycles and changes in industrial leadership:Windows of opportunity
and responses of firms and countries in the evolution of sectoral systems. Research Policy,
46(2):338–351, 2017 | |
dc.relation | T. H. Lee, J. H. Park, D. H. Ji, and H. Y. Jung. Leader-following consensus problem of heterogeneous
multi-agent systems with nonlinear dynamics using fuzzy disturbance observer. Complexity,
19(4):20–31, 2014 | |
dc.relation | A. Leeman. Prototype of a 4-Reaction Wheel System for Nanosatellites. 2019 | |
dc.relation | K. Lemmer. Propulsion for CubeSats. Acta Astronautica, 134:231–243, 2017 | |
dc.relation | Y. Leng, C. Yu, W. Zhang, Y. Zhang, X. He, and W. Zhou. Task-oriented hierarchical control
architecture for swarm robotic system. Natural Computing, 16(4):579–596, 2017 | |
dc.relation | F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das. Cooperative Control of Multi-Agent
Systems: Optimal and Adaptive Design Approaches. 2014 | |
dc.relation | J. Li. Satellite Remote Sensing Technologies. Springer, Beijing, China, 2021 | |
dc.relation | S. Li, J. Wang, X. Luo, and X. Guan. A new framework of consensus protocol design for complex
multi-agent systems. Systems and Control Letters, 60(1):19–26, 2011 | |
dc.relation | Y. Li, H. Fang, J. Chen, and C. Yu. Distributed Cooperative Fault Detection for Multiagent
Systems: A Mixed HH2 Optimization Approach. IEEE Transactions on Industrial Electronics,
65(8):6468–6477, 2018 | |
dc.relation | L. Lin and W. Yan-rong. An analytical method for satellite orbit prediction. Chinese Astronomy
and Astrophysics, 30(1):68–74, 2006 | |
dc.relation | G. P. Liu and S. Zhang. A Survey on Formation Control of Small Satellites. Proceedings of the
IEEE, 106(3):440–457, 2018 | |
dc.relation | M. W. Lo. Satellite-Constellation Design. Computing in science & engineering, 28(3):58–67, 1999 | |
dc.relation | S. Luo, X. Xu, L. Liu, and G. Feng. Output consensus of heterogeneous linear multi-agent systems
with communication, input and output time-delays. Journal of the Franklin Institute, 2020 | |
dc.relation | A. F. Ma, N. N. Dominikovic, A. F. Ma, N. N. Dominikovic, A. F. Ma, and N. N. Dominikovic.
Three-Axis Stabilized Earth Orbiting Spacecraft Simulator. Technical report, 2012 | |
dc.relation | Y. Mao, L. Dou, H. Fang, and J. Chen. Flocking of multi-robot systems with connectivity maintenance
on directed graphs. Journal of Systems Engineering and Electronics, 25(3):470–482, 2014 | |
dc.relation | R. G. Marsden. Basic Steps in Designing a Space Mission. Technical Report July, ESA, 2002 | |
dc.relation | M. Martin, P. Klupar, S. Kilberg, and J. Winter. TECHSAT 21 and Revolutionizing Space
Missions Using Microsatellites. American Institute of Aeronautics and Astronautics, (Fig 1):1–10,
1997 | |
dc.relation | R. Martínez-Díaz. Una Novedosa Plataforma Educacional Levitada Magnéticamente para la Determinación
, Control y Simulación de la Actitud de Pequeños Satélites Una Novedosa Plataforma
Educacional Levitada Magnéticamente para la Determinación , Control y Simulación de la Act.
Technical report, Universidad del Valle, Santiago de Cali, 2020 | |
dc.relation | A. Martinez Tellez. La Mecánica Cuántica, 2009 | |
dc.relation | L. Mazal and P. Gurfil. Acta Astronautica Closed-loop distance-keeping for long-term satellite
cluster flight. Acta Astronautica, 94(1):73–82, 2014 | |
dc.relation | J. C. McDowell. The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink
Constellation. The Astrophysical Journal, 892(2):L36, 2020. | |
dc.relation | M. Mesbahi and M. Egerstedt. Graph theoretic methods in multiagent networks. 2010 | |
dc.relation | H. Min, Z. Guoqiang, and S. Junling. Navigation and coordination control system for formation
flying satellites. 2010 International Conference on Computer Application and System Modeling
(ECCASM), (Iccasm):95–99, 2010 | |
dc.relation | Y. Mingqi, D. Xurong, and H. Min. Design and simulation for hybrid LEO communication and
navigation constellation. CGNCC 2016 - 2016 IEEE Chinese Guidance, Navigation and Control
Conference, pages 1665–1669, 2016 | |
dc.relation | O. Montenbruck. Satellite Orbits Models - Models, Methods and Applications. Berlin Heidelberg,
2005 | |
dc.relation | E. Mooij and M. Ellenbroek. Multi-Functional Guidance, Navigation, and Control Simulation
Environment. AIAA Modeling and Simulation Technologies Conference and Exhibit, (August):1–
16, 2007 | |
dc.relation | M. H. Moradi, S. Razini, and S. Mahdi Hosseinian. State of art of multiagent systems in power
engineering: A review. Renewable and Sustainable Energy Reviews, 58:814–824, 2016 | |
dc.relation | F. Morilla, J. Garrido, and F. Vázquez. Anti-windup coordination strategy for multivariable PID
control. ETFA 2009 - 2009 IEEE Conference on Emerging Technologies and Factory Automation,
2009 | |
dc.relation | A. Morin, J. B. Caussin, C. Eloy, and D. Bartolo. Collective motion with anticipation: Flocking,
spinning, and swarming. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics,
91(1):1–5, 2015 | |
dc.relation | R. M. Murray. Recent Research in Cooperative Control of Multivehicle Systems. 129(September
2007):571–583, 2016 | |
dc.relation | B. J. Naasz, M. M. Berry, H. Y. Kim, and C. D. Hall. Integrated orbit and attitude control for a
nanosatellite with power constraints. Advances in the Astronautical Sciences, 114(SUPPL.):1–18,
2003 | |
dc.relation | S. Nag, C. K. Gatebe, and T. Hilker. Simulation of Multiangular Remote Sensing Products Using
Small Satellite Formations. IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 10(2):638–653, 2017. | |
dc.relation | J. Narkiewicz, M. Sochacki, and B. Zakrzewski. Generic Model of a Satellite Attitude Control
System. International Journal of Aerospace Engineering, 2020, 2020 | |
dc.relation | NASA. Systems Engineering Handbook. National Aeronautics and Space Administration, nasa
cente edition, 2007 | |
dc.relation | NASA. Small Spacecraft Technology State of the Art. Technical Report July, NASA Mission
Design Division Staff, California, 2014 | |
dc.relation | W. Navarro. Improving Attitude Determination and Control of Resource-constrained CubeSats
Using Unscented Kalman Filtering, 2016 | |
dc.relation | J. P. Nelson and M. J. Balas. Model reference adaptive control of spacecraft attitude for a PNP
satellite with unknown time varying input/output delays. SysCon 2012 - 2012 IEEE International
Systems Conference, Proceedings, 5(12):618–623, 2012 | |
dc.relation | N. T. Nguyen. Model-reference adaptive control. Number 9783319563923. 2018 | |
dc.relation | M. Nunes, T. Sorensen, and E. Pilger. Cooperative Control of Multiple Small Satellites using
the Comprehensive Open-architecture Space Mission Operations System COOPERATIVE CONTROL
OF MULTIPLE SMALL OPEN-ARCHITECTURE SPACE MISSION OPERATIONS.
Technical Report June, 2014. | |
dc.relation | N. A. Ofodile, M. C. Turner, and J. Sofrony. Alternative approach to anti-windup synthesis for
double integrator systems. American Control Conference (ACC), pages 5473–5478, 2016 | |
dc.relation | O. J. Oguntoyinbo. Pid Control of Brushless Dc Motor and Robot Trajectory Planning and
Simulation With. 2009 | |
dc.relation | K. K. Oh, M. C. Park, and H. S. Ahn. A survey of multi-agent formation control. Automatica,
53:424–440, 2015 | |
dc.relation | R. Olfati and R. Murray. Consensus Problems in Networks of Agents with Switching Topology
and Time-Delays. pages 1–29, 2003 | |
dc.relation | B. R. Olfati-saber, J. A. Fax, and R. M. Murray. Consensus and Cooperation in Networked
Multi-Agent Systems. Proceeding of the IEEE, 95(1):215–233, 2007. | |
dc.relation | N. G. Orr, J. K. Eyer, B. P. Larouche, and R. E. Zee. Precision formation flight: The CanX-4
and CanX-5 dual nanosatellite mission. European Space Agency, (Special Publication) ESA SP,
(660 SP), 2008 | |
dc.relation | F. Paita. Novel consensus strategies applied to spacecraft formation flight. PhD thesis, Universitat
Politècnica de Catalunya, 2017. | |
dc.relation | J. N. Pelton and S. Madry. Handbook of Small Satellites. USA, 2020 | |
dc.relation | C. Pinciroli, M. Birattari, E. Tuci, M. Dorigo, M. D. R. Zapatero, T. Vinko, and D. Izzo. Selforganizing
and scalable shape formation for a swarm of pico satellites. Proceedings of the 2008
NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2008, pages 57–61, 2008 | |
dc.relation | C. Pittet, N. Despré, S. Tarbouriech, and C. Prieur. Nonlinear controller design for satellite
reaction wheels unloading using anti-windup techniques. AIAA Guidance, Navigation and Control
Conference and Exhibit, (August), 2008 | |
dc.relation | D. Platt. A Propulsion System Tailored to Cubesat Application. Conference on Small Satellites
21st Annual AIAA/USU - SSC07-III-7, 44(0):1–9, 2007 | |
dc.relation | A. Poghosyan and A. Golkar. CubeSat evolution : Analyzing CubeSat capabilities for conducting
science missions. Progress in Aerospace Sciences, (September):1–25, 2016 | |
dc.relation | G. A. Poveda. Propuesta de órbita geoestacionaria para el satélite artificial FACSAT01, 2017 | |
dc.relation | B. Prescornitoiu and M. Morales. Estudio y diseño de constelaciones de nanosatélites en el marco
de las comunicaciones IoT. PhD thesis, Universidad Carlos III de Madrid, 2019 | |
dc.relation | J. Qin, Q. Ma, S. Member, Y. Shi, and S. Member. Recent Advances in Consensus of Multi-Agent
Systems : A Brief Survey. IEEE Transactions on Industrial Electronics, 0046(c), 2016 | |
dc.relation | L. Qin, X. He, and D. H. Zhou. A survey of fault diagnosis for swarm systems. Systems Science
and Control Engineering, 2(1):13–23, 2014 | |
dc.relation | Z. Qu, G. Zhang, H. Cao, and J. Xie. LEO Satellite Constellation for Internet of Things. IEEE
Access, 5(c):18391–18401, 2017 | |
dc.relation | M. Radenkovic and M. Tadi. Multi-agent adaptive consensus of networked systems on directed
graphs. International Journal of Adaptive Control and Signal Processing, (May 2015):46–59, 2016 | |
dc.relation | R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-Osorio, F. Pinto, and S. C.
Burleigh. Survey of Inter-Satellite Communication for Small Satellite Systems: Physical Layer to
Network Layer View. 2016 | |
dc.relation | R. Ramnath. Computation and Asymptotics, volume 53. 2012 | |
dc.relation | C. Ramos and F. Suarez. Diseño de controladores basados en técnicas de control óptimo lqr+i y
h2 para un prototipo del péndulo invertido sobre ruedas. Revista Politécnica, 8(15):45–51, 2012 | |
dc.relation | W. Ren. Multi-vehicle consensus with a time-varying reference state. Systems and Control Letters,
56(7-8):474–483, 2007 | |
dc.relation | W. Ren and R. W. Beard. Distributed Consensus in Multi-vehicle Cooperative Control -Theory
and Applications. 2008 | |
dc.relation | G.-W. Rodríguez-P, E. Cortes-G, and J. Sofrony. Sustainable design of low-cost modular test platforms
as an entrepreneurship for space development in Colombia. 71th International Astronautical
Congress (IAC), The CiberSpace Edition, (October):12–14, 2020 | |
dc.relation | G. W. Rodriguez Pirateque, N. Arzola de la Peña, and E. D. Cortes Garcia. Sustainable Design of
a NanoSatellite Structure TypeCubeSat as a Modular Platform for Tests. Ciencia y Poder Aéreo,
15(1):108–134, 2020 | |
dc.relation | G. W. Rodriguez-Pirateque, P. J. C. Paez, and J. Sofrony. Satellite Systems for Colombian Space
Development with Multi-domain Operations *. Ciencia y Poder Aéreo, 16:46–59, 2021 | |
dc.relation | G. W. Rodriguez-Pirateque, J. Sofrony, and C. Salazar. Control de traslación y consenso de
sistemas satelitales multiagente. 2021 | |
dc.relation | G. W. Rodríguez Pirateque and J. Sofrony Esmeral. Revisión de sistemas de control en red como
base para sistemas satelitales de pequeña escala. Ciencia y Poder Aéreo, 13(2):90–125, 2018 | |
dc.relation | G.-W. Rodríguez-Pirateque, J. Sofrony Esmeral, E. D. Cortés García, and K. Rueda. Diseño de
misión, síntesis de factores operacionales y representaciones del segmento espacial, caso FACSAT
y EMFF. Ciencia y Poder Aéreo, 15(2):143–165, 2020 | |
dc.relation | C. W. Roscoe, J. J.Westphal, and E. Mosleh. Overview and GNC design of the CubeSat Proximity
Operations Demonstration (CPOD) mission. Acta Astronautica, (October 2017):0–1, 2018 | |
dc.relation | C. Rosso and J. Vieira. Modelo teórico MIMO para un sistema de orientación de 3DOF de un
satélite., 2010 | |
dc.relation | M. Sabatini, F. Reali, and G. B. Palmerini. Autonomous behavioral strategy and optimal centralized
guidance for on-orbit self assembly. IEEE Aerospace Conference Proceedings, (1), 2009 | |
dc.relation | N. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, and M. S. Alouini. CubeSat
Communications: Recent Advances and Future Challenges. IEEE Communications Surveys and
Tutorials, 22(3):1839–1862, 2020 | |
dc.relation | R. Sanchez and R. Alonso. Control de Vehículos Espaciales. Revista Iberoamericana de Automática
e Informática Industrial, 2(January):6–24, 2010 | |
dc.relation | J. Sanchez de la Vega. Phoenix Cubesat, 2020. | |
dc.relation | P. Sarhadi, A. R. Noei, and A. Khosravi. Model reference adaptive autopilot with anti-windup
compensator for an autonomous underwater vehicle: Design and hardware in the loop implementation
results. Applied Ocean Research, 62:27–36, 2017 | |
dc.relation | A. Sarlette, R. Sepulchre, and N. E. Leonard. Cooperative attitude synchronization in satellite
swarms: A consensus approach. IFAC Proceedings Volumes (IFAC-PapersOnline), 17(PART
1):223–228, 2007 | |
dc.relation | K. Scarritt. Nonlinear model reference adaptive control for satellite attitude tracking. AIAA
Guidance, Navigation and Control Conference and Exhibit, (August), 2008 | |
dc.relation | J. Scharnagl, F. Kempf, and K. Schilling. Combining distributed consensus with robust H -control
for satellite formation flying. Electronics (Switzerland), 8(3):1–27, 2019 | |
dc.relation | H. Schaub and J. Junkins. Analytical Mechanics of Space Systems, volume 2. AIAA Education
Series, Virginia, 2009 | |
dc.relation | K. Schilling. Networked Control of Cooperating Distributed Pico-Satellites. IFAC Proceedings
Volumes, 47(3):7960–7964, 2014 | |
dc.relation | K. Schilling. Perspectives for miniaturized, distributed, networked cooperating systems for space
exploration. Robotics and Autonomous Systems, 90:118–124, 2017 | |
dc.relation | K. Schilling. Networked Pico-Satellite Distributed System Control Final Report Summary -
NETSAT (Networked Pico- Satellite Distributed System Control). Technical report, ZENTRUM
FUR TELEMATIK EV, Alemania, 2020 | |
dc.relation | K. Schilling, M. Schmidt, K. Ravandoor, O. Kurz, and S. Busch. Attitude determination for the
nano-satellite UWE-2. 17th World Congress The International Federation of Automatic Control,
17(1 PART 1):14036–14041, 2008 | |
dc.relation | J. Schwartz, T. Krenzke, S. Hur-Diaz, M. Ruschmann, and J. Schmidt. The flocking controller: A
novel cluster control strategy for space vehicles. AIAA Guidance, Navigation, and Control (GNC)
Conference, pages 1–15, 2013 | |
dc.relation | S. A. Schweighart and R. J. Sedwick. Development and analysis of a high fidelity linearized J2
model for satellite formation flying, 2001 | |
dc.relation | J. Sellers. Understanding Space - An Introduction to Astronautics. 2004 | |
dc.relation | M. Shahzad Shaikh, P. Jindal, A. Mali, A. Ansari, and S. Kamble. Design of Mems Based
Microthruster - A Study. Materials Today: Proceedings, 5(9):20719–20726, 2018. | |
dc.relation | M. S. Shouman and G. M. E. Bayoumi. Adaptive Robust Control of Satellite Attitude System.
International Review of Aerospace Engineering (I.RE.AS.E), 8(February):35–42, 2015 | |
dc.relation | J. Sofrony and M. Turner. Anti-windup design for systems with input quantization. (Cdc):7586–
7591, 2015 | |
dc.relation | J. Sofrony and M. C. Turner. Coprime factor anti-windup for systems with sensor saturation.
(45):3813–3818, 2011 | |
dc.relation | J. Sofrony, M. C. Turner, and I. Postlethwaite. Anti-windup synthesis using Riccati equations.
IFAC Proceedings Volumes (IFAC-PapersOnline), 16(1):171–176, 2005 | |
dc.relation | J. Sofrony, M. C. Turner, and I. Postlethwaite. Anti-windup synthesis using Riccati equations.
International Journal of Control, 80(1):112–128, 2007 | |
dc.relation | T. Soldovieri and T. Viloria. EL ANGULO SOLIDO Y ALGUNAS DE SUS APLICACIONES,
2016 | |
dc.relation | Y. Somov, S. Butyrin, S. Somov, T. Somova, N. Testoyedov, V. Rayevsky, G. Titov, Y. Yakimov,
A. Ovchinnikov, and M. Mathylenko. Guidance and adaptive-robust attitude & orbit control of
a small information satellite. AIP Conference Proceedings, 1798, 2017 | |
dc.relation | E. Spin. Rotations and Euler angles, 2014. | |
dc.relation | M. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control, volume 26. 2006 | |
dc.relation | J. Sun, H. Chen, A. Technologies, and M. Student. A Decentralized and Autonomous Control
Architecture for Large - Scale Spacecraft Swarm Using Artificial Potential Field and Bifurcation
Dynamics. (January), 2018 | |
dc.relation | S. Tarbouriech and M. Turner. Anti-windup design: an overview of some recent advances and
open problems. IET Control Theory Appl., 3(1):1–19, 2009 | |
dc.relation | M. Tariq, T. Bhattacharya, N. Varshney, and D. Rajapan. Fast response Antiwindup PI speed
controller of Brushless DC motor drive: Modeling, simulation and implementation on DSP. Journal
of Electrical Systems and Information Technology, 3(1):1–13, 2016 | |
dc.relation | A. Theorin. Implementation of an Autotunable Decoupling TITO Controller. Technical Report
July, 2007 | |
dc.relation | F. M. Thiel. Adaptive Control of Plants with Input Saturation : An Approach for Performance
Improvement. PhD thesis, 2019 | |
dc.relation | D. Tosse and C. Salazar. Diseño del controlador digital para una planta tipo Segway. Technical
report, National University of Colombia, 2019 | |
dc.relation | J. F. Trégouët, D. Arzelier, D. Peaucelle, C. Pittet, and L. Zaccarian. Reaction wheels desaturation
using magnetorquers and static input allocation. IEEE Transactions on Control Systems
Technology, 23(2):525–539, 2015 | |
dc.relation | M. C. Turner. Positive mu modification as an anti-windup mechanism. Systems and Control
Letters, 102(March 2017):15–21, 2017 | |
dc.relation | M. C. Turner. Systems & Control Letters Positive μ modification as an anti-windup mechanism.
Systems & Control Letters, 102:15–21, 2017 | |
dc.relation | M. C. Turner, G. Herrmann, and I. Postlethwaite. Incorporating robustness requirements into
antiwindup design. IEEE Transactions on Automatic Control, 52(10):1842–1855, 2007 | |
dc.relation | M. C. Turner, J. Sofrony, and E. Prempain. Anti-windup for model-reference adaptive control
schemes with rate-limits. Systems and Control Letters, 137:104630, 2020 | |
dc.relation | Y. Ulybyshev. Long-Term Formation Keeping of Satellite Constellation Using Lnear-Quadratic
Controller. Journal of Guidance, Control, and Dynamics, 132(9):2159–2165, 1998 | |
dc.relation | R. H. Vassar and R. B. Sherwood. Formation keeping for a Pair of Satellites in a Circular Obit.
Advances in the Astronautical Sciences, 54(Pt 2):1105, 1983 | |
dc.relation | R. V. Vázquez. Mecánica Orbital y Vehículos Espaciales-Introducción I. Technical report, Universidad
de Sevilla, Sevilla, España, 2015 | |
dc.relation | T. Villela, C. A. Costa, A. M. Brandão, F. T. Bueno, and R. Leonardi. Towards the thousandth
CubeSat: A statistical overview. International Journal of Aerospace Engineering, 2019 | |
dc.relation | C. Wang, J. Li, N. Jing, J. Wang, and H. Chen. A distributed cooperative dynamic task planning
algorithm for multiple satellites based on multi-agent hybrid learning. Chinese Journal of
Aeronautics, 24(4):493–505, 2011 | |
dc.relation | F.-Y. Wang. Networked Control Systems, volume 53. 2008 | |
dc.relation | X. Wang and Y. Hong. Finite-Time Consensus for Multi-Agent Networks with Second-Order
Agent Dynamics, volume 41. IFAC, 2008 | |
dc.relation | O. L. D. Weck. Attitude Determination and Control ( Adcs ). pages 1–57, 2001 | |
dc.relation | J. Wertz. Spacecraft attitude Determination and Control. 1978 | |
dc.relation | P. F.Weston and I. Postlethwaite. Linear conditioning for systems containing saturating actuators.
Automatica, 36(9):1347–1354, 2000 | |
dc.relation | B. Wie. Space Vehicle Dynamics and Control, volume 70. Iowa State University, Virginia, 1952 | |
dc.relation | C. H. Won. Comparative study of various control methods for attitude control of a LEO satellite.
Aerospace Science and Technology, 3(5):323–333, 1999 | |
dc.relation | M. Wooldridge. An introduction to Multi-Agent Systems. 2009 | |
dc.relation | Z. P. Wu, Z. H. Guan, and X. Wu. Consensus problem in multi-agent systems with physical
position neighbourhood evolving network. Physica A: Statistical Mechanics and its Applications,
379(2):681–690, 2007 | |
dc.relation | S. Xu, X.-w. Wang, and M. Huang. Software-Defined Next-Generation Satellite Networks: Architecture,
Challenges, and Solutions. IEEE Access, 4(c), 2016 | |
dc.relation | X. Yang. Low Earth Orbit (LEO) Mega Constellations – Satellite and Terrestrial Integrated
Communication Networks. PhD thesis, 2018 | |
dc.relation | Y. Yang. Quaternion based model for momentum biased nadir pointing spacecraft. Aerospace
Science and Technology, 14(3):199–202, 2010 | |
dc.relation | Y. Yang. Spacecraft attitude determination and control: Quaternion based method. Annual
Reviews in Control, 36(2):198–219, 2012 | |
dc.relation | Y. Yang. Spacecraft Attitude and Reaction Wheel Desaturation Combined Control Method. IEEE
Transactions on Aerospace and Electronic Systems, 53(1):286–295, 2017 | |
dc.relation | H.-h. Yeh and A. Sparks. Geometry and Control of Satellite Formations. Proceedings of the
American Control Conference, (June):384–388, 2000 | |
dc.relation | Z. Yoon, W. Frese, A. Bukmaier, and K. Brieß. System design of an S-band network of distributed
nanosatellites. CEAS Space Journal, 6(1):61–71, 2014 | |
dc.relation | Z. Yoon, Y. Lim, S. Grau, W. Frese, and M. A. Garcia. Orbit deployment and drag control
strategy for formation flight while minimizing collision probability and drift. CEAS Space Journal,
12(3):397–410, 2020 | |
dc.relation | L. Zaccarian and A. R. Teel. Modern Anti-windup Synthesis. Princeton University Press, United
States of America, 2011 | |
dc.relation | B. Zandbergen. Micropropulsion Systems for Cubesats. In Conference: Von Karman Institute for
fluid dynamics, number October, pages 1–38, Brussels, 2014 | |
dc.relation | P. Zetocha, L. Self, R. Wainwright, and R. Burns. Commanding and controlling satellite clusters
Margarita Brito and Derek Surka , Princeton Satellite Systems. IEEE Intelligent Systems, pages
10–15, 2002. | |
dc.relation | C. Zhang, J. Wang, R. Sun, D. Zhang, and X. Shao. Multi-spacecraft attitude cooperative control
using model-based event-triggered methodology. Advances in Space Research, 62(9):2620–2630,
2018. | |
dc.relation | H. Zhang and P. Gurfil. Cooperative orbital control of multiple satellites via consensus. IEEE
Transactions on Aerospace and Electronic Systems, 54(5):2171–2188, 2018 | |
dc.relation | J. Zhou and Q. Wang. Convergence speed in distributed consensus over dynamically switching
random networks. Automatica, 45(6):1455–1461, 2009 | |
dc.rights | Reconocimiento 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Desarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre | |
dc.type | Trabajo de grado - Doctorado | |