dc.contributorVelásquez Lozano, Mario Enrique
dc.contributorGrupo de Investigación en Procesos Químicos y Bioquímicos
dc.creatorOrtiz Rosas, Juan Pablo
dc.date.accessioned2020-03-04T20:44:15Z
dc.date.accessioned2020-10-04
dc.date.available2020-03-04T20:44:15Z
dc.date.available2020-10-04
dc.date.created2020-03-04T20:44:15Z
dc.date.created2020-10-04
dc.date.issued2019-10-04
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75846
dc.description.abstractIn this study, a collection of yeast strains of Saccharomyces cerevisiae was evaluated in order to select a strain with an increased isobutanol production during the fermentation process. The strain 209-2-8 presented the higher isobutanol production, which was 301.7 mg/L, when a diluted sugar cane syrup supplemented with ammonium dihydrogen phosphate was used as substrate. Further, this yeast was subjected to a mutagenesis process with N-methyl N-nitro nitrosoguanidine, followed by a selection procedure with sulfometuron methyl. As a result, the S. cerevisiae strain Q1 was obtained, which presented an isobutanol production 1.92 fold higher than the parental strain, with a final concentration of isobutanol of 580.8 mg/L. Also, the production of isoamyl alcohol by the Q1 mutant strain was 1.3 fold higher than the parental strain. Subsequently, Q1 mutant strain was subjected to a mutagenesis process with ethyl methane sulphonate followed of an enrichment procedure with nystatin in order to obtain an L-leucine auxotrophic mutant (called Q1m). The strain Q1m reached an isobutanol production of 811.0 mg/L, when a diluted sugar cane syrup supplemented with ammonium dihydrogen phosphate and L-leucine was used as a substrate. This strain also produced a lower isoamyl alcohol level than the parental strain. Through a preliminary bioreactor assay, it was determined that the productivity was 16.4 mg/Lh. On the other hand, a Plackett-Burman experimental design was performed, by using as a reference a chemical defined media. Results showed that potassium dihydrogen phosphate, biotin and pH levels were the main factors that affects isobutanol production.
dc.description.abstractCon el propósito de obtener una cepa de Saccharomyces cerevisiae con mayor producción de isobutanol durante el proceso de fermentación, se evaluó una colección de levaduras de esta especie y se seleccionó la cepa 209-2-8. Esta cepa produjo isobutanol en una concentración de 301.7 mg/L al emplear mieles de caña suplementadas con fosfato diácido de amonio como sustrato. Esta levadura fue sometida a un proceso de mutagénesis con N-metil N-nitro nitrosoguanidina, acoplado a la selección en un medio con sulfometuron metil. De este proceso se obtuvo la levadura S. cerevisiae Q1, la cual presentó una producción de isobutanol 1.92 veces mayor que la de la cepa parental alcanzando una concentración de 580.8 mg/L. La producción de alcohol isoamílico por parte de la cepa mutante fue 1.3 veces mayor respecto a la cepa parental. Posteriormente, mediante un proceso de mutagénesis con etil metano sulfonato y un enriquecimiento con nistatina se obtuvo la cepa Q1m que presenta auxotrofía para L-leucina. Esta cepa alcanzó una producción de isobutanol de 811.0 mg/L en mieles suplementadas con L-leucina, mientras redujo su producción de alcohol isoamílico. La productividad alcanzada fue de 16.4 mg/Lh, la cual fue determinada mediante una evaluación preliminar en biorreactor. Por otro lado, se realizó un diseño experimental Plackett-Burman, empleando un medio de referencia químicamente definido. Con este diseño se encontró que la concentración de fosfato diácido de potasio y la de biotina, y el nivel de pH son los factores que influencian la producción de isobutanol.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] E. Christensen, J. Yanowitz, M. Ratcliff, and R. L. McCormick, “Renewable oxygenate blending effects on gasoline properties,” Energy and Fuels, vol. 25, no. 10, pp. 4723–4733, 2011. [2] L. Tao et al., “Techno-economic analysis and life-cycle assessment of cellulosic isobutanol and comparison with cellulosic ethanol and n-butanol,” Biofuels, Bioprod. Biorefining, vol. 8, no. 1, pp. 30–48, Jan. 2014. [3] Y. Zhang et al., “Production of jet and diesel biofuels from renewable lignocellulosic biomass,” Appl. Energy, 2015. [4] K. Atsonios, M.-A. Kougioumtzis, K. D. Panopoulos, and E. Kakaras, “Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison,” Appl. Energy, vol. 138, pp. 346–366, 2015. [5] J. D. Taylor, M. M. Jenni, and M. W. Peters, “Dehydration of Fermented Isobutanol for the Production of Renewable Chemicals and Fuels,” Top. Catal., vol. 53, no. 15–18, pp. 1224–1230, May 2010. [6] S. Atsumi, T. Hanai, and J. C. Liao, “Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels.,” Nature, vol. 451, no. 7174, pp. 86–9, Jan. 2008. [7] S. Yamamoto, M. Suda, S. Niimi, M. Inui, and H. Yukawa, “Strain optimization for efficient isobutanol production using Corynebacterium glutamicum under oxygen deprivation.,” Biotechnol. Bioeng., vol. 110, no. 11, pp. 2938–48, Nov. 2013. [8] H. Qi, S. Li, S. Zhao, D. Huang, M. Xia, and J. Wen, “Model-driven redox pathway manipulation for improved isobutanol production in Bacillus subtilis complemented with experimental validation and metabolic profiling analysis.,” PLoS One, vol. 9, no. 4, p. e93815, Jan. 2014. [9] P. P. Lin et al., “Consolidated bioprocessing of cellulose to isobutanol using Clostridium thermocellum,” Metab. Eng., vol. 31, pp. 44–52, 2015. [10] W. Siripong et al., “Metabolic engineering of Pichia pastoris for production of isobutanol and isobutyl acetate,” Biotechnol. Biofuels, vol. 11, no. 1, pp. 1–16, 2018. [11] S. K. Hammer and J. L. Avalos, “Uncovering the role of branched-chain amino acid transaminases in Saccharomyces cerevisiae isobutanol biosynthesis,” Metab. Eng., vol. 44, no. October, pp. 302–312, 2017. [12] S. Derrick and P. J. Large, “Activities of the enzymes of the Ehrlich pathway and formation of branched-chain alcohols in Saccharomyces cerevisiae and Candida utilis grown in continuous culture on valine or ammonium as sole nitrogen source.,” J. Gen. Microbiol., vol. 139, no. 11, pp. 2783–92, Nov. 1993. [13] L. Hazelwood and J. Daran, “The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism,” Appl. …, vol. 74, no. 8, pp. 2259–2266, 2008. [14] X. Chen, K. F. Nielsen, I. Borodina, M. C. Kielland-Brandt, and K. Karhumaa, “Increased isobutanol production in Saccharomyces cerevisiae by overexpression of genes in valine metabolism.,” Biotechnol. Biofuels, vol. 4, no. 1, p. 21, Jan. 2011. [15] J. R. Dickinson, S. J. Harrison, and M. J. E. Hewlins, “An investigation of the metabolism of valine to isobutyl alcohol in Saccharomyces cerevisiae.,” J. Biol. Chem., vol. 273, no. 40, pp. 25751–6, Oct. 1998. [16] N. Takpho, D. Watanabe, and H. Takagi, “High-level production of valine by expression of the feedback inhibition-insensitive acetohydroxyacid synthase in Saccharomyces cerevisiae,” Metab. Eng., vol. 46, no. November 2017, pp. 60–67, 2018. [17] L. C. Basso, H. V de Amorim, A. J. de Oliveira, and M. L. Lopes, “Yeast selection for fuel ethanol production in Brazil.,” FEMS Yeast Res., vol. 8, no. 7, pp. 1155–63, Nov. 2008. [18] J. Steensels, T. Snoek, E. Meersman, M. P. Nicolino, K. Voordeckers, and K. J. Verstrepen, “Improving industrial yeast strains: Exploiting natural and artificial diversity,” FEMS Microbiol. Rev., vol. 38, no. 5, pp. 947–995, Apr. 2014. [19] H. Hahn, G. Dämbkes, N. Rupprich, H. Bahl, and G. Frey, “Butanols,” in Ullmann’s Encyclopedia of Industrial Chemistry, 2005, pp. 1–13. [20] H. Liu, X. Cui, Y. Zhang, T. Feng, and K. Zhang, “Isobaric Vapor-Liquid Equilibrium for the Binary and Ternary System with Isobutyl Alcohol, Isobutyl Acetate and Dimethyl Sulfoxide at 101.3 kPa,” J. Chem. Eng. Data, vol. 62, no. 6, pp. 1902–1909, 2017. [21] H. Kuhz, A. Kuenz, U. Prüße, T. Willke, and K.-D. Vorlop, “Products Components: Alcohols,” Adv. Biochem. Eng. Biotechnol., 2017. [22] A. Irimescu, “Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol,” Appl. Energy, vol. 96, pp. 477–483, 2012. [23] Y. Li, Y. Yu, Z. Wang, and J. Wang, “Physical and chemical properties of isobutanol-gasoline blends,” Environ. Prog. Sustain. Energy, vol. 34, no. 3, pp. 908–914, 2015. [24] H. Li, A. F. Cann, and J. C. Liao, “Biofuels: biomolecular engineering fundamentals and advances.,” Annu. Rev. Chem. Biomol. Eng., vol. 1, pp. 19–36, Jan. 2010. [25] S. E. Mainguet and J. C. Liao, “Bioengineering of microorganisms for C₃ to C₅ alcohols production.,” Biotechnol. J., vol. 5, no. 12, pp. 1297–1308, Dec. 2010. [26] J. C. Serrano-Ruiz and J. A. Dumesic, “Catalytic routes for the conversion of biomass into liquid hydrocarbon transportation fuels,” Energy Environ. Sci., vol. 4, no. 1, pp. 83–99, 2011. [27] M. W. Peters and J. D. Taylor, “Renewable jet fuel blendstock from isobutanol,” US Patent 8373012, 2013. [28] R. Mawhood, E. Gazis, S. de Jong, R. Hoefnagels, and R. Slade, “Production pathways for renewable jet fuel: a review of commercialization status and future prospects,” Biofuels, Bioproducts and Biorefining, vol. 10, no. 4. pp. 462–484, 2016. [29] B. J. Eikmanns and B. Blombach, “Isobutanol,” in Bioprocessing of Renewable Resources to Commodity Bioproducts, Wiley-Blackwell, 2014, pp. 327–352. [30] Z. Lin, V. Nikolakis, and M. Ierapetritou, “Alternative approaches for p-xylene production from starch: Techno-economic analysis,” Ind. Eng. Chem. Res., vol. 53, no. 26, pp. 10688–10699, 2014. [31] S. Ostergaard, L. Olsson, and J. Nielsen, “Metabolic engineering of Saccharomyces cerevisiae,” Microbiol. Mol. …, vol. 64, no. 1, pp. 34–50, 2000. [32] J. Nielsen and M. C. Jewett, “Impact of systems biology on metabolic engineering of Saccharomyces cerevisiae.,” FEMS Yeast Res., vol. 8, no. 1, pp. 122–31, Feb. 2008. [33] E. Nevoigt, “Progress in metabolic engineering of Saccharomyces cerevisiae.,” Microbiol. Mol. Biol. Rev., vol. 72, no. 3, pp. 379–412, Sep. 2008. [34] M. Madigan, J. Martinko, D. Stahl, and D. Clark, “Eukaryotic Cell Biology and Eukaryotic Microorganisms,” in Brock Biology of microorganisms, Thirteenth., 2012, pp. 584–612. [35] I. Herskowitz, “Life cycle of the budding yeast Saccharomyces cerevisiae.,” Microbiol. Rev., vol. 52, no. 4, pp. 536–53, Dec. 1988. [36] J. E. Haber, “Mating-type genes and MAT switching in Saccharomyces cerevisiae.,” Genetics, vol. 191, no. 1, pp. 33–64, May 2012. [37] M. E. Walker, J. M. Gardner, A. Vystavelova, C. McBryde, M. D. B. Lopes, and V. Jiranek, “Application of the reuseable, KanMX selectable marker to industrial yeast: Construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequences,” FEMS Yeast Res., vol. 4, no. 3, pp. 339–347, 2003. [38] Y. Tamai, K. Tanaka, Y. Kaneko, and S. Harashima, “HO gene polymorphism in Saccharomyces industrial yeasts and application of novel HO genes to convert homothallism to heterothallism in combination with the mating-type detection cassette,” Appl. Microbiol. Biotechnol., vol. 55, no. 3, pp. 333–340, Apr. 2001. [39] M. Waites, N. Morgan, J. Rockey, and G. Higton, “Microbial growth and nutrition,” in Industrial Microbiology: An introduction, 2001, pp. 21–45. [40] O. Frick and C. Wittmann, “Characterization of the metabolic shift between oxidative and fermentative growth in Saccharomyces cerevisiae by comparative 13C flux analysis,” Microb. Cell Fact., vol. 4, pp. 1–16, 2005. [41] H. Kitagaki, “Mitochondrial-morphology-targeted breeding of industrial yeast strains for alcohol fermentation.,” Biotechnol. Appl. Biochem., vol. 53, no. Pt 3, pp. 145–153, 2009. [42] W. Visser, A. A. van der Baan, W. Batenburg-van der Vegte, W. A. Scheffers, R. Kramer, and J. P. v. Dijken, “Involvement of mitochondria in the assimilatory metabolism of anaerobic Saccharomyces cerevisiae cultures,” Microbiology, vol. 140, no. 11, pp. 3039–3046, Nov. 1994. [43] J. Dynesen, H. P. Smits, L. Olsson, and J. Nielsen, “Carbon catabolite repression of invertase during batch cultivations of Saccharomyces cerevisiae: the role of glucose, fructose, and mannose,” Appl. Microbiol. Biotechnol., vol. 50, no. 5, pp. 579–82, Nov. 1998. [44] E. Nevoigt and U. Stahl, “Osmoregulation and glycerol metabolism in the yeast Saccharomyces cerevisiae,” FEMS Microbiol. Rev., vol. 21, no. 3, pp. 231–241, 1997. [45] M. C. Ferreira, A. J. a. Meirelles, and E. a. C. Batista, “Study of the Fusel Oil Distillation Process,” Ind. Eng. Chem. Res., vol. 52, no. 6, pp. 2336–2351, Feb. 2013. [46] G. Kłosowski et al., “Influence of various yeast strains and selected starchy raw materials on production of higher alcohols during the alcoholic fermentation process,” Eur. Food Res. Technol., vol. 240, no. 1, pp. 233–242, 2014. [47] A. Patil, S. Koolwal, and H. Butala, “Fusel oil: composition, removal and potential utilization,” Int. sugar J., vol. 104, pp. 51–58, 2002. [48] N. Montoya, J. Durán, F. Córdoba, I. D. Gil, C. A. Trujillo, and G. Rodríguez, “Colombian fusel oil,” Ing. e Investig., vol. 36, no. 2, p. 21, Aug. 2016. [49] A. F. Cann and J. C. Liao, “Pentanol isomer synthesis in engineered microorganisms.,” Appl. Microbiol. Biotechnol., vol. 85, no. 4, pp. 893–9, Jan. 2010. [50] P. Giudici, P. Romano, and C. Zambonelli, “A biometric study of higher alcohol production in Saccharomyces cerevisiae.,” Can. J. Microbiol., vol. 36, no. 1, pp. 61–4, Jan. 1990. [51] J. Wess, M. Brinek, and E. Boles, “Improving isobutanol production with the yeast Saccharomyces cerevisiae by successively blocking competing metabolic pathways as well as ethanol and glycerol formation,” Biotechnol. Biofuels, vol. 12, no. 1, pp. 1–15, 2019. [52] S.-H. H. Park, S. Kim, and J.-S. S. Hahn, “Metabolic engineering of Saccharomyces cerevisiae for the production of isobutanol and 3-methyl-1-butanol.,” Appl. Microbiol. Biotechnol., vol. 98, no. 21, pp. 9139–9147, Nov. 2014. [53] Y.-T. Lee and R. G. Duggleby, “Mutations in the regulatory subunit of yeast acetohydroxyacid synthase affect its activation by MgATP.,” Biochem. J., vol. 395, no. 2, pp. 331–6, Apr. 2006. [54] K. M. Smith and J. C. Liao, “An evolutionary strategy for isobutanol production strain development in Escherichia coli.,” Metab. Eng., vol. 13, no. 6, pp. 674–81, Nov. 2011. [55] C. Felpeto-Santero, A. Rojas, M. Tortajada, B. Galán, D. Ramón, and J. L. García, “Engineering alternative isobutanol production platforms,” AMB Express, vol. 5, no. 1, p. 32, Dec. 2015. [56] X. Li, C. R. Shen, and J. C. Liao, “Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942,” Photosynth. Res., vol. 120, no. 3, pp. 301–310, 2014. [57] C. T. Trinh, J. Li, H. W. Blanch, and D. S. Clark, “Redesigning Escherichia coli metabolism for anaerobic production of isobutanol.,” Appl. Environ. Microbiol., vol. 77, no. 14, pp. 4894–904, Jul. 2011. [58] K. M. Smith, K. M. Cho, and J. C. Liao, “Engineering Corynebacterium glutamicum for isobutanol production,” Appl. Microbiol. Biotechnol., vol. 87, no. 3, pp. 1045–1055, 2010. [59] D. Brat, C. Weber, W. Lorenzen, H. B. Bode, and E. Boles, “Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae.,” Biotechnol. Biofuels, vol. 5, no. 1, p. 65, Jan. 2012. [60] J. L. Avalos, G. R. Fink, and G. Stephanopoulos, “Compartmentalization of metabolic pathways in yeast mitochondria improves the production of branched-chain alcohols.,” Nat. Biotechnol., vol. 31, no. 4, pp. 335–41, Apr. 2013. [61] E. Ofuonye, K. Kutin, and D. T. Stuart, “Engineering Saccharomyces cerevisiae fermentative pathways for the production of isobutanol,” Biofuels, vol. 4, no. 2, pp. 185–201, 2013. [62] S. H. Park, S. Kim, and J. S. Hahn, “Improvement of isobutanol production in Saccharomyces cerevisiae by increasing mitochondrial import of pyruvate through mitochondrial pyruvate carrier,” Appl. Microbiol. Biotechnol., vol. 100, no. 17, pp. 7591–7598, 2016. [63] S. Bastian, X. Liu, J. T. Meyerowitz, C. D. Snow, M. M. Y. Chen, and F. H. Arnold, “Engineered ketol-acid reductoisomerase and alcohol dehydrogenase enable anaerobic 2-methylpropan-1-ol production at theoretical yield in Escherichia coli.,” Metab. Eng., vol. 13, no. 3, pp. 345–52, May 2011. [64] S. Parekh, V. a Vinci, and R. J. Strobel, “Improvement of microbial strains and fermentation processes.,” Appl. Microbiol. Biotechnol., vol. 54, no. 3, pp. 287–301, Sep. 2000. [65] J. L. Adrio and A. L. Demain, “Genetic improvement of processes yielding microbial products.,” FEMS Microbiol. Rev., vol. 30, no. 2, pp. 187–214, Mar. 2006. [66] A. Demain and J. Adrio, “Strain improvement for production of pharmaceuticals and other microbial metabolites by fermentation,” Nat. Compd. as Drugs Vol. I, vol. 65, pp. 253–289, 2008. [67] B. A. Kunz et al., “Defects in base excision repair combined with elevated intracellular dCTP levels dramatically reduce mutation induction in yeast by ethyl methanesulfonate and N-methyl-N’-nitro-N-nitrosoguanidine,” Environ. Mol. Mutagen., vol. 32, no. 2, pp. 173–178, 1998. [68] S. Pospísil, J. Kopecký, and V. Prikrylová, “Derepression and altered feedback regulation of valine biosynthetic pathway in analogue-resistant mutants of Streptomyces cinnamonensis resulting in 2-ketoisovalerate excretion,” J. Appl. Microbiol., vol. 85, no. 1, pp. 9–16, Jul. 1998. [69] C. Ramos and I. L. Calderon, “Overproduction of threonine by Saccharomyces cerevisiae mutants resistant to hydroxynorvaline.,” Appl. Environ. Microbiol., vol. 58, no. 5, pp. 1677–82, May 1992. [70] M. Watanabe, K. Fukuda, K. Asano, and S. Ohta, “Mutants of bakers’ yeasts producing a large amount of isobutyl alcohol or isoamyl alcohol, flavour components of bread,” Appl. Microbiol. Biotechnol., vol. 34, no. 2, pp. 154–159, 1990. [71] M. Mobini-Dehkordi, I. Nahvi, H. Zarkesh-Esfahani, K. Ghaedi, M. Tavassoli, and R. Akada, “Isolation of a novel mutant strain of Saccharomyces cerevisiae by an ethyl methane sulfonate-induced mutagenesis approach as a high producer of bioethanol.,” J. Biosci. Bioeng., vol. 105, no. 4, pp. 403–8, Apr. 2008. [72] G. Katre, N. Ajmera, S. Zinjarde, and A. RaviKumar, “Mutants of Yarrowia lipolytica NCIM 3589 grown on waste cooking oil as a biofactory for biodiesel production,” Microb. Cell Fact., vol. 16, no. 1, p. 176, 2017. [73] M. Dragosits and D. Mattanovich, “Adaptive laboratory evolution -- principles and applications for biotechnology,” Microb Cell Fact, vol. 12, p. 64, 2013. [74] R. Mans, J. M. G. Daran, and J. T. Pronk, “Under pressure: evolutionary engineering of yeast strains for improved performance in fuels and chemicals production,” Curr. Opin. Biotechnol., vol. 50, pp. 47–56, 2018. [75] G. Stephanopoulos, “Metabolic engineering by genome shuffling,” Nat. Biotechnol., vol. 20, p. 666, Jul. 2002. [76] T. Snoek et al., “Large-scale robot-assisted genome shuffling yields industrial Saccharomyces cerevisiae yeasts with increased ethanol tolerance,” Biotechnol. Biofuels, vol. 8, no. 1, pp. 1–19, 2015. [77] B. E. Della-Bianca, T. O. Basso, B. U. Stambuk, L. C. Basso, and A. K. Gombert, “What do we know about the yeast strains from the Brazilian fuel ethanol industry?,” Appl. Microbiol. Biotechnol., vol. 97, no. 3, pp. 979–91, Feb. 2013. [78] B. Oud, A. J. A. van Maris, J.-M. M. Daran, and J. T. Pronk, “Genome-wide analytical approaches for reverse metabolic engineering of industrially relevant phenotypes in yeast.,” FEMS Yeast Res, vol. 12, no. 2, pp. 183–96, Mar. 2012. [79] S. P. Zou et al., “Mutagenesis breeding of high echinocandin B producing strain and further titer improvement with culture medium optimization,” Bioprocess Biosyst. Eng., vol. 38, no. 10, pp. 1845–1854, 2015. [80] H. Takagi, F. Iwamoto, and S. Nakamori, “Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants.,” Appl. Microbiol. Biotechnol., vol. 47, no. 4, pp. 405–11, Apr. 1997. [81] R. Kumari and K. Pramanik, “Improvement of multiple stress tolerance in yeast strain by sequential mutagenesis for enhanced bioethanol production.,” J. Biosci. Bioeng., vol. 114, no. 6, pp. 622–9, Dec. 2012. [82] J. A. McCourt, S. S. Pang, J. King-Scott, L. W. Guddat, and R. G. Duggleby, “Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase,” Proc. Natl. Acad. Sci., vol. 103, no. 3, pp. 569–573, 2006. [83] D. A. Treco and F. Winston, “Growth and Manipulation of Yeast,” Curr. Protoc. Mol. Biol., vol. 82, no. 1, pp. 13.2.1-13.2.12, Apr. 2008. [84] V. Lundblad and K. Struhl, “Yeast,” Curr. Protoc. Mol. Biol., vol. 92, no. 1, pp. 13.0.1-13.0.4, Oct. 2010. [85] C. Illuxley, E. Green, and I. Dunbam, “Rapid assessment of S. cerevisiae mating type by PCR,” Trends Genet., vol. 6, no. 8, p. 63110, 1990. [86] F. Winston, “EMS and UV mutagenesis in yeast.,” Curr. Protoc. Mol. Biol., vol. Chapter 13, no. April, p. Unit 13.3B, Apr. 2008. [87] J. F. T. Spencer and D. M. Spencer, “Mutagenesis in yeast.,” Methods Mol. Biol., vol. 53, pp. 17–38, Jan. 1996. [88] C. A. Bilinski, A. M. Sills, and G. G. Stewart, “Morphological and genetic effects of benomyl on polyploid brewing yeasts: Isolation of auxotrophic mutants,” Appl. Environ. Microbiol., vol. 48, no. 4, pp. 813–817, 1984. [89] J. Goldemberg and S. Paulo, “The potential for fi rst- generation ethanol production,” Biofuels, Bioprod. Biorefining, vol. 4, pp. 17–24, 2010. [90] E. E. Vidal, G. M. de Billerbeck, D. A. Simões, A. Schuler, J. M. François, and M. A. de Morais, “Influence of nitrogen supply on the production of higher alcohols/esters and expression of flavour-related genes in cachaça fermentation.,” Food Chem., vol. 138, no. 1, pp. 701–8, May 2013. [91] E. S. C. O’Connor-Cox, J. Paik, and W. M. Ingledew, “Improved ethanol yields through supplementation with excess assimilable nitrogen,” J. Ind. Microbiol., vol. 8, no. 1, pp. 45–52, Jul. 1991. [92] A. M. A. M. Jones, K. C. Thomas, and W. M. Ingledew, “Ethanolic Fermentation of Blackstrap Molasses and Sugarcane Juice Using Very High Gravity Technology,” J. Agric. Food Chem., vol. 42, no. 5, pp. 1242–1246, 1994. [93] B. T. L. Lucena, E. A. Silva-Filho, M. R. M. Coimbra, J. O. F. Morais, D. A. Simões, and M. A. Morais, “Chromosome instability in industrial strains of Saccharomyces cerevisiae batch cultivated under laboratory conditions,” Genet. Mol. Res., vol. 6, no. 4, pp. 1072–1084, 2007. [94] S. J. Rodriguez Gonzalez, “Evaluación del potencial fermentativo de levaduras nativas para la producción de etanol a partir de mieles de caña de azúcar,” Universidad Nacional de Colombia, 2015. [95] F. Sherman, “Getting started with yeast,” Methods Enzymol., vol. 350, pp. 3–41, 2002. [96] M. Day, “Yeast Petites and Small Colony Variants,” in Advances in Applied Microbiology, 2013, pp. 1–41. [97] C. L. Jenkins, S. J. Lawrence, A. I. Kennedy, P. Thurston, J. A. Hodgson, and K. A. Smart, “Incidence and formation of petite mutants in lager brewing yeast saccharomyces cerevisiae (Syn. S. Pastorianus) populations,” J. Am. Soc. Brew. Chem., vol. 67, no. 2, pp. 72–80, 2009. [98] V. C. B. Reis, A. M. Nicola, O. De Souza Oliveira Neto, V. D. F. Batista, L. M. P. De Moraes, and F. A. G. Torres, “Genetic characterization and construction of an auxotrophic strain of Saccharomyces cerevisiae JP1, a Brazilian industrial yeast strain for bioethanol production,” J. Ind. Microbiol. Biotechnol., vol. 39, no. 11, pp. 1673–1683, 2012. [99] M. R. Connor, A. F. Cann, and J. C. Liao, “3-Methyl-1-butanol production in Escherichia coli: random mutagenesis and two-phase fermentation.,” Appl. Microbiol. Biotechnol., vol. 86, no. 4, pp. 1155–64, Apr. 2010. [100] G. Romagnoli et al., “Substrate specificity of thiamine pyrophosphate-dependent 2-oxo-acid decarboxylases in Saccharomyces cerevisiae.,” Appl Env. Microbiol, vol. 78, no. 21, pp. 7538–7548, Nov. 2012. [101] Q. Xie and a Jiménez, “Molecular cloning of a novel allele of SMR1 which determines sulfometuron methyl resistance in Saccharomyces cerevisiae.,” FEMS Microbiol. Lett., vol. 137, no. 2–3, pp. 165–8, Apr. 1996. [102] J. Ambrona, M. Maqueda, E. Zamora, and M. Ramírez, “Sulfometuron Resistance as a Genetic Marker for Yeast Populations in Wine Fermentations,” J. Agric. Food Chem., vol. 53, no. 19, pp. 7438–7443, Sep. 2005. [103] S. Falco and K. Dumas, “Genetic analysis of mutants of Saccharomyces cerevisiae resistant to the herbicide sulfometuron methyl,” Genetics, vol. 109, no. 1, pp. 21–35, 1985. [104] E. Toksoy Öner, S. G. Oliver, and B. Kırdar, “Production of Ethanol from Starch by Respiration-Deficient Recombinant <em>Saccharomyces cerevisiae</em>,” Appl. Environ. Microbiol., vol. 71, no. 10, pp. 6443 LP – 6445, Oct. 2005. [105] A. Hutter and S. G. Oliver, “Ethanol production using nuclear petite yeast mutants,” Appl. Microbiol. Biotechnol., vol. 49, no. 5, pp. 511–516, 1998. [106] L. Murashchenko, C. Abbas, K. Dmytruk, and A. Sibirny, “Overexpression of the truncated version of ILV2 enhances glycerol production in Saccharomyces cerevisiae,” Yeast, vol. 33, no. 8, pp. 463–469, Aug. 2016. [107] S. Hashimoto and M. Ogura, “Isolation of auxotrophic mutants of diploid industrial yeast strains after UV mutagenesis,” Appl. …, vol. 75, no. 1, pp. 312–319, 2005. [108] B. Y. Jeong, C. Wittmann, T. Kato, and E. Y. Park, “Comparative metabolic flux analysis of an Ashbya gossypii wild type strain and a high riboflavin-producing mutant strain,” J. Biosci. Bioeng., vol. 119, no. 1, pp. 101–106, 2015. [109] R. Ledesma-Amaro, C. Serrano-Amatriain, A. Jiménez, and J. L. Revuelta, “Metabolic engineering of riboflavin production in Ashbya gossypii through pathway optimization,” Microb. Cell Fact., vol. 14, no. 1, p. 163, 2015. [110] D. González-Ramos et al., “Genome-scale analyses of butanol tolerance in Saccharomyces cerevisiae reveal an essential role of protein degradation.,” Biotechnol Biofuels, vol. 6, no. 1, p. 48, Jan. 2013. [111] S. Swinnen et al., “Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis,” Genome Res., vol. 22, no. 5, pp. 975–984, 2012. [112] D. González-Ramos et al., “A new laboratory evolution approach to select for constitutive acetic acid tolerance in Saccharomyces cerevisiae and identification of causal mutations,” Biotechnol. Biofuels, vol. 9, no. 1, pp. 1–18, 2016. [113] J. F. T. Spencer and D. M. Spencer, “Rare-Mating and Cytoduction in Saccharomyces cerevisiae BT - Yeast Protocols: Methods in Cell and Molecular Biology,” I. H. Evans, Ed. Totowa, NJ: Humana Press, 1996, pp. 39–44. [114] J. R. Bellon, F. Schmid, D. L. Capone, B. L. Dunn, and P. J. Chambers, “Introducing a New Breed of Wine Yeast: Interspecific Hybridisation between a Commercial Saccharomyces cerevisiae Wine Yeast and Saccharomyces mikatae,” PLoS One, vol. 8, no. 4, 2013. [115] J. R. Bellon et al., “Newly generated interspecific wine yeast hybrids introduce flavour and aroma diversity to wines,” Appl. Microbiol. Biotechnol., vol. 91, no. 3, pp. 603–612, 2011. [116] D. Weuster-Botz, “Experimental design for fermentation media development: Statistical design or global random search?,” J. Biosci. Bioeng., vol. 90, no. 5, pp. 473–483, 2000. [117] M. Kennedy and D. Krouse, “Strategies for improving fermentation medium performance: A review,” J. Ind. Microbiol. Biotechnol., vol. 23, no. 6, pp. 456–475, 1999. [118] S. Dayana Priyadharshini and A. K. Bakthavatsalam, “Optimization of phenol degradation by the microalga Chlorella pyrenoidosa using Plackett-Burman Design and Response Surface Methodology,” Bioresour. Technol., vol. 207, pp. 150–156, 2016. [119] L. A. Al-Madboly, E. G. Khedr, and S. M. Ali, “Optimization of reduced glutathione production by a Lactobacillus plantarum isolate using Plackett-Burman and Box-Behnken designs,” Front. Microbiol., vol. 8, no. MAY, 2017. [120] F. B. Pereira, P. M. R. R. Guimarães, J. A. Teixeira, and L. Domingues, “Optimization of low-cost medium for very high gravity ethanol fermentations by Saccharomyces cerevisiae using statistical experimental designs,” Bioresour. Technol., vol. 101, no. 20, pp. 7856–7863, Oct. 2010. [121] D. Montgomery, “Diseños factoriales fraccionados de dos niveles,” in Diseño y análisis de experimentos, Segunda ed., Limusa Wiley, 2004, pp. 343–347. [122] M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, “Response surface methodology (RSM) as a tool for optimization in analytical chemistry,” Talanta, vol. 76, no. 5, pp. 965–977, Sep. 2008. [123] S. L. C. Ferreira et al., “Box-Behnken design: An alternative for the optimization of analytical methods,” Anal. Chim. Acta, vol. 597, no. 2, pp. 179–186, Aug. 2007. [124] D. Gangadharan, S. Sivaramakrishnan, K. M. Nampoothiri, R. K. Sukumaran, and A. Pandey, “Response surface methodology for the optimization of alpha amylase production by Bacillus amyloliquefaciens,” Bioresour. Technol., vol. 99, no. 11, pp. 4597–4602, 2008. [125] J. Job, R. K. Sukumaran, and K. Jayachandran, “Production of a highly glucose tolerant β-glucosidase by Paecilomyces variotii MG3: Optimization of fermentation conditions using Plackett-Burman and Box-Behnken experimental designs,” World J. Microbiol. Biotechnol., vol. 26, no. 8, pp. 1385–1391, 2010. [126] W. Q. Guo et al., “Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology,” Bioresour. Technol., vol. 100, no. 3, pp. 1192–1196, 2009. [127] C. Verduyn, E. Postma, W. A. Scheffers, J. P. van Dijken, and J. P. Dijken, “Physiology of Saccharomyces cerevisiae in anaerobic glucose-limited chemostat cultures.,” J. Gen. Microbiol., vol. 136, no. 3, pp. 395–403, Mar. 1990. [128] C. Verduyn, E. Postma, W. A. Scheffers, and J. P. van Dijken, “Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation,” Yeast, vol. 8, 1992. [129] L. Gutierrez, “Effect of some vitamins and micronutrient deficiencies on the production of higher alcohols by Saccharomyces cerevisiae,” Sci. Agric., vol. 50, pp. 484–489, 1993. [130] R. Li, G. Xiong, S. Yuan, Z. Wu, Y. Miao, and P. Weng, “Investigating the underlying mechanism of Saccharomyces cerevisiae in response to ethanol stress employing RNA-seq analysis,” World J. Microbiol. Biotechnol., vol. 33, no. 11, pp. 1–13, 2017. [131] J. C. Bohlscheid, J. K. Fellman, X. D. Wang, D. Ansen, and C. G. Edwards, “The influence of nitrogen and biotin interactions on the performance of Saccharomyces in alcoholic fermentations.,” J. Appl. Microbiol., vol. 102, no. 2, pp. 390–400, Feb. 2007. [132] P. Romano, G. Suzzi, L. Turbanti, and M. Polsinelli, “Acetaldehyde production in Saccharomyces cerevisiae wine yeasts,” FEMS Microbiol. Lett., vol. 118, no. 3, pp. 213–218, 1994. [133] V. K. Jain, B. Divol, B. A. Prior, and F. F. Bauer, “Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant.,” Appl. Microbiol. Biotechnol., vol. 93, no. 1, pp. 131–141, Jan. 2012. [134] J. T. J. Pronk, H. Y. H. Steensma, J. P. Van Dijken, and J. Van Dijken, “Pyruvate metabolism in Saccharomyces cerevisiae,” Yeast, vol. 12, no. 16, pp. 1607–1633, 1996. [135] L. Laopaiboon, P. Thanonkeo, P. Jaisil, and P. Laopaiboon, “Ethanol production from sweet sorghum juice in batch and fed-batch fermentations by Saccharomyces cerevisiae,” World J. Microbiol. Biotechnol., vol. 23, no. 10, pp. 1497–1501, Apr. 2007. [136] C. L. Fern??ndez-L??pez et al., “Use of sugarcane molasses ‘B’ as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.,” Bioprocess Biosyst. Eng., vol. 35, no. 4, pp. 605–14, May 2012. [137] G. Laimer, Ed., “Chapter 27. Malt beverages and brewing materiales. AOAC 945.30.,” in Official Methods of Analysis of AOAC International, 19 th Edit., 2012, p. 39. [138] S. Lie, “The EBC-NINHYDRIN METHOD FOR DETERMINATION OF FREE ALPHA AMINO NITROGEN,” J. Inst. Brew., vol. 79, no. 1, pp. 37–41, Jan. 1973. [139] M. Maqueda, E. Zamora, N. Rodríguez-Cousiño, and M. Ramírez, “Wine yeast molecular typing using a simplified method for simultaneously extracting mtDNA, nuclear DNA and virus dsRNA,” Food Microbiol., vol. 27, no. 2, pp. 205–209, 2010.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleMutagénesis, selección y caracterización nutricional de una cepa nativa de Saccharomyces cerevisiae para la producción de isobutanol
dc.typeOtro


Este ítem pertenece a la siguiente institución