dc.contributorCastellanos Hernandez, Leonardo
dc.contributorVillamizar Rivero, Laura Villamizar
dc.contributorEstudio y Aprovechamiento de Productos Naturales Marinos y Frutas de Colombia
dc.contributorGloria Patricia Barrera
dc.creatorGarcia Riaño, Jennifer Lorena
dc.date.accessioned2022-08-24T13:43:40Z
dc.date.available2022-08-24T13:43:40Z
dc.date.created2022-08-24T13:43:40Z
dc.date.issued2022-05-16
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/82054
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractLos conidios son las estructuras fúngicas más comúnmente utilizadas como ingrediente activo para el desarrollo de bioplaguicidas. Sin embargo, diferentes problemas asociados con su producción masiva en fermentación sólida, su manipulación a gran escala, y la susceptibilidad a condiciones ambientales, que resulta en una baja persistencia en campo, han motivado la investigación en torno al uso alternativo de otros propágulos fúngicos. Los microesclerocios (ME) son propágulos con gran potencial para el desarrollo de bioplaguicidas más persistentes y fáciles de producir, debido a sus características de resistencia, capacidad de germinación y de producción de conidios infectivos de insectos. Teniendo en cuenta lo anterior, el objetivo principal de este trabajo fue inducir la producción de microesclerocios con la cepa de Metarhizium robertsii Mt004 y estudiar el proceso de formación, estructura, composición, fisiología y potencial insecticida. Para ello, inicialmente se realizó la identificación a nivel de especie la cepa de Metarhizium sp. Mt004 (previamente seleccionada por su alta virulencia frente varios insectos plaga) y se desarrollaron las condiciones para inducir la formación de microesclerocios en cultivo sumergido. Los ME se caracterizaron en cuanto a su estructura, composición, fisiología y actividad biocontroladora; y finalmente se buscó la identificación de metabolitos producidos durante la producción de los ME que puedan tener actividad insecticida. El aislamiento Mt004 fue identificado molecularmente como Metarhizium robertsii mediante el análisis basado en las secuencias de la región espaciadora interna transcrita del ADN ribosomal (ITS), el factor de elongación 1-alfa (EF-1α) y la región beta tubulina (β-tubulina). Para la producción de ME se evaluaron cuatro medios de cultivos con diferentes relaciones Carbono:Nitrógeno (C:N). El medio de cultivo “D” fue seleccionado por producir el mejor rendimiento de ME (2,04x103 ME/mL) con posterior producción de conidios (6,02x105 conidios/ME). Los ME obtenidos en cultivos de 20 días se caracterizaron morfológica, ecofisiológica, química y biológicamente. La observación ultraestructural de los ME evidenció la presencia de hifas intrincadas en el inicio de su formación, hasta conformar una estructura compacta cimentada en una matriz extracelular amorfa. En el análisis composicional de las estructuras no se detectó la presencia de trehalosa, pero si se confirmó la presencia de pequeñas concentraciones de manitol; y los espectros de Resonancia Magnética Nuclear sugirieron la presencia de otros carbohidratos que podrían servir como reservas energéticas para garantizar la sobrevivencia de los ME. En comparación con los conidios, los ME presentaron mayor resistencia a condiciones de estrés ambiental como temperatura y la radiación UV. De forma similar, los ME fueron más estables que los conidios bajo condiciones de almacenamiento a diferentes temperaturas (8, 18 y 28 °C), manteniéndose viables después de ser almacenados por 6 meses a 8°C, mientras que los conidios no germinaron después de 2 meses a ninguna de las temperaturas evaluadas. La actividad insecticida de los conidios producidos por los ME fue evaluada utilizando larvas de Diatraea saccharalis como insecto modelo, con el cual se obtuvo un 78% de eficacia que sugiere que los conidios producidos por estas estructuras son propágulos altamente virulentos. La evaluación de la actividad insecticida de los metabolitos liberados al medio de fermentación durante la producción de los ME mostró una eficacia cercana al 50% sobre larvas de D. saccharalis cuando se utilizaron el medio libre de células y la fracción orgánica FO. Los datos de espectrometría de masas en tándem (MS/MS) obtenidos para la FO fueron usados en la construcción de redes moleculares utilizando la plataforma GNPS (Global Natural Product Molecular Networking Social). Los análisis identificaron compuestos con homología con la familia de los ciclodepsipéptidos sugiriendo la presencia de 24 destruxinas, entre las que se encuentran la destruxina A, A2, B reconocidas por su actividad insecticida. Los resultados obtenidos en este trabajo muestran el potencial de los ME de M. robertsii, y de los metabolitos liberados al medio durante su producción, para ser usados como principio activo de un bioplaguicida con óptimas características de eficacia, estabilidad y tolerancia a condiciones abióticas. Esto sumado a que su producción se realiza mediante fermentación sumergida que es un proceso sencillo, escalable, replicable y de fácil control, hace que esta tecnología sea ideal para el futuro desarrollo de un bioplaguicida novedoso, eficiente y con alta factibilidad técnica y económica.
dc.description.abstractConidia are commonly used as the active ingredient for biopesticide development. However, conidia performance in field is drastically affected by abiotic factors, which added to its laborious production using solid fermentation (SSF) have motivated the search for novel fungal propagules. Microsclerotia (ME) are fungal propagules formed by compact and pigmented aggregates of mycelium, highly tolerant to desiccation, and able to produce infective conidia. In this work, the main objective to induce the Metarhizium robertsii microsclerotia production and study the ME formation process, ME structure, composition, physiology, and insecticidal activity. Firstly, we identified the strain of Metarhizium sp. Mt004 (previously selected for its high virulence against several insect pests) and developed the conditions to induce the formation of microsclerotia in submerged culture. We also studied the ME formation process, ME structure, composition, physiology, and insecticidal activity; as well as the metabolites with insecticidal potential produced during MS formation. The isolate Mt004 was clustered in the same clade with Metarhizium robertsii based on genomic multilocus (ITS, EF-1α, and β-tubulin). For ME production, four culture media with different Carbon: Nitrogen (C:N) ratios was evaluated. Culture medium "D" was selected for reaching the highest yield (2.04x103 ME/mL) with subsequent production of conidia of 6.02x105 conidia/ME. ME harvested after 20-day of fermentation were then morphologically, ecophysiologically, chemically and biologically characterized. The ultrastructural analysis revealed the presence of intricate hyphae at the beginning of the formation process and a few live cells embedded in a compact extracellular matrix were observed in mature structures. The compositional analysis showed the presence of small concentrations of mannitol whereas trehalose was not detected, but Nuclear Magnetic Resonance spectra suggested the presence of other carbohydrates that could serve as energy reserves to guarantee the ME survival. ME were more tolerant to heat and UV radiation than conidia produced by SSF. Similarly, ME were more stable than conidia under storage conditions at different temperatures (8, 18 and 28 °C), remaining viable after 6 months of storage at 8 °C, while conidia produced by SSF died after 2 months of storage at all temperatures evaluated. The ME-derived conidia caused 78% mortality of Diatraea saccharalis larvae, suggesting that conidia produced by ME are highly virulent propagules. Insecticidal activity of metabolites released into the broth during microsclerotia formation showed efficacies around 50% against D. saccharalis larvae when the fungus-free supernatant and the organic fraction were used. The tandem mass spectrometry (MS/MS) data obtained for the organic fraction were used in the construction of molecular networks using the GNPS (Global Natural Product Molecular Networking Social) platform. The majority of compounds in the organic fraction were from the cyclodepsipeptide family, suggesting the presence of 24 destruxins, including destruxin A, A2 and B, which have been previously recognized for their insecticidal activity. The results obtained in this work show the potential of ME from M. robertsii and the metabolites released during their production, to be used as an active ingredient of a biopesticide with optimal characteristics of efficacy, stability and tolerance to abiotic conditions. This, added to the fact that its production is carried out by submerged fermentation, which is a simple, scalable, replicable and easily controlled process, makes this technology ideal for the future development of a novel, efficient biopesticide with high technical and economic feasibility.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Química
dc.publisherDepartamento de Química
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAbo Ellil AHA (1999) Sclerotial development, melanin production and lipid peroxidation by Sclerotium rolfsii. Folia Microbiologica 44(2):181-186
dc.relationAldridge DC, Turner WB (1969) Structures of cytochalasins C and D. Journal of the Chemical Society C: Organic (6):923-928. https://doi.org/10.1039/j39690000923
dc.relationAl-Hamdani AM, Cooke RC (1987) Effects of water potential on accumulation and exudation of carbohydrates and glycerol during sclerotium formation and myceliogenic germination in Sclerotinia sclerotiorum. Transactions of the British Mycological Society 89(1):51-60. https://doi.org/10.1016/s0007-1536(87)80057-8
dc.relationAfoullouss S, Balsam A, Allcock AL, Thomas OP (2022) Optimization of LC-MS 2 Data Acquisition Parameters for Molecular Networking Applied to Marine Natural Products. Metabolites 12 (3): 245. https://doi.org/10.3390/metabo12030245
dc.relationAmsellem Z, Zidack NK, Quimby PC, Gressel J (1999) Long-term dry preservation of viable mycelia of two mycoherbicidal organisms. Crop Protection 18(10):643-649. https://doi.org/10.1016/S0261-2194(99)00070-8
dc.relationAnsari MA, Butt TM (2013) Influence of the application methods and doses on the susceptibility of black vine weevil larvae Otiorhynchus sulcatus to Metarhizium anisopliae in field-grown strawberries. BioControl 58(2):257-267. https://doi.org/10.1007/s10526-012-9491-x
dc.relationArgüelles J-C, Guirao-Abad JP, Sánchez-Fresneda R (2017) Trehalose: A Crucial Molecule in the Physiology of Fungi. Reference Module in Life Sciences :1-9. https://doi.org/10.1016/b978-0-12-809633-8.12084-9
dc.relationArroyo-Manzanares N, Diana Di Mavungu J, Garrido-Jurado I, Arce L, Vanhaecke L, Quesada-Moraga E, De Saeger S (2017) Analytical strategy for determination of known and unknown destruxins using hybrid quadrupole-Orbitrap high-resolution mass spectrometry. Analytical and Bioanalytical Chemistry 409(13):3347-3357. https://doi.org/10.1007/s00216-017-0276-z
dc.relationBaard SW, Van Wyk PWJ, Pauer GDC (1981) Structure and lysis of microsclerotia of Verticillium dahliae in soil. Transactions of the British Mycological Society 77(2):251-260. https://doi.org/10.1016/s0007-1536(81)80027-7
dc.relationBehle RW, Jackson MA (2014) Effect of fermentation media on the production, efficacy, and storage stability of Metarhizium brunneum microsclerotia formulated as a prototype granule. Journal of Economic Entomology 107(2):582-590. https://doi.org/10.1603/EC13426
dc.relationBehle RW, Jackson MA, Flor-Weiler LB (2013) Efficacy of a Granular Formulation Containing Metarhizium brunneum F52 (Hypocreales: Clavicipitaceae) Microsclerotia Against Nymphs of Ixodes scapularis (Acari: Ixoididae). Journal of Economic Entomology 106(1):57-63. https://doi.org/10.1603/ec12226
dc.relationBelozerskaya TA, Gessler NN, Aver‘yanov AA (2017) Melanin Pigments of Fungi. Fungal Metabolites (July):263-291. https://doi.org/10.1007/978-3-319-25001-4_29
dc.relationBennett JW, Horowitz PC, Lee LS (1979) Production of Sclerotia by Aflatoxigenic and Nonaflatoxigenic Strains of Aspergillus Flavus and A. Parasiticus. Mycologia 71(2):415-422. https://doi.org/10.1080/00275514.1979.12021019
dc.relationBernardo CC, Barreto LP, e Silva C de SR, Luz C, Arruda W, Fernandes ÉKK (2018) Conidia and blastospores of Metarhizium spp. and Beauveria bassiana sl: Their development during the infection process and virulence against the tick Rhipicephalus microplus. Ticks and Tick-borne Diseases 9(5):1334-1342. https://doi.org/10.1016/j.ttbdis.2018.06.001
dc.relationBeys-da-Silva WO, Rosa RL, Berger M, Coutinho-Rodrigues CJB, Vainstein MH, Schrank A, Bittencourt VREP, Santi L (2020) Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Experimental Parasitology 208(October 2019):107812. https://doi.org/10.1016/j.exppara.2019.107812
dc.relationBraga GUL, Rangel DEN, Fernandes ÉKK, Flint SD, Roberts DW (2015) Molecular and physiological effects of environmental UV radiation on fungal conidia. Current Genetics 61(3):405-425. https://doi.org/10.1007/s00294-015-0483-0
dc.relationBraga GUL, Rangel DEN, Flint SD, Anderson AJ, Roberts DW (2006) Conidial Pigmentation Is Important to Tolerance Against Solar-simulated Radiation in the Entomopathogenic Fungus Metarhizium anisopliae. Photochemistry and Photobiology 82(2):418. https://doi.org/10.1562/2005-05-08-ra-52
dc.relationBullock S, Ashford AE, Willetts HJ (1980) The structure and histochemistry of sclerotia of Sclerotinia minor Jagger - II. Histochemistry of extracellular substances and cytoplasmic reserves. Protoplasma 104(3-4):333-351. https://doi.org/10.1007/BF01279777
dc.relationButler MJ, Day AW (1998) Fungal melanins: A review. Canadian Journal of Microbiology 44(12):1115-1136. https://doi.org/10.1139/w98-119
dc.relationCalvo AM, Cary JW (2015) Association of fungal secondary metabolism and sclerotial biology. Frontiers in Microbiology 6(FEB):1-16. https://doi.org/10.3389/fmicb.2015.00062
dc.relationCalvo AM, Wilson RA, Bok J, Keller NP (2002) Relationship between Secondary Metabolism and Fungal Development. Microbiology and Molecular Biology Reviews 66(3):447-459. https://doi.org/10.1128/MMBR.66.3.447
dc.relationCarollo CA, Calil ALA, Schiave LA, Guaratini T, Roberts DW, Lopes NP, Braga GUL (2010) Fungal tyrosine betaine, a novel secondary metabolite from conidia of entomopathogenic Metarhizium spp. fungi. Fungal Biology 114(5-6):473-480. https://doi.org/10.1016/j.funbio.2010.03.009
dc.relationCheng XH, Guo SX, Wang CL (2006) Factors influencing formation of Sclerotia in Grifola umbellate (Pers.) Pilát under artificial conditions. Journal of Integrative Plant Biology 48(11):1312-1317. https://doi.org/10.1111/j.1744-7909.2006.00349.x
dc.relationClifton EH, Gardescu S, Behle RW, Hajek AE (2019) Asian longhorned beetle bioassays to evaluate formulation and dose-response effects of Metarhizium microsclerotia. Journal of Invertebrate Pathology 163:64-66. https://doi.org/10.1016/j.jip.2019.03.005
dc.relationChoi K-D, Kwon J-K, Shim JO, Lee S-S, Lee T-S, Lee MW (2002) Sclerotial Development of Grifola umbellate. Mycobiology 30(2):65. https://doi.org/10.4489/myco.2002.30.2.065
dc.relationColotelo N, Sumner JL, Voegelin WS (1971) Chemical studies on the exudate and developing sclerotia of Sclerotinia sclerotiorum (Lib.) DeBary. Canadian journal of microbiology 17(9):1189-1194. https://doi.org/10.1139/m71-190
dc.relationCordero RJB, Casadevall A (2017) Functions of fungal melanin beyond virulence. Fungal Biology Reviews 31(2):99-112. https://doi.org/10.1016/j.fbr.2016.12.003
dc.relationCorval ARC, Mesquita E, Corrêa TA, Silva C de SR, Bitencourt R de OB, Fernandes ÉKK, Bittencourt VREP, Roberts DW, Gôlo PS (2021) UV-B tolerances of conidia, blastospores, and microsclerotia of Metarhizium spp. entomopathogenic fungi. Journal of Basic Microbiology 61(1):15-26. https://doi.org/10.1002/jobm.202000515
dc.relationCotes A. M. (Ed.). (2018). Control biológico de fitopatógenos, insectos y ácaros (Vol. 1 y Vol 2). Primera, ed. Agrosavia editorial, Mosquera, Cundinamarca, Colombia, pp. 928-930.
dc.relationDonzelli BGG, Krasnoff SB (2016) Molecular Genetics of Secondary Chemistry in Metarhizium Fungi. Elsevier Ltd
dc.relationDonzelli BGG, Krasnoff SB, Sun-Moon Y, Churchill ACL, Gibson DM (2012) Genetic basis of destruxin production in the entomopathogen Metarhizium robertsii. Current Genetics 58(2):105-116. https://doi.org/10.1007/s00294-012-0368-4
dc.relationDudley E, Wang C, Skrobek A, Newton RP, Butt TM (2004) Mass spectrometric studies on the intrinsic stability of destruxin E from Metarhizium anisopliae. Rapid Communications in Mass Spectrometry 18(21):2577-2586. https://doi.org/10.1002/rcm.1659
dc.relationDührkop K, Fleischauer M, Ludwig M, Aksenov AA, Melnik A V., Meusel M, Dorrestein PC, Rousu J, Böcker S (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nature Methods 16(4):299-302. https://doi.org/10.1038/s41592-019-0344-8
dc.relationDunlap CA, Jackson MA, Saha BC (2011) Compatible solutes of sclerotia of Mycoleptodiscus terrestris under different culture and drying conditions. Biocontrol Science and Technology 21(2):113-123. https://doi.org/10.1080/09583157.2010.534551
dc.relationErental A, Dickman MB, Yarden O (2008) Sclerotial development in Sclerotinia sclerotiorum: awakening molecular analysis of a «Dormant» structure. Fungal Biology Reviews 22(1):6-16. https://doi.org/10.1016/j.fbr.2007.10.001
dc.relationFan R, Klosterman SJ, Wang C, Subbarao K V., Xu X, Shang W, Hu X (2017) Vayg1 is required for microsclerotium formation and melanin production in Verticillium dahliae. Fungal Genetics and Biology 98:1-11. https://doi.org/10.1016/j.fgb.2016.11.003
dc.relationFaria M, Lopes RB, Souza DA, Wraight SP (2015) Conidial vigor vs. viability as predictors of virulence of entomopathogenic fungi. Journal of Invertebrate Pathology 125:68-72. https://doi.org/10.1016/j.jip.2014.12.012
dc.relationFernandes ÉKK, Rangel DEN, Braga GUL, Roberts DW (2015) Tolerance of entomopathogenic fungi to ultraviolet radiation: a review on screening of strains and their formulation. Current Genetics. https://doi.org/10.1007/s00294-015-0492-z
dc.relationFernandes ÉKK, Rangel DEN, Moraes ÁML, Bittencourt VREP, Roberts DW (2007) Variability in tolerance to UV-B radiation among Beauveria spp. isolates. Journal of Invertebrate Pathology 96(3):237-243. https://doi.org/10.1016/j.jip.2007.05.007
dc.relationFronza E, Specht A, Heinzen H, de Barros NM (2017) Metarhizium (Nomuraea) rileyi as biological control agent. Biocontrol Science and Technology 27(11):1243-1264. https://doi.org/10.1080/09583157.2017.1391175
dc.relationGeorgiou CD, Patsoukis N, Papapostolou I, Zervoudakis G (2006) Sclerotial metamorphosis in filamentous fungi is induced by oxidative stress. Integrative and Comparative Biology 46(6):691-712. https://doi.org/10.1093/icb/icj034
dc.relationGessler NN, Egorova AS, Belozerskaya TA (2014) Melanin pigments of fungi under extreme environmental conditions (Review). Applied Biochemistry and Microbiology 50(2):105-113. https://doi.org/10.1134/S0003683814020094
dc.relationGoble TA, Gardescu S, Fisher JJ, Jackson MA, Hajek AE (2016) Conidial production, persistence and pathogenicity of hydromulch formulations of Metarhizium brunneum F52 microsclerotia under forest conditions. Biological Control 95:83-93. https://doi.org/10.1016/j.biocontrol.2016.01.003
dc.relationGomez-Miranda B, Leal JA (1979) Chemical composition of Botrytis cinerea sclerotia. Transactions of the British Mycological Society 73(1):161-164. https://doi.org/10.1016/s0007-1536(79)80089-3
dc.relationGriffin (1981) Fungal phisiology. A while-interscience publication., USA. New York. pp 102-227,260-279.
dc.relationGriffiths DA (1970) The fine structure of developing microsclerotia of Verticillium dahliae Kleb. Archiv für Mikrobiologie 74(3):207-212. https://doi.org/10.1007/BF00408881
dc.relationHallsworth JE, Magan N (1995) Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology 141(5):1109-1115. https://doi.org/10.1099/13500872-141-5-1109
dc.relationHallsworth JE, Magan N (1996) Culture Age, temperature, and pH affect the polyol and trehalose contents of fungal propagules. Applied and Environmental Microbiology 62(7):2435-2442. https://doi.org/10.1128/aem.62.7.2435-2442.1996
dc.relationHe P, Wang K, Cai Y, Hu X, Zheng Y, Zhang J, Liu W (2018) Involvement of autophagy and apoptosis and lipid accumulation in sclerotial morphogenesis of Morchella importuna. Micron 109(March):34-40. https://doi.org/10.1016/j.micron.2018.03.005
dc.relationHong TD, Jenkins NE, Ellis RH (2000) The effects of duration of development and drying regime on the longevity of conidia of Metarhizium flavoviride. Mycological Research 104(6):662-665. https://doi.org/10.1017/S0953756299001872
dc.relationHu QB, Ren SX, Wu JH, Chang JM, Musa PD (2006) Investigation of destruxin A and B from 80 Metarhizium strains in China, and the optimization of cultural conditions for the strain MaQ10. Toxicon 48(5):491-498. https://doi.org/10.1016/j.toxicon.2006.06.018
dc.relationIgnoffo CM, Garcia C (1992) Influence of Conidial Color on Inactivation of Several Entomogenous Fungi (Hyphomycetes) by Simulated Sunlight. Environmental Entomology 21(4):913-917. https://doi.org/10.1093/ee/21.4.913
dc.relationIssaly N, Chauveau H, Aglevor F, Fargues J, Durand A (2005) Influence of nutrient, pH and dissolved oxygen on the production of Metarhizium flavoviride Mf189 blastospores in submerged batch culture. Process Biochemistry 40(3-4):1425-1431. https://doi.org/10.1016/j.procbio.2004.06.029
dc.relationIwanicki NSA, Ferreira B de O, Mascarin GM, Júnior ÍD (2018) Modified Adamek’s medium renders high yields of Metarhizium robertsii blastospores that are desiccation tolerant and infective to cattle-tick larvae. Fungal Biology 122(9):883-890. https://doi.org/10.1016/j.funbio.2018.05.004
dc.relationJackson MA, Dunlap CA, Jaronski ST (2010) Ecological considerations in producing and formulating fungal entomopathogens for use in insect biocontrol. BioControl 55(1):129-145. https://doi.org/10.1007/s10526-009-9240-y
dc.relationJackson MA, Jaronski ST (2009) Production of microsclerotia of the fungal entomopathogen Metarhizium anisopliae and their potential for use as a biocontrol agent for soil-inhabiting insects. Mycological Research 113(8):842-850. https://doi.org/10.1016/j.mycres.2009.03.004
dc.relationJackson MA, Jaronski ST (2012) Development of pilot-scale fermentation and stabilisation processes for the production of microsclerotia of the entomopathogenic fungus Metarhizium brunneum strain F52. Biocontrol Science and Technology 22(8):915-930. https://doi.org/10.1080/09583157.2012.696578
dc.relationJackson MA, Payne AR (2016) Liquid Culture Production of Fungal Microsclerotia. En: Glare TR, Moran-Diez (eds) Microbial-Based Biopesticides: Methods and Protocols, Methods in Molecular Biology, New York, pp 71-83
dc.relationJackson MA, Schisler DA (1992) The composition and attributes of Colletotrichum truncatum spores are altered by the nutritional environment. Applied and Environmental Microbiology 58(7):2260-2265
dc.relationJackson MA, Schisler DA (1995) Liquid culture production of microsclerotia of Colletotrichum truncatum for use as bioherbicidal propagules. Mycological Research 99(7):879-884. https://doi.org/10.1016/S0953-7562(09)80745-4
dc.relationJaronski ST, Jackson MA (2008) Efficacy of Metarhizium anisopliae microsclerotial granules. Biocontrol Science and Technology 18(8):849-863. https://doi.org/10.1080/09583150802381144
dc.relationJennings DH (1985) Polyol Metabolism in Fungi. Advances in Microbial Physiology 25(C):149-193. https://doi.org/10.1016/S0065-2911(08)60292-1
dc.relationKleespies RG, Zimmermann G (1992) Production of Blastospores by Three Strains of Metarhizium anisopliae (Metch.) Sorokin in Submerged Culture. Biocontrol Science and Technology 2(2):127-135. https://doi.org/10.1080/09583159209355226
dc.relationKobori NN, Mascarin GM, Jackson MA, Schisler DA (2015) Liquid culture production of microsclerotia and submerged conidia by Trichoderma harzianum active against damping-off disease caused by Rhizoctonia solani. Fungal Biology 119(4):179-190. https://doi.org/10.1016/j.funbio.2014.12.005
dc.relationKrasnoff SB, Keresztes I, Gillilan RE, Szebenyi DME, Donzelli BGG, Churchill ACL, Gibson DM (2007) Serinocyclins A and B, cyclic heptapeptides from Metarhizium anisopliae. Journal of Natural Products 70(12):1919-1924. https://doi.org/10.1021/np070407i
dc.relationLastra B, Gómez L a. (2006) La cría de Diatraea saccharalis (F.) para la producción masiva de sus enemigos naturales. Serie Técnica Ceñicaña 36(3):30
dc.relationLe Tourneau D (2016) Mycological Society of America Trehalose and Acyclic Polyols in Sclerotia of Sclerotinia sclerotiorum Mycological Society of America Stable 58(6):934-942 http://www.jstor.org/stable/3757064.
dc.relationLi D., Holdom D. (1995) Effects of nutrients on colony formation, growth, and sporulation of Metarhizium anisopliae (Deuteromycotina: Hyphomycetes). Journal of Invertebrate Pathology 65:235-260
dc.relationLi J, Feng MG (2009) Intraspecific tolerance of Metarhizium anisopliae conidia to the upper thermal limits of summer with a description of a quantitative assay system. Mycological Research 113(1):93-99. https://doi.org/10.1016/j.mycres.2008.08.006
dc.relationLira AC de, Mascarin GM, Delalibera Júnior Í (2020) Microsclerotia production of Metarhizium spp. for dual role as plant biostimulant and control of Spodoptera frugiperda through corn seed coating. Fungal Biology 124(8):689-699. https://doi.org/10.1016/j.funbio.2020.03.011
dc.relationLiu BL, Tzeng YM (2012) Development and applications of destruxins: A review. Biotechnology Advances 30(6):1242-1254. https://doi.org/10.1016/j.biotechadv.2011.10.006
dc.relationLiu CM, Huang SS, Tzeng YM (2004) Purification and Quantitative Analysis of Destruxins from Metarhizium anisopliae by HPLC. Journal of Liquid Chromatography and Related Technologies 27(6):1013-1025. https://doi.org/10.1081/JLC-120030175
dc.relationLiu Q, Ying SH, Feng MG, Jiang XH (2009) Physiological implication of intracellular trehalose and mannitol changes in response of entomopathogenic fungus Beauveria bassiana to thermal stress. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology 95(1):65-75. https://doi.org/10.1007/s10482-008-9288-1
dc.relationLi Y qian, Song K, Li Y chai, Chen J (2016) Statistical culture-based strategies to enhance chlamydospore production by Trichoderma harzianum SH2303 in liquid fermentation. Journal of Zhejiang University: Science B 17(8):619-627. https://doi.org/10.1631/jzus.B1500226
dc.relationLodesani M, Costa C, Franceschetti S, Bergomi P, Galaverna G, Dall’Asta C (2017) Toxicidad de destruxinas contra el ácaro parásito Varroa destructor y su hospedador Apis mellifera. Journal of Apicultural Research 56(3):278-287. https://doi.org/10.1080/00218839.2017.1304611
dc.relationLomer CJ, Bateman R, Godonou I, Kpindou D, Shah P., Paraiso A, Prior C (1993) Field Infection of Zonocerus variegatus following application of an oil based formulation of Metarhizium flavoviride conidia. Biocontrol Science and Technology 3(3):337-346
dc.relationLozano-Tovar MD, Garrido-Jurado I, Lafont F, Quesada-Moraga E (2015) Insecticidal activity of a destruxin-containing extract of Metarhizium brunneum against Ceratitis capitata (Diptera: Tephritidae). Journal of Economic Entomology 108(2):462-472. https://doi.org/10.1093/jee/tov041
dc.relationMascarin GM, Jaronski ST (2016) The production and uses of Beauveria bassiana as a microbial insecticide. World Journal of Microbiology and Biotechnology 32(11):1-26. https://doi.org/10.1007/s11274-016-2131-3
dc.relationMascarin GM, Kobori NN, de Jesus Vital RC, Jackson MA, Quintela ED (2014) Production of microsclerotia by Brazilian strains of Metarhizium spp. using submerged liquid culture fermentation. World Journal of Microbiology and Biotechnology 30(5):1583-1590. https://doi.org/10.1007/s11274-013-1581-0
dc.relationMascarin GM, Lopes RB, Delalibera Í, Fernandes ÉKK, Luz C, Faria M (2018) Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. Journal of Invertebrate Pathology (August 2017):0-1. https://doi.org/10.1016/j.jip.2018.01.001
dc.relationMejía C, Espinel C, Forero M, Ramos FA, Pedro FB, Villamizar L, Mejía C, Espinel C, Forero M, Ramos FA, Pedro FB, Mejía C, Brandão FB, Ramos FA (2020) Improving ecological fitness of Beauveria bassiana conidia to control the sugar cane borer Diatraea saccharalis. Biocontrol Science and Technology 0(0):1-18. https://doi.org/10.1080/09583157.2020.1738343
dc.relationMent D, Gindin G, Glazer I, Perl S, Elad D, Samish M (2010) The effect of temperature and relative humidity on the formation of Metarhizium anisopliae chlamydospores in tick eggs. Fungal Biology 114(1):49-56. https://doi.org/10.1016/j.mycres.2009.10.005
dc.relationMerck (2000) Merck Microbiology Manual. Disponible en: http://www.laboquimia.es/pdf_catalogo/MERCK_Manual_de_microbiologia_12a_edicion.pdf.
dc.relationMohimani H, Gurevich A, Shlemov A, Mikheenko A, Korobeynikov A, Cao L, Shcherbin E, Nothias LF, Dorrestein PC, Pevzner PA (2018) Dereplication of microbial metabolites through database search of mass spectra. Nature Communications 9(1):1-12. https://doi.org/10.1038/s41467-018-06082-8
dc.relationMoore D, Douro-Kpindou OK, Jenkins NE, Lomer CJ (1996) Effects of moisture content and temperature on storage of Metarhizium flavoviride Conidia. Biocontrol Science and Technology 6(1):51-62. https://doi.org/10.1080/09583159650039520
dc.relationMukherjee K, Vilcinskas A (2018) The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection. Virulence 9(1):402-413. https://doi.org/10.1080/21505594.2017.1405190
dc.relationNicolaus RA, Piattelli M, Fattorusso E (1964) The structure of melanins and melanogenesis-IV. On some natural melanins. Tetrahedron 20(5):1163-1172. https://doi.org/10.1016/S0040-4020(01)98983-5
dc.relationNothias LF, Petras D, Schmid R, et al. (2020) Feature-based molecular networking in the GNPS analysis environment. Nature Methods 17(9):905-908. https://doi.org/10.1038/s41592-020-0933-6
dc.relationOide S, Turgeon BG (2020) Natural roles of nonribosomal peptide metabolites in fungi. Mycoscience 61(3):101-110. https://doi.org/10.1016/j.myc.2020.03.001
dc.relationPal AK, Gajjar DU, Vasavada AR (2014) DOPA and DHN pathway orchestrate melanin synthesis in Aspergillus species. Medical Mycology 52(1):10-18. https://doi.org/10.3109/13693786.2013.826879
dc.relationPaixão FRS, Huarte-Bonnet C, Ribeiro-Silva C de S, Mascarin GM, Fernandes ÉKK, Pedrini N (2021) Tolerance to Abiotic Factors of Microsclerotia and Mycelial Pellets From Metarhizium robertsii, and Molecular and Ultrastructural Changes During Microsclerotial Differentiation. Frontiers in Fungal Biology 2(April):1-12. https://doi.org/10.3389/ffunb.2021.654737.
dc.relationPatel TK (2020) Chapter 29: Metarhizium. Beneficial Microbes in Agro-Ecology. 593-610. https://doi.org/10.1016/b978-0-12-823414-3.00029-0.
dc.relationPayne GA, Brown MP (1998) Genetics and physiology of aflatoxin biosynthesis. Annual Review of Phytopathology 36(October):329-362. https://doi.org/10.1146/annurev.phyto.36.1.329
dc.relationPedras MSC, Irina Zaharia LI, Ward DE (2002) The destruxins: Synthesis, biosynthesis, biotransformation, and biological activity. Phytochemistry 59:579-596
dc.relationPeng G, Wang Z, Yin Y, Zeng D, Xia Y (2008) Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop Protection 27(9):1244-1250. https://doi.org/10.1016/j.cropro.2008.03.007
dc.relationPilz C, Enkerli J, Wegensteiner R, Keller S (2011) Establishment and persistence of the entomopathogenic fungus Metarhizium anisopliae in maize fields. Journal of Applied Entomology 135(6):393-403. https://doi.org/10.1111/j.1439-0418.2010.01566.x
dc.relationPuttikamonkul S, Willger SD, Grahl N, Perfect JR, Movahed N, Bothner B, Park S, Paderu P, Perlin DS, Cramer RA (2010) Trehalose 6-phosphate phosphatase is required for cell wall integrity and fungal virulence but not trehalose biosynthesis in the human fungal pathogen Aspergillus fumigatus. Molecular Microbiology 77(4):891-911. https://doi.org/10.1111/j.1365-2958.2010.07254.x
dc.relationRaman T, Muthukathan G (2015) Field suppression of Fusarium wilt disease in banana by the combined application of native endophytic and rhizospheric bacterial isolates possessing multiple functions. Phytopathologia Mediterranea 54(2):241-252. https://doi.org/10.14601/Phytopathol
dc.relationRangel D, Butler M, Torabinejad J, Anderson A, Braga G, Day A, Roberts D (2006) Mutants and isolates of Metarhizium anisopliae are diverse in their relationships between conidial pigmentation and stress tolerance. Journal of Invertebrate Pathology 93: 170–182.
dc.relationRavindran K, Akutse KS, Sivaramakrishnan S, Wang L (2016) Determination and characterization of destruxin production in Metarhizium anisopliae Tk6 and formulations for Aedes aegypti mosquitoes control at the field level. Toxicon 120:89-96. https://doi.org/10.1016/j.toxicon.2016.07.016
dc.relationRíos-Moreno A, Carpio A, Garrido-Jurado I, Arroyo-Manzanares N, Lozano-Tovar MD, Arce L, Gámiz-Gracia L, García-Campaña AM, Quesada-Moraga E (2016) Production of destruxins by Metarhizium strains under different stress conditions and their detection by using UHPLC-MS/MS. Biocontrol Science and Technology 26(9):1298-1311. https://doi.org/10.1080/09583157.2016.1195336
dc.relationRivas-Franco F, Hampton JG, Altier NA, Swaminathan J, Rostás M, Wessman P, Saville DJ, Jackson TA, Jackson MA, Glare TR (2020) Production of Microsclerotia From Entomopathogenic Fungi and Use in Maize Seed Coating as Delivery for Biocontrol Against Fusarium graminearum. Frontiers in Sustainable Food Systems 4(December):1-13. https://doi.org/10.3389/fsufs.2020.606828
dc.relationRoberts DW. (1981) Toxins of Entomopathogenic Fungi. In Microbial Control of Pests (Ed. Burges H. D.), pp. 441-464. Academic, London
dc.relationSchrank A, Vainstein MH (2010) Metarhizium anisopliae enzymes and toxins. Toxicon 56 (7):1267-1274. https://doi.org/10.1016/j.toxicon.2010.03.008
dc.relationSchümann J, Hertweck C (2007) Molecular basis of cytochalasan biosynthesis in fungi: Gene cluster analysis and evidence for the involvement of a PKS-NRPS hybrid synthase by RNA silencing. Journal of the American Chemical Society 129(31):9564-9565. https://doi.org/10.1021/ja072884t
dc.relationSelvakumar P, Rajasekar S, Periasamy K, Raaman N (2008) Isolation and characterization of melanin pigment from Pleurotus cystidiosus (Telomorph of Antromycopsis macrocarpa). World Journal of Microbiology and Biotechnology 24(10):2125-2131. https://doi.org/10.1007/s11274-008-9718-2
dc.relationShearer JF, Jackson MA (2006) Liquid culturing of microsclerotia of Mycoleptodiscus terrestris, a potential biological control agent for the management of hydrilla. Biological Control 38(3):298-306. https://doi.org/10.1016/j.biocontrol.2006.04.012
dc.relationSmith ME, Henkel TW, Rollins JA (2015) How many fungi make sclerotia? .Fungal Ecology 13(December 2018):211-220. https://doi.org/10.1016/j.funeco.2014.08.010
dc.relationSobolev VS, Cole RJ, Dorner JW, Horn BW, Harrigan GG, Gloer JB (1997) Isolation and structure elucidation of a new metabolite produced by Aspergillus parasiticus. Journal of Natural Products 60(8):847-850. https://doi.org/10.1021/np970131m
dc.relationSolomon PS, Waters ODC, Oliver RP (2007) Decoding the mannitol enigma in filamentous fungi. Trends in Microbiology 15(6):257-262. https://doi.org/10.1016/j.tim.2007.04.002
dc.relationSong Z (2018) Fungal microsclerotia development: essential prerequisites, influencing factors, and molecular mechanism. Applied Microbiology and Biotechnology 102(23):9873-9880. https://doi.org/10.1007/s00253-018-9400-z
dc.relationSong Z, Lin Y, Du F, Yin Y, Wang Z (2017) Statistical optimisation of process variables and large-scale production of Metarhizium rileyi (Ascomycetes: Hypocreales) microsclerotia in submerged fermentation. Mycology 8(1):39-47. https://doi.org/10.1080/21501203.2017.1279688
dc.relationSong Z, Shen L, Zhong Q, Yin Y, Wang Z (2016) Liquid culture production of microsclerotia of Purpureocillium lilacinum for use as bionematicide. Nematology 18(6):719-726. https://doi.org/10.1163/15685411-00002987
dc.relationSong Z, Yin Y, Jiang S, Liu J, Chen H, Wang Z (2013) Comparative transcriptome analysis of microsclerotia development in Nomuraea rileyi. BMC Genomics 14(1). https://doi.org/10.1186/1471-2164-14-411
dc.relationSong Z, Yin Y, Jiang S, Liu J, Wang Z (2014) Optimization of culture medium for microsclerotia production by Nomuraea rileyi and analysis of their viability for use as a mycoinsecticide. BioControl 59(5):597-605. https://doi.org/10.1007/s10526-014-9589-4
dc.relationSree KS, Padmaja V, Murthy YL (2008) Insecticidal activity of destruxin, a mycotoxin from Metarhizium anisopliae (Hypocreales), against Spodoptera litura (Lepidoptera: Noctuidae) larval stages. Pest management science 64:119-125. https://doi.org/10.1002/ps
dc.relationStrasser H, Vey A, Butt TM (2000) Are there any risks in using entomopathogenic fungi for pest control, with particular reference to the bioactive metabolites of Metarhizium, Tolypocladium and Beauveria species?. Biocontrol Science and Technology 10(6):717-735. https://doi.org/10.1080/09583150020011690
dc.relationTaibon J, Sturm S, Seger C, Parth M, Strasser H, Stuppner H (2014) Development of a fast and selective UHPLC-DAD-QTOF-MS/MS method for the qualitative and quantitative assessment of destruxin profiles. Analytical and Bioanalytical Chemistry 406(29):7623-7632. https://doi.org/10.1007/s00216-014-8203-z
dc.relationTeertstra WR, Tegelaar M, Dijksterhuis J, Golovina EA, Ohm RA, Wösten HAB (2017) Maturation of conidia on conidiophores of Aspergillus niger. Fungal Genetics and Biology 98:61-70. https://doi.org/10.1016/j.fgb.2016.12.005
dc.relationToledo AV, Franco MEE, Yanil Lopez SM, Troncozo MI, Saparrat MCN, Balatti PA (2017) Melanins in fungi: Types, localization and putative biological roles. Physiological and Molecular Plant Pathology 99:2-6. https://doi.org/10.1016/j.pmpp.2017.04.004
dc.relationTorres-Torres L, Espinel-Correal C, Santos-Díaz AM (2020) Hospederos alternativos y estandarización de métodos para evaluar la actividad biocontroladora de micoinsecticidas. 46(2)
dc.relationTseng MN, Chung PC, Tzean SS (2011) Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. Applied and Environmental Microbiology 77(13):4508-4519. https://doi.org/10.1128/AEM.02033-10
dc.relationVillamizar LF, Barrera G, Marshall SDG, Richena M, Harland D, Jackson TA (2020) Three-dimensional cellular aggregates formed by Beauveria pseudobassiana in liquid culture with potential for use as a biocontrol agent of the African black beetle (Heteronychus arator). Mycology 00(00):1-14. https://doi.org/10.1080/21501203.2020.1754953
dc.relationVillamizar R LF, Cotes AM (2003) Efecto de las condiciones de cultivo sobre parámetros del modo de acción de Metarhizium anisopliae. Revista Colombiana de Entomología 29(2):121-126
dc.relationVillamizar LF, Nelson TL, Jones SA, Jackson TA, Hurst MRH, Marshall SDG (2018) Formation of microsclerotia in three species of Beauveria and storage stability of a prototype granular formulation. Biocontrol Science and Technology 28(12):1097-1113. https://doi.org/10.1080/09583157.2018.1514584
dc.relationWahlman M, Davidson B (1993) New destruxins from the entomopathogenic fungus Metarhizium anisopliae. Journal of Natural Products 56(4):643-647. https://doi.org/10.1021/np9601216
dc.relationWang C, Pi L, Jiang S, Yang M, Shu C, Zhou E (2018) ROS and trehalose regulate sclerotial development in Rhizoctonia solani AG-1 IA. Fungal Biology 122(5):322-332. https://doi.org/10.1016/j.funbio.2018.02.003
dc.relationWang SYC, le Tourneau D (1971) Carbon sources, growth, sclerotium formation and carbohydrate composition of Sclerotinia sclerotiorum. Archiv für Mikrobiologie 80(3):219-233. https://doi.org/10.1007/BF00410123
dc.relationWilletts HJ, Bullock S (1992) Developmental biology of sclerotia. Mycological Research 96(10):801-816. https://doi.org/10.1016/S0953-7562(09)81027-7
dc.relationXing XK, Guo SX (2008) The structure and histochemistry of sclerotia of Ophiocordyceps sinensis. Mycologia 100(4):616-625. https://doi.org/10.3852/07-007R2
dc.relationXu YJ, Luo F, Li B, Shang Y, Wang C (2016) Metabolic conservation and diversification of Metarhizium species correlate with fungal host-specificity. Frontiers in Microbiology 7(DEC):1-12. https://doi.org/10.3389/fmicb.2016.02020
dc.relationYadav R, Rashid M, Zaidi N, Kumar R, Singh H (2019) Secondary Metabolites of Metarhizium spp. and Verticillium spp. and Their Agricultural Applications
dc.relationYeh SF, Pan W, Ong GT, Chiou AJ, Chuang CC, Chiou SH, Wu SH (1996) Study of structure-activity correlation in destruxins, a class of cyclodepsipeptides possessing suppressive effect on the generation of hepatitis B virus surface antigen in human hepatoma cells. Biochemical and Biophysical Research Communications 229(1):65-72. https://doi.org/10.1006/bbrc.1996.1758
dc.relationYou-ping YIN, Shan H, Zhang-yong S, Zhong-kang W (2012) Microsclerotia Artificial Inductions of Nomuraea rileyi CQNr01. Scientia Agricultura Sinica 45(23):4801-4807. https://doi.org/10.3864/j.issn.0578-1752.2012.23.006.
dc.relationYu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Annual Review of Phytopathology 43(114):437-458. https://doi.org/10.1146/annurev.phyto.43.040204.140214
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados al autor, 2022
dc.titleEstudio de los microesclerocios formados por el hongo entomopatógeno Metarhizium robertsii Mt004: Producción, caracterización y actividad insecticida
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución