dc.contributorSofrony Esmeral, Jorge
dc.contributorGrupo de Investigación y Desarrollo Aeroespacial (GIDA)
dc.contributorGrupo de Investigación en Electrónica y Tecnologías para la Defensa (TESDA)
dc.creatorRodriguez Pirateque, German Wedge
dc.date.accessioned2022-04-18T15:37:52Z
dc.date.available2022-04-18T15:37:52Z
dc.date.created2022-04-18T15:37:52Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81455
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLas necesidades de apropiación tecnológica y la estructuración de misiones espaciales en el contexto colombiano traen consigo la demanda de servicios y trabajos colaborativos y especializados, para los diferentes segmentos de un sistema espacial, como bien se está identificando en la estructuración del Programa Espacial Colombiano. Frente a estos derroteros, la presente investigación aborda el reto de apropiación del conocimiento en el diseño de misión, el control del segmento espacial y en especial el reto de proponer estrategias de control a sistemas satelitales multiagente, ya que los sistemas convencionales por su costo, centralización y modos de control conservadores, restringen el desempeño individual y grupal para las nuevas alternativas de sistemas en red que se presentan con los satélites de pequeña escala. En este sentido y mediante el uso de la metodología en V, se abordan los procesos de diseño de misión, así como el diseño de controladores individuales y grupales para la orientación y traslación de satélites en misiones de observación terrestre. Lo anterior con el fin de aprovechar la reducción de costos y flexibilidad operacional que brinda el uso de satélites de pequeña escala; a pesar de su limitada capacidad operacional/física, la cual hace necesario disponer de más de un agente para lograr los objetivos de servicio. Esta necesidad inherente, demanda la posibilidad de interconectar agentes en red y explorar arquitecturas de control con estrategias de cooperación, consenso y técnicas robustas de control en red, que permitan afrontar las no linealidades, incertidumbres y errores que limitan su coordinación y cooperación. Según lo expuesto, se definen diferentes arquitecturas de control frente a perturbaciones, limitaciones de actuación e incertidumbres, donde se identifican y caracterizan parámetros de desempeño individual y grupal ante diferentes tipos de misión, comportamientos adaptativos, políticas de consenso y cooperación, en dos etapas: La primera con el análisis, diseño y desarrollo de misiones, modelos y controladores, útiles para la definición del sistema y las arquitecturas de control formuladas; y la segunda mediante la evaluación e integración de algoritmos de control y consenso, validados con el método de Montecarlo y la aplicación de los índices propuestos como métricas de desempeño de la red. Adicionalmente, se incluye el diseño e implementación de una interfaz gráfica para la instrucción y entrenamiento en el diseño de misión y configuración de agentes, como complemento a los controladores y arquitecturas propuestas para la apropiación de tecnologías de control modernas y el manejo de sistemas satelitales de pequeña escala, como medios para la democratización y el despliegue del concepto del New Space en el territorio colombiano. (Texto tomado de la fuente)
dc.description.abstractThe needs for technological appropriation and structuration of space missions in the Colombian context bring with them the demand for collaborative and specialized services and works, for the different segments of a space system, as is being well identified in the structuration of the Colombian Space Program. Facing these objectives, this research addresses the challenge of knowledge appropriation in mission design, space segment control, and especially the challenge of proposing control strategies for multi-agent satellite systems, since conventional systems due to their cost, centralization, and conservative control modes, restrict individual and group performance for the new network system alternatives that come with small-scale satellites. In this sense and using the V methodology, the mission design processes are addressed, as well as the design of individual and group controllers for the orientation and translation of satellites in terrestrial observation missions. The foregoing to take advantage of the cost reduction and operational flexibility provided using small-scale satellites; despite its limited operational / physical capacity, which makes it necessary to have more than one agent to achieve service objectives. This inherent need demands the possibility of interconnecting agents in the network and exploring control architectures with cooperation strategies, consensus, and robust network control techniques, which allow facing the non-linearities, uncertainties and errors that limit their coordination and cooperation. According to the above, different control architectures are defined against disturbances, actuation limitations and uncertainties, where individual and group performance parameters are identified and characterized in front of different types of mission, adaptive behaviors, consensus and cooperation policies, in two stages: The first with the analysis, design and development of missions, models and controllers, useful for defining the system and formulated control architectures; and the second through the evaluation and integration of control and consensus algorithms, validated with the Montecarlo method and the application of the indexes proposed as network performance metrics. Further, the design and implementation of a graphical interface for instruction and training in mission design and agent configuration is included, as a complement to the controllers and architectures proposed for the appropriation of modern control technologies and the management of small-scale satellite systems, as means for the democratization and deployment of the New Space concept in Colombian territory.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica
dc.publisherDepartamento de Ingeniería Mecánica y Mecatrónica
dc.publisherFacultad de Ingeniería
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationM. F. Abbod, D. A. Linkens, M. Mahfouf, and G. Dounias. Survey on the use of smart and adaptive engineering systems in medicine. Artificial Intelligence in Medicine, 26(3):179–209, 2002.
dc.relationM. Abbott. The Role of Small Satellites in NASA and NOAA Earth Observation Programs. 2000.
dc.relationAgencia Espacial Mexicana. Introducción a los Sistemas Espaciales. pages 1–54, Mexico, 2013. Secretaría de comunicaciones y trasportes.
dc.relationK. Ahmadi Dastgerdi, F. Pazooki, and J. Roshanian. Model Reference Adaptive Control (MRAC) of a Small Satellite in the Presence of Parameters Uncertainties. Scientia Iranica, 0(0):0–0, 2020.
dc.relationU. Ahsun and D. W. Miller. Dynamics and control of electromagnetic satellite formations. PhD thesis, 2007.
dc.relationG. Allende-Alba, O. Montenbruck, J. S. Ardaens, M. Wermuth, and U. Hugentobler. Estimating maneuvers for precise relative orbit determination using GPS. Advances in Space Research, 59(1):45–62, 2017.
dc.relationJ. Alvarez and B. Walls. Constellations , Clusters , and Communication Technology : Expanding Small Satellite Access to Space. 2016
dc.relationM. Alvarez Reyna, J. Pucheta, and J. Fraire. Determinación precisa de posición y orientación relativa en satélites de arquitectura segmentada. Ajea, (4):4–6, 2019
dc.relationC. Araguz, E. Bou-Balust, and E. Alarcón. Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects. Systems Engineering, 21(5):401–416, 2018
dc.relationARMY. United States Army Futures Command, 2020
dc.relationK. J. Astrom and T. HÄgglund. Advanced PID control, volume 26. 2006
dc.relationK. J. Astrom and L. Rundqwist. Integrator windup and how to avoid it. pages 1693–1698, 1989
dc.relationK. J. Astrom and B. Wittenmark. Adaptive Control. Lund Institute of Technology, Mineola, New York, dover publ edition, 1995
dc.relationS. Bandyopadhyay, G. P. Subramanian, R. Foust, D. Morgan, S.-J. Chung, and F. Hadaegh. A Review of Impending Small Satellite Formation Flying Missions. 53rd AIAA Aerospace Sciences Meeting, (January):1–17, 2015
dc.relationX. C. Baolin Wu. Satellite Formation Keeping Using Robust Constrained Model Predictive Control. pages 13–18, 2005
dc.relationA. A. Barakabitze, A. Ahmad, R. Mijumbi, and A. Hines. 5G network slicing using SDN and NFV: A survey of taxonomy, architectures and future challenges. Computer Networks, 167, 2020
dc.relationC. Barbu, R. Reginatto, A. R. Teel, and L. Zaccarian. Anti-windup for exponentially unstable linear systems with inputs limited in magnitude and rate. Proceedings of the American Control Conference, 2(June):1230–1234, 2000
dc.relationF. Beer, R. Johnston, and P. Cornwell. Mecánica Vectorial Para Ingenieros ,Dinamica. 2010
dc.relationG. Belascuen and N. Aguilar. Design, Modeling and Control of a Reaction Wheel Balanced Inverted Pendulum. 2018 IEEE Biennial Congress of Argentina, ARGENCON 2018, (June 2018), 2019
dc.relationN. Bellini. Magnetic Actuators for Nanosatellite Attitude Control. Technical report, Universita’ Di Bologna Scuola, 2014
dc.relationG. Bianchini, A. Garulli, and A. Giannitrapani. A class of globally stabilizing feedback controllers for the orbital rendezvous problem. International journal of robust and nonlinear control, 2017
dc.relationE. Blasch, K. Pham, G. Chen, G. Wang, C. Li, X. Tian, and D. Shen. Distributed QOS Awareness in satellite communication network with optimal routing ( Q u ASOR ). IEEE, pages 1–11, 2014
dc.relationJ. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel. Multi-saturation anti-windup structure for satellite control. Proceedings of the 2010 American Control Conference, ACC 2010, (1):5979–5984, 2010
dc.relationJ. Boada, C. Prieur, S. Tarbouriech, C. Pittet, and C. Charbonnel. Anti-windup design for satellite control with microthrusters. AIAA Guidance, Navigation, and Control Conference and Exhibit, (August), 2018
dc.relationV. Bohlouri, Z. Khodamoradi, S. Hamid, and J. Naini. Spacecraft attitude control using model - based disturbance feedback control strategy. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 9, 2018
dc.relationM. Brambilla, E. Ferrante, and M. Birattari. Swarm robotics : A review from the swarm engineering perspective. In IRIDIA – Technical Report Series ISSN, volume 7, pages 1–41. 2012
dc.relationA. Braukhane, M. Arza, M. Bacher, M. Calaprice, H. Fiedler, V. Koehne, H. R. McGuire, and J. J. Rivera. FormSat, a scalable formation flying communication satellite system. IEEE Aerospace Conference Proceedings, (1), 2010
dc.relationS. C. Burleigh, T. De Cola, S. Morosi, S. Jayousi, E. Cianca, and C. Fuchs. From Connectivity to Advanced Internet Services: A Comprehensive Review of Small Satellites Communications and Networks. Wireless Communications and Mobile Computing, 2019(May), 2019
dc.relationT. F. Burns and H. Flashner. Adaptive Control Applied to Momentum Unloading Using the Low Earth Orbital Environment. Journal of Guidance, Control, and Dynamics, 15(2), 1992
dc.relationP. J. Camillo and F. L. Markley. Orbit-averaged behavior of magnetic control laws for momentum unloading. Journal of Guidance, Control, and Dynamics, 3(6):563–568, 1980
dc.relationP. Campo and M. Morari. Robust Control of Processes Subject to Saturation Nonlinearitues. Computers chem. Engng., 14(4/5):343–358, 1990
dc.relationY. Y. Cao, Z. Lin, and D. G. Ward. An antiwindup approach to enlarging domain of attraction for linear systems subject to actuator saturation. IEEE Transactions on Automatic Control, 47(1):140–145, 2002
dc.relationJ. Carnahan. CubeSat Design Specification Rev13. The CubeSat Program, Cal Poly SLO 4, 2014
dc.relationM. Casasco, G. Saavedra Criado, S.Weikert, J. Eggert, M. Hirth, T. Ott, and H. Su. Pointing error budgeting for high pointing accuracy mission using the pointing error engineering tool. AIAA Guidance, Navigation, and Control (GNC) Conference, pages 1–21, 2013
dc.relationM. Casasco, S. Salehi, S. Weikert, J. Eggert, M. Hirth, H. Su, and T. Ott. Pointing Error Engineering Framework. Technical Report May, European Space Agency, Paris, France, 2014
dc.relationS. Castaño. Control I+PD, 2015
dc.relationY. Castellanos and G. W. Rodriguez-Pirateque. UAV systems for multipurpose heterogeneous networks : a review of design , development and performance. Aeronautics and Aerospace Open Access Journal Review, 4(3):121–140, 2020
dc.relationR. Cepeda. Sistema De Control Robusto, Basado En Cuaterniones Para Un Satélite De Órbita Ba, 2010
dc.relationS. Chávez. Diseño Conceptual de un Simulador de Navegación Aeroespacial y Prototipo Inicial. Technical report, Instituto Nacional de Astrofísica, Óptica y Electrónica, 2012
dc.relationX. Chen, H. Sun, and J. Zhang. Reaction-wheel momentum dumping by hybrid control of magnetorquers and thrusters. AIAA Guidance, Navigation, and Control Conference, (August 2010), 2010
dc.relationZ. Chen and Y. Zeng. A Swarm Intelligence Networking Framework for Small Satellite Systems. Communications and Network, 5(September):171–175, 2013
dc.relationS. Cheng, H. Dong, L. Yu, D. Zhang, and J. Ji. Consensus of Second-order Multi-agent Systems with Directed Networks Using Relative Position Measurements Only. International Journal of Control, Automation and Systems, 17(1):85–93, 2019
dc.relationS.-J. Chung, U. Ahsun, and J.-J. E. Slotine. Application of Synchronization to Formation Flying Spacecraft: Lagrangian Approach. Journal of Guidance, Control, and Dynamics, 32(2):512–526, 2009
dc.relationE. Cortes-G, D. Mendoza, and G. W. Rodriguez Pirateque. Design and construction of test benches for small scale aerospace systems. IEEE Andescon, Andescon 2020, pages 52–57, 2020
dc.relationE. D. Cortés García. Experimentación del control de actitud en un prototipo de CubeSat con ruedas de reacción, 2019
dc.relationW. Dandan, Z. Qianghui, and Z. H. U. Wei. Adaptive Event-Based Consensus of Multi-Agent Systems with General Linear Dynamics . J Syst Sci Complex, 31:120–129, 2018
dc.relationE. L. De Angelis, F. Giulietti, A. H. De Ruiter, and G. Avanzini. Spacecraft attitude control using magnetic and mechanical actuation. Journal of Guidance, Control, and Dynamics, 39(3):564–573, 2016
dc.relationN. C. De Freitas, P. P. Filho, C. D. De Moura, and M. P. Silva. AgentGeo: Multi-Agent System of Satellite Images Mining. IEEE Latin America Transactions, 14(3):1343–1351, 2016
dc.relationI. del Portillo, B. G. Cameron, and E. F. Crawley. A technical comparison of three low earth orbit satellite constellation systems to provide global broadband. Acta Astronautica, 159(December 2018):123–135, 2019
dc.relationA. Dessmark, P. Fraigniaud, D. R. Kowalski, and A. Pelc. Deterministic rendezvous in graphs. Algorithmica (New York), 46(1):69–96, 2006
dc.relationA. V. Doroshin. Attitude Dynamics , Control and Stabilization Of Spacecraft / Satellites. Technical report, 2018
dc.relationR. Duarte. Modeling and Simulation of the ECOSat-III Attitude Determination and Control System. Technical Report April, Técnico LISBOA, Lisbon, Portugal, 2016
dc.relationA. M. El-Naggar. DOP prediction over Egypt from SP3 file for long-term. Alexandria Engineering Journal, 51(3):221–228, 2012
dc.relationA. A. El-samahy and M. A. Shamseldin. Brushless DC motor tracking control using selftuning fuzzy PID control and model reference adaptive control. Ain Shams Engineering Journal, 9(3):341–352, 2018
dc.relationS. Engelen. Swarm Satellites: Design, Characteristics and Applications, volume 91. 2016
dc.relationS. Engelen, E. Gill, and C. Verhoeven. On the reliability, availability, and throughput of satellite swarms. IEEE Transactions on Aerospace and Electronic Systems, 50(2):1027–1037, 2014
dc.relationS. Engelen, E. K. A. Gill, and C. J. M. Verhoeven. Systems engineering challenges for satellite swarms. IEEE Aerospace Conference Proceedings, 2011
dc.relationESA-ESTEC. Stars sensors terminology and performance specification. European Cooperation for Sapce Standarization, 60(20C), 2008
dc.relationC. H. Esparza and R. A. Núñez. Controlador adaptativo PD por modelo de referencia para una mesa vibratoria biaxial basada en el mecanismo biela-manivela. Informacion Tecnologica, 25(2):189–202, 2014
dc.relationP. A. Ferguson. Distributed Estimation and Control Technologies for Formation Flying Spacecraft. pages 1–120, 2003
dc.relationD. E. Forero Martinez. Diseño del Bloque de Estimación de un Sistema ADCS para un Pico Satélite de Estándar CubeSat Usando Filtro de Partículas como Técnica de Estimación. Technical report, Universidad Distrital Francisco José de Caldas, Bogotá D.C, 2015
dc.relationA. Francisco, J. Somma, D. Dra, M. Lorena, T. Presentada, P. Optar, and A. L. Título. Cuaterniones y ángulos de Euler para describir rotaciones en R3, 2018
dc.relationM. Fugmann and S. Klinkner. An Automated Constellation Design & Mission Analysis Tool for Finding the Cheapest Mission Architecture. SSC20-I-07 Mission Architecture, 34th Annual Small Satellite Conference, I(07):1–12, 2020
dc.relationA. García Santiago. Diseño de un sistema de control de orientacion utilizando Ruedas de Reacción. Technical report, Universidad Nacional Autónoma de México, México, 2017
dc.relationJ. Garrido Jurado. Diseño de sistemas de control multivariable por desacoplo con controladores PID. PhD thesis, 2012
dc.relationX. Ge, Q. L. Han, D. Ding, X. M. Zhang, and B. Ning. A survey on recent advances in distributed sampled-data cooperative control of multi-agent systems. Neurocomputing, 275:1684–1701, 2018
dc.relationM. Gerla and K. Xu. Integrating Mobile Swarms with Large-scale Sensor Networks Using Satellites. IEEE, pages 2816–2820, 2004
dc.relationF. Giulietti, A. A. Quarta, and P. Tortora. Optimal control laws for momentum-wheel desaturation using magnetorquers. Journal of Guidance, Control, and Dynamics, 29(6):1464–1468, 2006
dc.relationJ. M. Gomes Da Silva and S. Tarbouriech. Anti-windup design with guaranteed regions of stability for discrete-time linear systems. Proceedings of the American Control Conference, 50(1):106–111, 2005
dc.relationJ. M. Gomes da Silva, S. Tarbouriech, Jr., and G. Garcia. Local Stabilization of Linear Systems Under Amplitude and Rate Saturating Actuators. IEEE transactions on automatic control, 48(5):842–847, 2003
dc.relationG. Goodwin, S. Graebe, and A. Salgado. Basic Control Systems Design. Eshbach’s Handbook of Engineering Fundamentals, Fifth Edition, pages 760–801, 2000
dc.relationG. C. Goodwin, S. F. Graebe, and M. E. Salgado. Control System Design. Prentice Hall, Valparaiso, Chile, 2000
dc.relationK. Gordon. A flexible attitude control system for three-axis stabilized nanosatellites. Berlin, 2018
dc.relationF. Graf, T. Ott, J. P. Lejault, and W. Fichter. Precision pointing estimator design for minimum absolute, window- and stability-time errors, volume 19. IFAC, 2013
dc.relationM. Grasso, A. Renga, G. Fasano, M. D. Graziano, M. Grassi, and A. Moccia. Design of an endto- end demonstration mission of a Formation-Flying Synthetic Aperture Radar (FF-SAR) based on microsatellites. Advances in Space Research, 2020
dc.relationA. Guiggiani, I. Kolmanovsky, P. Patrinos, and A. Bemporad. Constrained Model Predictive Control of spacecraft attitude with reaction wheels desaturation. 2015 European Control Conference, ECC 2015, 0(1):1382–1387, 2015
dc.relationM. M. Gulzar, S. T. H. Rizvi, M. Y. Javed, U. Munir, and H. Asif. Multi-Agent Cooperative Control Consensus: A Comparative Review. Electronics, 7(2):22, 2018
dc.relationC. Guo, C. Peng, J. Zhang, and D. Peng. A survey on networked control systems subject to limited network resources. 26th Chinese Control and Decision Conference, CCDC 2014, (1):4958–4965, 2014
dc.relationJ. Guo, G. Tao, and Y. Liu. A multivariable MRAC scheme with application to a nonlinear aircraft model. Automatica, 47(4):804–812, 2011
dc.relationP. Gurfil, J. Herscovitz, and M. Pariente. SSC12-VII-2 The SAMSON Project – Cluster Flight and Geolocation with Three Autonomous Nano-satellites. 2014
dc.relationS. Guzman and E. Mojica-Nava. La teorıa evolutiva como solucion al control de formacion. Vision Electronica, 9(1):1–5, 2015
dc.relationC. D. Hall. Spacecraft Attitude Dynamics and Control (AE4313). 2000
dc.relationZ. M. Han, Z. Y. Lin, M. Y. Fu, and Z. Y. Chen. Distributed coordination in multi-agent systems: a graph Laplacian perspective. Frontiers of Information Technology and Electronic Engineering, 16(6):429–448, 2015
dc.relationR. Hanus. A new technique for preventing control windup. Journal A, 21(1):15–20, 1980
dc.relationJ. Hespanha, P. Naghshtabrizi, and Y. Xu. A Survey of Recent Results in Networked Control Systems. Proceedings of the IEEE, 95(1):138–162, 2007
dc.relationM. Hirth, H. Su, T. Ott, M. Casasco, and S. Salehi. The pointing error engineering tool (PEET): from prototype to release version. Technical Report March, European Space Agency 29, Paris, France, 2016
dc.relationQ. Hu, X. Shao, and L. Guo. Adaptive fault-Tolerant attitude tracking control of spacecraft with prescribed performance. IEEE/ASME Transactions on Mechatronics, 23(1):331–341, 2018
dc.relationQ. Hu, Y. Shi, and X. Shao. Adaptive fault-tolerant attitude control for satellite reorientation under input saturation. Aerospace Science and Technology, 78:171–182, 2018
dc.relationZ. Ismail and R. Varatharajoo. A study of reaction wheel configurations for a 3-axis satellite attitude control, 2010
dc.relationD. Ivanov, U. Monakhova, and M. Ovchinnikov. Nanosatellites swarm deployment using decentralized differential drag-based control with communicational constraints. Acta Astronautica, 159(October 2018):646–657, 2019
dc.relationD. Izzo and L. Pettazzi. Autonomous and Distributed Motion Planning for Satellite Swarm. Journal of Guidance, Control, and Dynamics, 30(2):449–459, 2007
dc.relationA. Jahn. Resource management techniques applied to satellite communications networks. pages 1–8, 1998
dc.relationC. D. Johnson. Nuevos Actores Nuevos Actores. Denver, Colorado, secure wor edition, 2019
dc.relationP. Kapasouris. Design for performance enhancement in feedback control systems with multiple saturating nonlinearities, 1988
dc.relationJ. T. King, J. Kolbeck, J. S. Kang, M. Sanders, and M. Keidar. Performance analysis of nano-sat scale μCAT electric propulsion for 3U CubeSat attitude control. Acta Astronautica, 178(October 2020):722–732, 2021
dc.relationS. Knorn, Z. Chen, and R. H. Middleton. Overview: Collective control of multiagent systems. IEEE Transactions on Control of Network Systems, 3(4):334–347, 2015
dc.relationA. W. Koenig and S. D’Amico. Robust and Safe N-Spacecraft Swarming in Perturbed Near- Circular Orbits. Journal of Guidance, Control, and Dynamics, 41(8):1643–1662, 2018
dc.relationE. M. C. Kong, D. W. Kwon, S. A. Schweighart, L. M. Elias, R. J. Sedwick, D. W. Miller, and T.-s. Case. Electromagnetic Formation Flight for Multisatellite Arrays. 41(4), 2004
dc.relationJ. R. Kopacz, R. Herschitz, and J. Roney. Small satellites an overview and assessment. Acta Astronautica, 170(January):93–105, 2020
dc.relationM. V. Kothare, P. J. Campo, M. Morari, and C. N. Nett. A unified framework for the study of anti-windup designs. Automatica, 30(12):1869–1883, 1994
dc.relationG. Krieger, M. Zink, M. Bachmann, B. Bräutigam, D. Schulze, M. Martone, P. Rizzoli, U. Steinbrecher, J. Walter Antony, F. De Zan, I. Hajnsek, K. Papathanassiou, F. Kugler, M. Rodriguez Cassola, M. Younis, S. Baumgartner, P. López-Dekker, P. Prats, and A. Moreira. TanDEM-X: A radar interferometer with two formation-flying satellites. Acta Astronautica, 89:83–98, 2013
dc.relationR. Kristiansen, P. J. Nicklasson, and J. T. Gravdahl. Formation modelling and 6DOF spacecraft coordination control. Proceedings of the American Control Conference, pages 4690–4696, 2007
dc.relationS. Kumar, D. Sahay, S. R. Hegde, S. Sandya, A. K. Jha, and T. C. Mahalingesh. Design and development of 3-axis reaction wheel for STUDSAT-2. IEEE Aerospace Conference Proceedings, 2015-June(Di):1–13, 2015
dc.relationS. Kumar, D. Sahay, S. R. Hegde, S. Sandya, A. K. Jha, and T. C. Mahalingesh. Design and development of 3-axis reaction wheel for STUDSAT-2. IEEE Aerospace Conference Proceedings, 2015-June(Di):1–13, 2015
dc.relationU. Kvell, M. Puusepp, F. Kaminski, J. E. Past, K. Palmer, T. A. Grönland, and M. Noorma. Nanosatelliitide orbiidi muutmine mikroelektromehaaniliste külmgaasi tõukemootoritega. Proceedings of the Estonian Academy of Sciences, 63(2S):279–285, 2014
dc.relationE. Lansard, E. Frayssinhes, and J. L. Palmade. Global design of satellite constellations: A multicriteria performance comparison of classical walker patterns and new design patterns. Acta Astronautica, 42(9):555–564, 1998
dc.relationW. Larson. Applied Space Systems Engineering. Space tech edition, 2009
dc.relationW. J. Larson and J. R. Wertz. Space mission analysis and design. United States of America, 1999
dc.relationK. Lee and F. Malerba. Catch-up cycles and changes in industrial leadership:Windows of opportunity and responses of firms and countries in the evolution of sectoral systems. Research Policy, 46(2):338–351, 2017
dc.relationT. H. Lee, J. H. Park, D. H. Ji, and H. Y. Jung. Leader-following consensus problem of heterogeneous multi-agent systems with nonlinear dynamics using fuzzy disturbance observer. Complexity, 19(4):20–31, 2014
dc.relationA. Leeman. Prototype of a 4-Reaction Wheel System for Nanosatellites. 2019
dc.relationK. Lemmer. Propulsion for CubeSats. Acta Astronautica, 134:231–243, 2017
dc.relationY. Leng, C. Yu, W. Zhang, Y. Zhang, X. He, and W. Zhou. Task-oriented hierarchical control architecture for swarm robotic system. Natural Computing, 16(4):579–596, 2017
dc.relationF. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das. Cooperative Control of Multi-Agent Systems: Optimal and Adaptive Design Approaches. 2014
dc.relationJ. Li. Satellite Remote Sensing Technologies. Springer, Beijing, China, 2021
dc.relationS. Li, J. Wang, X. Luo, and X. Guan. A new framework of consensus protocol design for complex multi-agent systems. Systems and Control Letters, 60(1):19–26, 2011
dc.relationY. Li, H. Fang, J. Chen, and C. Yu. Distributed Cooperative Fault Detection for Multiagent Systems: A Mixed HH2 Optimization Approach. IEEE Transactions on Industrial Electronics, 65(8):6468–6477, 2018
dc.relationL. Lin and W. Yan-rong. An analytical method for satellite orbit prediction. Chinese Astronomy and Astrophysics, 30(1):68–74, 2006
dc.relationG. P. Liu and S. Zhang. A Survey on Formation Control of Small Satellites. Proceedings of the IEEE, 106(3):440–457, 2018
dc.relationM. W. Lo. Satellite-Constellation Design. Computing in science & engineering, 28(3):58–67, 1999
dc.relationS. Luo, X. Xu, L. Liu, and G. Feng. Output consensus of heterogeneous linear multi-agent systems with communication, input and output time-delays. Journal of the Franklin Institute, 2020
dc.relationA. F. Ma, N. N. Dominikovic, A. F. Ma, N. N. Dominikovic, A. F. Ma, and N. N. Dominikovic. Three-Axis Stabilized Earth Orbiting Spacecraft Simulator. Technical report, 2012
dc.relationY. Mao, L. Dou, H. Fang, and J. Chen. Flocking of multi-robot systems with connectivity maintenance on directed graphs. Journal of Systems Engineering and Electronics, 25(3):470–482, 2014
dc.relationR. G. Marsden. Basic Steps in Designing a Space Mission. Technical Report July, ESA, 2002
dc.relationM. Martin, P. Klupar, S. Kilberg, and J. Winter. TECHSAT 21 and Revolutionizing Space Missions Using Microsatellites. American Institute of Aeronautics and Astronautics, (Fig 1):1–10, 1997
dc.relationR. Martínez-Díaz. Una Novedosa Plataforma Educacional Levitada Magnéticamente para la Determinación , Control y Simulación de la Actitud de Pequeños Satélites Una Novedosa Plataforma Educacional Levitada Magnéticamente para la Determinación , Control y Simulación de la Act. Technical report, Universidad del Valle, Santiago de Cali, 2020
dc.relationA. Martinez Tellez. La Mecánica Cuántica, 2009
dc.relationL. Mazal and P. Gurfil. Acta Astronautica Closed-loop distance-keeping for long-term satellite cluster flight. Acta Astronautica, 94(1):73–82, 2014
dc.relationJ. C. McDowell. The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation. The Astrophysical Journal, 892(2):L36, 2020.
dc.relationM. Mesbahi and M. Egerstedt. Graph theoretic methods in multiagent networks. 2010
dc.relationH. Min, Z. Guoqiang, and S. Junling. Navigation and coordination control system for formation flying satellites. 2010 International Conference on Computer Application and System Modeling (ECCASM), (Iccasm):95–99, 2010
dc.relationY. Mingqi, D. Xurong, and H. Min. Design and simulation for hybrid LEO communication and navigation constellation. CGNCC 2016 - 2016 IEEE Chinese Guidance, Navigation and Control Conference, pages 1665–1669, 2016
dc.relationO. Montenbruck. Satellite Orbits Models - Models, Methods and Applications. Berlin Heidelberg, 2005
dc.relationE. Mooij and M. Ellenbroek. Multi-Functional Guidance, Navigation, and Control Simulation Environment. AIAA Modeling and Simulation Technologies Conference and Exhibit, (August):1– 16, 2007
dc.relationM. H. Moradi, S. Razini, and S. Mahdi Hosseinian. State of art of multiagent systems in power engineering: A review. Renewable and Sustainable Energy Reviews, 58:814–824, 2016
dc.relationF. Morilla, J. Garrido, and F. Vázquez. Anti-windup coordination strategy for multivariable PID control. ETFA 2009 - 2009 IEEE Conference on Emerging Technologies and Factory Automation, 2009
dc.relationA. Morin, J. B. Caussin, C. Eloy, and D. Bartolo. Collective motion with anticipation: Flocking, spinning, and swarming. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 91(1):1–5, 2015
dc.relationR. M. Murray. Recent Research in Cooperative Control of Multivehicle Systems. 129(September 2007):571–583, 2016
dc.relationB. J. Naasz, M. M. Berry, H. Y. Kim, and C. D. Hall. Integrated orbit and attitude control for a nanosatellite with power constraints. Advances in the Astronautical Sciences, 114(SUPPL.):1–18, 2003
dc.relationS. Nag, C. K. Gatebe, and T. Hilker. Simulation of Multiangular Remote Sensing Products Using Small Satellite Formations. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(2):638–653, 2017.
dc.relationJ. Narkiewicz, M. Sochacki, and B. Zakrzewski. Generic Model of a Satellite Attitude Control System. International Journal of Aerospace Engineering, 2020, 2020
dc.relationNASA. Systems Engineering Handbook. National Aeronautics and Space Administration, nasa cente edition, 2007
dc.relationNASA. Small Spacecraft Technology State of the Art. Technical Report July, NASA Mission Design Division Staff, California, 2014
dc.relationW. Navarro. Improving Attitude Determination and Control of Resource-constrained CubeSats Using Unscented Kalman Filtering, 2016
dc.relationJ. P. Nelson and M. J. Balas. Model reference adaptive control of spacecraft attitude for a PNP satellite with unknown time varying input/output delays. SysCon 2012 - 2012 IEEE International Systems Conference, Proceedings, 5(12):618–623, 2012
dc.relationN. T. Nguyen. Model-reference adaptive control. Number 9783319563923. 2018
dc.relationM. Nunes, T. Sorensen, and E. Pilger. Cooperative Control of Multiple Small Satellites using the Comprehensive Open-architecture Space Mission Operations System COOPERATIVE CONTROL OF MULTIPLE SMALL OPEN-ARCHITECTURE SPACE MISSION OPERATIONS. Technical Report June, 2014.
dc.relationN. A. Ofodile, M. C. Turner, and J. Sofrony. Alternative approach to anti-windup synthesis for double integrator systems. American Control Conference (ACC), pages 5473–5478, 2016
dc.relationO. J. Oguntoyinbo. Pid Control of Brushless Dc Motor and Robot Trajectory Planning and Simulation With. 2009
dc.relationK. K. Oh, M. C. Park, and H. S. Ahn. A survey of multi-agent formation control. Automatica, 53:424–440, 2015
dc.relationR. Olfati and R. Murray. Consensus Problems in Networks of Agents with Switching Topology and Time-Delays. pages 1–29, 2003
dc.relationB. R. Olfati-saber, J. A. Fax, and R. M. Murray. Consensus and Cooperation in Networked Multi-Agent Systems. Proceeding of the IEEE, 95(1):215–233, 2007.
dc.relationN. G. Orr, J. K. Eyer, B. P. Larouche, and R. E. Zee. Precision formation flight: The CanX-4 and CanX-5 dual nanosatellite mission. European Space Agency, (Special Publication) ESA SP, (660 SP), 2008
dc.relationF. Paita. Novel consensus strategies applied to spacecraft formation flight. PhD thesis, Universitat Politècnica de Catalunya, 2017.
dc.relationJ. N. Pelton and S. Madry. Handbook of Small Satellites. USA, 2020
dc.relationC. Pinciroli, M. Birattari, E. Tuci, M. Dorigo, M. D. R. Zapatero, T. Vinko, and D. Izzo. Selforganizing and scalable shape formation for a swarm of pico satellites. Proceedings of the 2008 NASA/ESA Conference on Adaptive Hardware and Systems, AHS 2008, pages 57–61, 2008
dc.relationC. Pittet, N. Despré, S. Tarbouriech, and C. Prieur. Nonlinear controller design for satellite reaction wheels unloading using anti-windup techniques. AIAA Guidance, Navigation and Control Conference and Exhibit, (August), 2008
dc.relationD. Platt. A Propulsion System Tailored to Cubesat Application. Conference on Small Satellites 21st Annual AIAA/USU - SSC07-III-7, 44(0):1–9, 2007
dc.relationA. Poghosyan and A. Golkar. CubeSat evolution : Analyzing CubeSat capabilities for conducting science missions. Progress in Aerospace Sciences, (September):1–25, 2016
dc.relationG. A. Poveda. Propuesta de órbita geoestacionaria para el satélite artificial FACSAT01, 2017
dc.relationB. Prescornitoiu and M. Morales. Estudio y diseño de constelaciones de nanosatélites en el marco de las comunicaciones IoT. PhD thesis, Universidad Carlos III de Madrid, 2019
dc.relationJ. Qin, Q. Ma, S. Member, Y. Shi, and S. Member. Recent Advances in Consensus of Multi-Agent Systems : A Brief Survey. IEEE Transactions on Industrial Electronics, 0046(c), 2016
dc.relationL. Qin, X. He, and D. H. Zhou. A survey of fault diagnosis for swarm systems. Systems Science and Control Engineering, 2(1):13–23, 2014
dc.relationZ. Qu, G. Zhang, H. Cao, and J. Xie. LEO Satellite Constellation for Internet of Things. IEEE Access, 5(c):18391–18401, 2017
dc.relationM. Radenkovic and M. Tadi. Multi-agent adaptive consensus of networked systems on directed graphs. International Journal of Adaptive Control and Signal Processing, (May 2015):46–59, 2016
dc.relationR. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-Osorio, F. Pinto, and S. C. Burleigh. Survey of Inter-Satellite Communication for Small Satellite Systems: Physical Layer to Network Layer View. 2016
dc.relationR. Ramnath. Computation and Asymptotics, volume 53. 2012
dc.relationC. Ramos and F. Suarez. Diseño de controladores basados en técnicas de control óptimo lqr+i y h2 para un prototipo del péndulo invertido sobre ruedas. Revista Politécnica, 8(15):45–51, 2012
dc.relationW. Ren. Multi-vehicle consensus with a time-varying reference state. Systems and Control Letters, 56(7-8):474–483, 2007
dc.relationW. Ren and R. W. Beard. Distributed Consensus in Multi-vehicle Cooperative Control -Theory and Applications. 2008
dc.relationG.-W. Rodríguez-P, E. Cortes-G, and J. Sofrony. Sustainable design of low-cost modular test platforms as an entrepreneurship for space development in Colombia. 71th International Astronautical Congress (IAC), The CiberSpace Edition, (October):12–14, 2020
dc.relationG. W. Rodriguez Pirateque, N. Arzola de la Peña, and E. D. Cortes Garcia. Sustainable Design of a NanoSatellite Structure TypeCubeSat as a Modular Platform for Tests. Ciencia y Poder Aéreo, 15(1):108–134, 2020
dc.relationG. W. Rodriguez-Pirateque, P. J. C. Paez, and J. Sofrony. Satellite Systems for Colombian Space Development with Multi-domain Operations *. Ciencia y Poder Aéreo, 16:46–59, 2021
dc.relationG. W. Rodriguez-Pirateque, J. Sofrony, and C. Salazar. Control de traslación y consenso de sistemas satelitales multiagente. 2021
dc.relationG. W. Rodríguez Pirateque and J. Sofrony Esmeral. Revisión de sistemas de control en red como base para sistemas satelitales de pequeña escala. Ciencia y Poder Aéreo, 13(2):90–125, 2018
dc.relationG.-W. Rodríguez-Pirateque, J. Sofrony Esmeral, E. D. Cortés García, and K. Rueda. Diseño de misión, síntesis de factores operacionales y representaciones del segmento espacial, caso FACSAT y EMFF. Ciencia y Poder Aéreo, 15(2):143–165, 2020
dc.relationC. W. Roscoe, J. J.Westphal, and E. Mosleh. Overview and GNC design of the CubeSat Proximity Operations Demonstration (CPOD) mission. Acta Astronautica, (October 2017):0–1, 2018
dc.relationC. Rosso and J. Vieira. Modelo teórico MIMO para un sistema de orientación de 3DOF de un satélite., 2010
dc.relationM. Sabatini, F. Reali, and G. B. Palmerini. Autonomous behavioral strategy and optimal centralized guidance for on-orbit self assembly. IEEE Aerospace Conference Proceedings, (1), 2009
dc.relationN. Saeed, A. Elzanaty, H. Almorad, H. Dahrouj, T. Y. Al-Naffouri, and M. S. Alouini. CubeSat Communications: Recent Advances and Future Challenges. IEEE Communications Surveys and Tutorials, 22(3):1839–1862, 2020
dc.relationR. Sanchez and R. Alonso. Control de Vehículos Espaciales. Revista Iberoamericana de Automática e Informática Industrial, 2(January):6–24, 2010
dc.relationJ. Sanchez de la Vega. Phoenix Cubesat, 2020.
dc.relationP. Sarhadi, A. R. Noei, and A. Khosravi. Model reference adaptive autopilot with anti-windup compensator for an autonomous underwater vehicle: Design and hardware in the loop implementation results. Applied Ocean Research, 62:27–36, 2017
dc.relationA. Sarlette, R. Sepulchre, and N. E. Leonard. Cooperative attitude synchronization in satellite swarms: A consensus approach. IFAC Proceedings Volumes (IFAC-PapersOnline), 17(PART 1):223–228, 2007
dc.relationK. Scarritt. Nonlinear model reference adaptive control for satellite attitude tracking. AIAA Guidance, Navigation and Control Conference and Exhibit, (August), 2008
dc.relationJ. Scharnagl, F. Kempf, and K. Schilling. Combining distributed consensus with robust H -control for satellite formation flying. Electronics (Switzerland), 8(3):1–27, 2019
dc.relationH. Schaub and J. Junkins. Analytical Mechanics of Space Systems, volume 2. AIAA Education Series, Virginia, 2009
dc.relationK. Schilling. Networked Control of Cooperating Distributed Pico-Satellites. IFAC Proceedings Volumes, 47(3):7960–7964, 2014
dc.relationK. Schilling. Perspectives for miniaturized, distributed, networked cooperating systems for space exploration. Robotics and Autonomous Systems, 90:118–124, 2017
dc.relationK. Schilling. Networked Pico-Satellite Distributed System Control Final Report Summary - NETSAT (Networked Pico- Satellite Distributed System Control). Technical report, ZENTRUM FUR TELEMATIK EV, Alemania, 2020
dc.relationK. Schilling, M. Schmidt, K. Ravandoor, O. Kurz, and S. Busch. Attitude determination for the nano-satellite UWE-2. 17th World Congress The International Federation of Automatic Control, 17(1 PART 1):14036–14041, 2008
dc.relationJ. Schwartz, T. Krenzke, S. Hur-Diaz, M. Ruschmann, and J. Schmidt. The flocking controller: A novel cluster control strategy for space vehicles. AIAA Guidance, Navigation, and Control (GNC) Conference, pages 1–15, 2013
dc.relationS. A. Schweighart and R. J. Sedwick. Development and analysis of a high fidelity linearized J2 model for satellite formation flying, 2001
dc.relationJ. Sellers. Understanding Space - An Introduction to Astronautics. 2004
dc.relationM. Shahzad Shaikh, P. Jindal, A. Mali, A. Ansari, and S. Kamble. Design of Mems Based Microthruster - A Study. Materials Today: Proceedings, 5(9):20719–20726, 2018.
dc.relationM. S. Shouman and G. M. E. Bayoumi. Adaptive Robust Control of Satellite Attitude System. International Review of Aerospace Engineering (I.RE.AS.E), 8(February):35–42, 2015
dc.relationJ. Sofrony and M. Turner. Anti-windup design for systems with input quantization. (Cdc):7586– 7591, 2015
dc.relationJ. Sofrony and M. C. Turner. Coprime factor anti-windup for systems with sensor saturation. (45):3813–3818, 2011
dc.relationJ. Sofrony, M. C. Turner, and I. Postlethwaite. Anti-windup synthesis using Riccati equations. IFAC Proceedings Volumes (IFAC-PapersOnline), 16(1):171–176, 2005
dc.relationJ. Sofrony, M. C. Turner, and I. Postlethwaite. Anti-windup synthesis using Riccati equations. International Journal of Control, 80(1):112–128, 2007
dc.relationT. Soldovieri and T. Viloria. EL ANGULO SOLIDO Y ALGUNAS DE SUS APLICACIONES, 2016
dc.relationY. Somov, S. Butyrin, S. Somov, T. Somova, N. Testoyedov, V. Rayevsky, G. Titov, Y. Yakimov, A. Ovchinnikov, and M. Mathylenko. Guidance and adaptive-robust attitude & orbit control of a small information satellite. AIP Conference Proceedings, 1798, 2017
dc.relationE. Spin. Rotations and Euler angles, 2014.
dc.relationM. W. Spong, S. Hutchinson, and M. Vidyasagar. Robot modeling and control, volume 26. 2006
dc.relationJ. Sun, H. Chen, A. Technologies, and M. Student. A Decentralized and Autonomous Control Architecture for Large - Scale Spacecraft Swarm Using Artificial Potential Field and Bifurcation Dynamics. (January), 2018
dc.relationS. Tarbouriech and M. Turner. Anti-windup design: an overview of some recent advances and open problems. IET Control Theory Appl., 3(1):1–19, 2009
dc.relationM. Tariq, T. Bhattacharya, N. Varshney, and D. Rajapan. Fast response Antiwindup PI speed controller of Brushless DC motor drive: Modeling, simulation and implementation on DSP. Journal of Electrical Systems and Information Technology, 3(1):1–13, 2016
dc.relationA. Theorin. Implementation of an Autotunable Decoupling TITO Controller. Technical Report July, 2007
dc.relationF. M. Thiel. Adaptive Control of Plants with Input Saturation : An Approach for Performance Improvement. PhD thesis, 2019
dc.relationD. Tosse and C. Salazar. Diseño del controlador digital para una planta tipo Segway. Technical report, National University of Colombia, 2019
dc.relationJ. F. Trégouët, D. Arzelier, D. Peaucelle, C. Pittet, and L. Zaccarian. Reaction wheels desaturation using magnetorquers and static input allocation. IEEE Transactions on Control Systems Technology, 23(2):525–539, 2015
dc.relationM. C. Turner. Positive mu modification as an anti-windup mechanism. Systems and Control Letters, 102(March 2017):15–21, 2017
dc.relationM. C. Turner. Systems & Control Letters Positive μ modification as an anti-windup mechanism. Systems & Control Letters, 102:15–21, 2017
dc.relationM. C. Turner, G. Herrmann, and I. Postlethwaite. Incorporating robustness requirements into antiwindup design. IEEE Transactions on Automatic Control, 52(10):1842–1855, 2007
dc.relationM. C. Turner, J. Sofrony, and E. Prempain. Anti-windup for model-reference adaptive control schemes with rate-limits. Systems and Control Letters, 137:104630, 2020
dc.relationY. Ulybyshev. Long-Term Formation Keeping of Satellite Constellation Using Lnear-Quadratic Controller. Journal of Guidance, Control, and Dynamics, 132(9):2159–2165, 1998
dc.relationR. H. Vassar and R. B. Sherwood. Formation keeping for a Pair of Satellites in a Circular Obit. Advances in the Astronautical Sciences, 54(Pt 2):1105, 1983
dc.relationR. V. Vázquez. Mecánica Orbital y Vehículos Espaciales-Introducción I. Technical report, Universidad de Sevilla, Sevilla, España, 2015
dc.relationT. Villela, C. A. Costa, A. M. Brandão, F. T. Bueno, and R. Leonardi. Towards the thousandth CubeSat: A statistical overview. International Journal of Aerospace Engineering, 2019
dc.relationC. Wang, J. Li, N. Jing, J. Wang, and H. Chen. A distributed cooperative dynamic task planning algorithm for multiple satellites based on multi-agent hybrid learning. Chinese Journal of Aeronautics, 24(4):493–505, 2011
dc.relationF.-Y. Wang. Networked Control Systems, volume 53. 2008
dc.relationX. Wang and Y. Hong. Finite-Time Consensus for Multi-Agent Networks with Second-Order Agent Dynamics, volume 41. IFAC, 2008
dc.relationO. L. D. Weck. Attitude Determination and Control ( Adcs ). pages 1–57, 2001
dc.relationJ. Wertz. Spacecraft attitude Determination and Control. 1978
dc.relationP. F.Weston and I. Postlethwaite. Linear conditioning for systems containing saturating actuators. Automatica, 36(9):1347–1354, 2000
dc.relationB. Wie. Space Vehicle Dynamics and Control, volume 70. Iowa State University, Virginia, 1952
dc.relationC. H. Won. Comparative study of various control methods for attitude control of a LEO satellite. Aerospace Science and Technology, 3(5):323–333, 1999
dc.relationM. Wooldridge. An introduction to Multi-Agent Systems. 2009
dc.relationZ. P. Wu, Z. H. Guan, and X. Wu. Consensus problem in multi-agent systems with physical position neighbourhood evolving network. Physica A: Statistical Mechanics and its Applications, 379(2):681–690, 2007
dc.relationS. Xu, X.-w. Wang, and M. Huang. Software-Defined Next-Generation Satellite Networks: Architecture, Challenges, and Solutions. IEEE Access, 4(c), 2016
dc.relationX. Yang. Low Earth Orbit (LEO) Mega Constellations – Satellite and Terrestrial Integrated Communication Networks. PhD thesis, 2018
dc.relationY. Yang. Quaternion based model for momentum biased nadir pointing spacecraft. Aerospace Science and Technology, 14(3):199–202, 2010
dc.relationY. Yang. Spacecraft attitude determination and control: Quaternion based method. Annual Reviews in Control, 36(2):198–219, 2012
dc.relationY. Yang. Spacecraft Attitude and Reaction Wheel Desaturation Combined Control Method. IEEE Transactions on Aerospace and Electronic Systems, 53(1):286–295, 2017
dc.relationH.-h. Yeh and A. Sparks. Geometry and Control of Satellite Formations. Proceedings of the American Control Conference, (June):384–388, 2000
dc.relationZ. Yoon, W. Frese, A. Bukmaier, and K. Brieß. System design of an S-band network of distributed nanosatellites. CEAS Space Journal, 6(1):61–71, 2014
dc.relationZ. Yoon, Y. Lim, S. Grau, W. Frese, and M. A. Garcia. Orbit deployment and drag control strategy for formation flight while minimizing collision probability and drift. CEAS Space Journal, 12(3):397–410, 2020
dc.relationL. Zaccarian and A. R. Teel. Modern Anti-windup Synthesis. Princeton University Press, United States of America, 2011
dc.relationB. Zandbergen. Micropropulsion Systems for Cubesats. In Conference: Von Karman Institute for fluid dynamics, number October, pages 1–38, Brussels, 2014
dc.relationP. Zetocha, L. Self, R. Wainwright, and R. Burns. Commanding and controlling satellite clusters Margarita Brito and Derek Surka , Princeton Satellite Systems. IEEE Intelligent Systems, pages 10–15, 2002.
dc.relationC. Zhang, J. Wang, R. Sun, D. Zhang, and X. Shao. Multi-spacecraft attitude cooperative control using model-based event-triggered methodology. Advances in Space Research, 62(9):2620–2630, 2018.
dc.relationH. Zhang and P. Gurfil. Cooperative orbital control of multiple satellites via consensus. IEEE Transactions on Aerospace and Electronic Systems, 54(5):2171–2188, 2018
dc.relationJ. Zhou and Q. Wang. Convergence speed in distributed consensus over dynamically switching random networks. Automatica, 45(6):1455–1461, 2009
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDesarrollo de arquitecturas de control en sistemas satelitales multiagente para servicios de observación terrestre
dc.typeTrabajo de grado - Doctorado


Este ítem pertenece a la siguiente institución