dc.contributorBrito Brandão, Pedro Filipe
dc.contributorGrupo de Estudios para la Remediación y Mitigación de Impactos Negativos al Ambiente - GERMINA
dc.creatorTamayo Figueroa, Diana Paola
dc.date.accessioned2020-06-16T21:26:42Z
dc.date.available2020-06-16T21:26:42Z
dc.date.created2020-06-16T21:26:42Z
dc.date.issued2015-11-23
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/77657
dc.description.abstractArsenic (As) is a metalloid that causes different kinds of diseases including cancer. The World Health Organization recommends a limit in drinking water of 10 µg As/L. In Colombia, the information about the potential risk for As contamination is still scarce, and its presence is reported mainly in Caldas, Nariño and Tolima departments. Accurate measurement of arsenic in drinking water requires expensive methods, sophisticated instrumentation and trained staff. Consequently, the biosensors design represent a great potential because they are cheap, sensitive and user-friendly systems. This work reports the development of three biosensors for arsenic detection in water using chromoproteins as the reporter system. Coding regions of the arsR regulatory gene of 15 native strains and 11 metagenomic clones resistant to arsenic from environments in Colombia were amplified and sequenced. The obtained sequences showed a close relationship with the arsR genes of Bacillius cereus ATCC 14579 (identity of 99 %, E=2e-64) and Escherichia coli ST540 (identity of 100 %, e=0.0). Three biosensors were assembled using the pUC18 cloning vector, the arsR gene of the metagenomic clone M19 and each one a chromoprotein as a reporter system (purple, pink or yellow). The biosensors BASmor and BASama showed a linear response between the intensity of colour or fluorescence (reporter protein) produced over the As(III) concentration allowing, respectively, a qualitative and quantitative assessment of the metalloid in aqueous solutions. Detection limits of 75 µg As(III)/L were obtained for the colour evaluation and 7.5 µg As(III)/L for the fluorescence response, respectively. The third biosensor BASros, under the evaluated conditions, did not show a relationship between As concentration and the colour intensity. These biosensors are emerging as an alternative to assess the presence of As in municipalities where there is no access to other technologies, allowing to detect and determine the prevalence of the metalloid in Colombia.
dc.description.abstractEl arsénico (As) es un metaloide causante de diferentes tipos de enfermedades incluyendo el cáncer. La Organización Mundial de la Salud recomienda un límite máximo de 10 µg As/L en agua potable. En Colombia, aún es escasa la información sobre el potencial riesgo de contaminación por As, siendo reportada su presencia principalmente en los departamentos de Caldas, Nariño y Tolima. Los métodos para la detección del elemento son costosos, demorados y difíciles de implementar, por lo que el diseño de biosensores es de gran potencial ya que son sistemas económicos, sensibles y de fácil manejo. El presente trabajo reporta el desarrollo de tres biosensores para la detección de As en aguas, utilizando cromoproteínas como sistema reportero. Se amplificó y secuenció regiones codificantes del gen regulador arsR de 15 cepas nativas y 11 clones metagenómicos de ambientes en Colombia, todas resistentes a arsénico. Las secuencias obtenidas mostraron una estrecha relación con los genes arsR de Bacillius cereus ATCC 14579 (identidad del 99%, E=2e-64) y Escherichia coli ST540 (identidad del 100%, e=0.0). El ensamblaje de los tres biosensores se realizó utilizando el vector de clonación pUC18, el gen arsR del clon metagenómico M19 y en cada uno una cromoproteína como sistema reportero (morada, rosada o amarilla). Los biosensores BASmor y BASama presentaron una respuesta lineal entre la intensidad de color o fluorescencia (proteína reportera) producida respecto a la concentración de As(III), permitiendo una evaluación cualitativa y cuantitativa, respectivamente. Se obtuvieron limites de detección de 75 µg As(III)/L en el caso de evaluación por color y de 7,5 µg As(III)/L en el caso de la respuesta por fluorescencia. El biosensor BASros, bajo las condiciones de estudio, no mostró una respuesta dependiente entre concentración de As(III) y color. Estos biosensores se perfilan como alternativa para evaluar la presencia de As en municipios donde no es posible acceder con otras tecnologías, permitiendo detectar y determinar la prevalencia del metaloide en Colombia.
dc.languagespa
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Ambiental
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationATSDR, 2007. Toxicological profile for arsenic. Department of Health and Human Services, Public Health Service.
dc.relationEPA, 2004. Monitoring Arsenic in the Environment: A Review of Science and Technologies for Field Measurements and Sensors. Washington, DC
dc.relationINGEOMINAS, 2004. Programa de Exploración de Aguas subterraneas.
dc.relationISO, 2006. 2846-1 The power of colour.
dc.relationWHO, 2011. Arsenic in Drinking-water World Health Organization.
dc.relationAchour, A. R., Bauda, P., & Billard, P. (2007). Diversity of arsenite transporter genes from arsenic-resistant soil bacteria: Comparative Study
dc.relationAleksic, J., Bizzari, F., Cai, Y., Davidson, B., Mora, K. d., Ivakhno, S., Millar, A. (2007). Development of a Novel Biosensor for the Detection of Arsenic in Drinking Water. IET Synthetic Biology, 1(Article), 87-90. doi: 10.1049/iet-stb:20060002
dc.relationAlieva, N. O., Konzen, K. A., Field, S. F., Meleshkevitch, E. A., Hunt, M. E., Beltran-Ramirez, V., Matz, M. V. (2008). Diversity and Evolution of Coral Fluorescent Proteins. PLoS ONE, 3(7), e2680. doi: 10.1371/journal.pone.0002680
dc.relationAlonso, D. C. (2014). Determinación de arsénico total y biodisponible en la zona sur occidental del distrito minero de oro California-Vetas en el Departamento de Santander, Colombia. Magister en Ciencias- Química, Universidad Nacional de Colombia, Bogotá, Colombia
dc.relationAlonso, D. L., Latorre, S., Castillo, E., & Brandao, P. F. (2014). Environmental occurrence of arsenic in Colombia: a review. [Research Support, Review. Environ Pollut, 186, 272-281. doi: 10.1016/j.envpol.2013.12.009
dc.relationAltschul, S. F., Gish, W., Miller, W., Myers, E. W., & Lipman, D. J. (1990). Basic local alignment search tool. Journal of molecular biology, 215(3), 403-410. doi: http://dx.doi.org/10.1016/S0022-2836(05)80360-2
dc.relationAltschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res, 25(17), 3389-3402.
dc.relationAmsterdam, A., Lin, S., Moss, L. G., & Hopkins, N. (1996). Requirements for green fluorescent protein detection in transgenic zebrafish embryos. Research Support, U.S. Gov't, P.H.S.]. Gene, 173(1 Spec No), 99-103
dc.relationAndrews, K. T., & Patel, B. K. C. (1996). Fervidobacterium gondwanense sp. nov., a New Thermophilic Anaerobic Bacterium Isolated from Nonvolcanically Heated Geothermal Waters of the Great Artesian Basin of Australia. International Journal of Systematic Bacteriology, 46(1), 265-269. doi: 10.1099/00207713-46-1-265
dc.relationArber, W. (2014). Horizontal Gene Transfer among Bacteria and Its Role in Biological Evolution. [Article]. Life (2075-1729), 4(2), 217-224. doi: 10.3390/life4020217
dc.relationArkin, A. (2008). Setting the standard in synthetic biology. [10.1038/nbt0708-771]. Nat Biotech, 26(7), 771-774.
dc.relationBakhrat, A., Eltzov, E., Finkelstein, Y., Marks, R., & Raveh, D. (2011). UV and arsenate toxicity: a specific and sensitive yeast bioluminescence assay. Cell Biology and Toxicology, 27(3), 227-236. doi: 10.1007/s10565-011-9184-8
dc.relationBrandão, P. F. B., Torimura, M., Kurane, R., & Bull, A. T. (2002). Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Appl Microbiol Biotechnol, 58(1), 77-83.
dc.relationBuffi, N., Merulla, D., Beutier, J., Barbaud, F., Beggah, S., van Lintel, H., Roelof van der Meer, J. (2011). Development of a microfluidics biosensor for agarose-bead immobilized Escherichia coli bioreporter cells for arsenite detection in aqueous samples. Lab on a Chip, 11(14), 2369-2377. doi: 10.1039/c1lc20274j
dc.relationBundschuh, J., Litter, M. I., Parvez, F., Roman-Ross, G., Nicolli, H. B., Jean, J. S., Toujaguez, R. (2012). One century of arsenic exposure in Latin America: a review of history and occurrence from 14 countrie. Sci Total Environ, 429, 2-35. doi: 10.1016/j.scitotenv.2011.06.024
dc.relationBusenlehner, L. S., Pennella, M. A., & Giedroc, D. P. (2003). The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol Rev, 27(2–3), 131-143. doi: http://dx.doi.org/10.1016/S0168-6445(03)00054-8
dc.relationCai, J., & DuBow, M. (1997). Use of a luminescent bacterial biosensor for biomonitoring and characterization of arsenic toxicity of chromated copper arsenate (CCA). Biodegradation, 8(2), 105-111. doi: 10.1023/a:1008281028594
dc.relationCai, J., Salmon, K., & DuBow, M. S. (1998). A chromosomal ars operon homologue of Pseudomonas aeruginosa confers increased resistance to arsenic and antimony in Escherichia coli. Microbiology, 144(10), 2705-2729. doi: 10.1099/00221287-144-10-2705
dc.relationCallejas. (2007). Detección de arsénico de origen natural en el agua subterránea en Colombia. Universidad de los Andes, Universidad de los Andes.
dc.relationCánovas, D., Cases, I., & de Lorenzo, V. (2003). Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. [Article]. Environmental Microbiology, 5(12), 1242-1256. doi: 10.1111/j.1462-2920.2003.00463.x
dc.relationCarlin, A., Shi, W., Dey, S., & Rosen, B. P. (1995). The ars operon of Escherichia coli confers arsenical and antimonial resistance. J Bacteriol, 177(4), 981-986.
dc.relationCarrillo, K. C. (2012). Identificación de genes involucrados en la transformación y resistencia a arsénico en microorganismos recuperados de zonas de Colombia con la presencia del metal. Universidad Nacional de Colombia.
dc.relationCasadaban, M. J., Chou, J., & Cohen, S. N. (1980). In vitro gene fusions that join an enzymatically active beta-galactosidase segment to amino-terminal fragments of exogenous proteins: Escherichia coli plasmid vectors for the detection and cloning of translational initiation signals. J Bacteriol, 143(2), 971-980.
dc.relationCastillo, J., Gáspár, S., Leth, S., Niculescu, M., Mortari, A., Bontidean, I., Csöregi, E. (2004). Biosensors for life quality: Design, development and applications. Sensors and Actuators B: Chemical, 102(2), 179-194. doi: http://dx.doi.org/10.1016/j.snb.2004.04.084
dc.relationConsortium, T. U. (2015). UniProt: a hub for protein information. Nucleic Acids Res, 43(D1), D204-D212. doi: 10.1093/nar/gku989
dc.relationCortés-Salazar, F., Beggah, S., van der Meer, J. R., & Girault, H. H. (2013). Electrochemical As(III) whole-cell based biochip sensor. Biosensors and Bioelectronics, 47(0), 237-242. doi: http://dx.doi.org/10.1016/j.bios.2013.03.011
dc.relationChang, Y. Y., Kuo, T. C., Hsu, C. H., Hou, D. R., Kao, Y. H., & Huang, R. N. (2012). Characterization of the role of protein-cysteine residues in the binding with sodium arsenite. Arch Toxicol, 86(6), 911-922. doi: 10.1007/s00204-012-0828-0
dc.relationCheca, S. K., Zurbriggen, M. D., & Soncini, F. C. (2012). Bacterial signaling systems as platforms for rational design of new generations of biosensors. Curr Opin Biotechnol, 23(5), 766-772. doi: http://dx.doi.org/10.1016/j.copbio.2012.05.003
dc.relationChen, J., & Rosen, B. P. (2014). Biosensors for inorganic and organic arsenicals. [Review]. Biosensors (Basel), 4(4), 494-512. doi: 10.3390/bios4040494
dc.relationChiou, C.-H., Chien, L.-J., Chou, T.-C., Lin, J.-L., & Tseng, J. T. (2011). Rapid whole-cell sensing chip for low-level arsenite detection. Biosens Bioelectron, 26(5), 2484-2488. doi: 10.1016/j.bios.2010.10.037
dc.relationD'souza, S. (1989). Immobilized cells: Techniques and applications. Indian Journal of Microbiology, 29(2), 83-117.
dc.relationD'Souza, S. F. (2001). Microbial biosensors. [Review]. Biosens Bioelectron, 16(6), 337-353.
dc.relationDate, A., Pasini, P., & Daunert, S. (2007). Construction of spores for portable bacterial whole-cell biosensing systems. [Report]. Anal Chem(24), 9391.
dc.relationDate, A., Pasini, P., & Daunert, S. (2010). Integration of spore-based genetically engineered whole-cell sensing systems into portable centrifugal microfluidic platforms. Anal Bioanal Chem, 398(1), 349-356. doi: 10.1007/s00216-010-3930-2
dc.relationDate, A., Pasini, P., Sangal, A., & Daunert, S. (2010). Packaging sensing cells in spores for long-term preservation of sensors: A tool for biomedical and environmental analysis. Anal Chem, 82(14), 6098-6103
dc.relationDaunert, S., Barrett, G., Feliciano, J. S., Shetty, R. S., Shrestha, S., & Smith-Spencer, W. (2000). Genetically Engineered Whole-Cell Sensing Systems:  Coupling Biological Recognition with Reporter Genes. Chemical Reviews, 100(7), 2705-2738. doi: 10.1021/cr990115p
dc.relationde Mora, K., Joshi, N., Balint, B. L., Ward, F. B., Elfick, A., & French, C. E. (2011). A pH-based biosensor for detection of arsenic in drinking water. Anal Bioanal Chem, 400(4), 1031-1039. doi: 10.1007/s00216-011-4815-8
dc.relationde Wet, J. R., Wood, K. V., DeLuca, M., Helinski, D. R., & Subramani, S. (1987). Firefly luciferase gene: structure and expression in mammalian cells. Mol Cell Biol, 7(2), 725-737
dc.relationde Wet, J. R., Wood, K. V., Helinski, D. R., & DeLuca, M. (1985). Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 82(23), 7870-7873
dc.relationDhuldhaj, U. P., Yadav, I. C., Singh, S., & Sharma, N. K. (2013). Microbial interactions in the arsenic cycle: adoptive strategies and applications in environmental management. [Review]. Rev Environ Contam Toxicol, 224, 1-38. doi: 10.1007/978-1-4614-5882-1_1
dc.relationDiorio, C., Cai, J., Marmor, J., Shinder, R., & DuBow, M. S. (1995). An Escherichia coli chromosomal ars operon homolog is functional in arsenic detoxification and is conserved in gram-negative bacteria. J Bacteriol, 177(8), 2050-2056
dc.relationDohrmann, A., & Tebbe, C. (2004). Section 3 update: Microbial community analysis by PCR-single-strand conformation polymorphism (PCR-SSCP). In G. A. Kowalchuk, F. J. de Bruijn, I. M. Head, A. D. Akkermans & J. D. van Elsas (Eds.), Molecular Microbial Ecology Manual (pp. 2711-2740): Springer Netherlands
dc.relationDong, S., & Chen, X. (2002). Some new aspects in biosensors. Reviews in Molecular Biotechnology, 82(4), 303-323. doi: http://dx.doi.org/10.1016/S1389-0352(01)00048-4
dc.relationDuker, A. A., Carranza, E. J., & Hale, M. (2005). Arsenic geochemistry and health. [Review]. Environ Int, 31(5), 631-641. doi: 10.1016/j.envint.2004.10.020
dc.relationEsparza, C. d. (2006). The presence of arsenic in drinking water in Latin America and its effect on public health. Mexico
dc.relationFabricant, J. D., Chalmers, J. H., Jr., & Bradbury, M. W. (1995). Bioluminescent strains of E. coli for the assay of biocides. Bulletin of Environmental Contamination and Toxicology, 54(1), 90-95. doi: 10.1007/bf00196274
dc.relationFujimoto, H., Wakabayashi, M., Yamashiro, H., Maeda, I., Isoda, K., Kondoh, M., . . . Yagi, K. (2006). Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum. Appl Microbiol Biotechnol, 73(2), 332-338. doi: 10.1007/s00253-006-0483-6
dc.relationFuku, X., Iftikar, F., Hess, E., Iwuoha, E., & Baker, P. (2012). Cytochrome c biosensor for determination of trace levels of cyanide and arsenic compounds. Analytica Chimica Acta, 730(0), 49-59. doi: http://dx.doi.org/10.1016/j.aca.2012.02.025
dc.relationGao, C., Yu, X.-Y., Xiong, S.-Q., Liu, J.-H., & Huang, X.-J. (2013). Electrochemical Detection of Arsenic(III) Completely Free from Noble Metal: Fe3O4 Microspheres-Room Temperature Ionic Liquid Composite Showing Better Performance than Gold. Anal Chem, 85(5), 2673-2680. doi: 10.1021/ac303143x
dc.relationGhim, C. M., Lee, S. K., Takayama, S., & Mitchell, R. J. (2010). The art of reporter proteins in science: past, present and future applications. BMB Rep, 43(7), 451-460
dc.relationGihring, T. M., & Banfield, J. F. (2001). Arsenite oxidation and arsenate respiration by a new Thermus isolate. FEMS Microbiology Letters, 204(2), 335-340.
dc.relationGurskaya, N. G., Fradkov, A. F., Terskikh, A., Matz, M. V., Labas, Y. A., Martynov, V. I., Lukyanov, S. A. (2001). GFP-like chromoproteins as a source of far-red fluorescent proteins1. FEBS Letters, 507(1), 16-20. doi: http://dx.doi.org/10.1016/S0014-5793(01)02930-1
dc.relationHan, F., Su, Y., Monts, D., Plodinec, M. J., Banin, A., & Triplett, G. (2003). Assessment of global industrial-age anthropogenic arsenic contamination. Naturwissenschaften, 90(9), 395-401. doi: 10.1007/s00114-003-0451-2
dc.relationHanson, G. T., Aggeler, R., Oglesbee, D., Cannon, M., Capaldi, R. A., Tsien, R. Y., & Remington, S. J. (2004). Investigating Mitochondrial Redox Potential with Redox-sensitive Green Fluorescent Protein Indicators. Journal of Biological Chemistry, 279(13), 13044-13053. doi: 10.1074/jbc.M312846200
dc.relationHeim, R., Cubitt, A. B., & Tsien, R. Y. (1995). Improved green fluorescence. Nature, 373(6516), 663-664. doi: 10.1038/373663b0
dc.relationHeim, R., Prasher, D. C., & Tsien, R. Y. (1994). Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 91(26), 12501-12504.
dc.relationHeitzer, A., Webb, O. F., Thonnard, J. E., & Sayler, G. S. (1992). Specific and Quantitative Assessment of Naphthalene and Salicylate Bioavailability by Using a Bioluminescent Catabolic Reporter Bacterium. Appl Environ Microbiol, 58(6), 1839-1846.
dc.relationHo-Shing, O., Lau, K., Vernon, W., Eckdahl, T., & Campbell, A. M. (2012). Assembly of Standardized DNA Parts Using BioBrick Ends in E. coli. In J. Peccoud (Ed.), Gene Synthesis (Vol. 852, pp. 61-76): Humana Press
dc.relationHou, Q.-H., Ma, A.-Z., Lv, D., Bai, Z.-H., Zhuang, X.-L., & Zhuang, G.-Q. (2014). The impacts of different long-term fertilization regimes on the bioavailability of arsenic in soil: integrating chemical approach with Escherichia coli arsRp::luc-based biosensor. Appl Microbiol Biotechnol, 98(13), 6137-6146. doi: 10.1007/s00253-014-5656-0
dc.relationHu, Q., Li, L., Wang, Y., Zhao, W., Qi, H., & Zhuang, G. (2010). Construction of WCB-11: a novel phiYFP arsenic-resistant whole-cell biosensor. J Environ Sci (China), 22(9), 1469-1474.
dc.relationHuang, H.-H., Camsund, D., Lindblad, P., & Heidorn, T. (2010). Design and characterization of molecular tools for a Synthetic Biology approach towards developing cyanobacterial biotechnology. Nucleic Acids Res, 38(8), 2577-2593. doi: 10.1093/nar/gkq164
dc.relationHughes, M. F. (2002). Arsenic toxicity and potential mechanisms of action. [Review]. Toxicol Lett, 133(1), 1-16
dc.relationHughes, M. F., Beck, B. D., Chen, Y., Lewis, A. S., & Thomas, D. J. (2011). Arsenic exposure and toxicology: a historical perspective. [Historical Article Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural]. Toxicol Sci, 123(2), 305-332. doi: 10.1093/toxsci/kfr184
dc.relationiGEM, U. T. (2012). Chromoproteins. iGEM. Retrieved from http://2012.igem.org/Team:Uppsala_University/Chromoproteins
dc.relationInskeep, W. P., Macur, R. E., Hamamura, N., Warelow, T. P., Ward, S. A., & Santini, J. M. (2007). Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environmental Microbiology, 9(4), 934-943. doi: 10.1111/j.1462-2920.2006.01215.x
dc.relationIvanina, A. V., & Shuvaeva, O. V. (2009). Use of a bacterial biosensor system for determining arsenic in natural waters. Journal of Analytical Chemistry, 64(3), 310-315. doi: 10.1134/s1061934809030186
dc.relationIvanova, N., Sorokin, A., Anderson, I., Galleron, N., Candelon, B., Kapatral, V., . . . Kyrpides, N. (2003). Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 423(6935), 87-91. doi: http://www.nature.com/nature/journal/v423/n6935/suppinfo/nature01582_S1.html
dc.relationJi, G., & Silver, S. (1992). Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proceedings of the National Academy of Sciences of the United States of America, 89(20), 9474-9478.
dc.relationJoshi, N., Wang, X., Montgomery, L., Elfick, A., & French, C. E. (2009). Novel Approaches to Biosensors for Detection of Arsenic in Drinking Water. Desalination, 248(Article), 517-523.
dc.relationKaur, H., Kumar, R., Babu, J. N., & Mittal, S. (2015). Advances in arsenic biosensor development – A comprehensive review. Biosensors and Bioelectronics, 63(0), 533-545. doi: http://dx.doi.org/10.1016/j.bios.2014.08.003
dc.relationKaur, P., & Rosen, B. P. (1992). Plasmid-encoded resistance to arsenic and antimony. Plasmid, 27(1), 29-40.
dc.relationKawakami, Y., Siddiki, M. S. R., Inoue, K., Otabayashi, H., Yoshida, K., Ueda, S., Maeda, I. (2010). Application of fluorescent protein-tagged trans factors and immobilized cis elements to monitoring of toxic metals based on in vitro protein–DNA interactions. Biosensors and Bioelectronics, 26(4), 1466-1473. doi: http://dx.doi.org/10.1016/j.bios.2010.07.082
dc.relationKing, J. M. H., DiGrazia, P. M., Applegate, B., Burlage, R., Sanseverino, J., Dunbar, P.,. Sayler, G. S. (1990). Rapid, Sensitive Bioluminescent Reporter Technology for Naphthalene Exposure and Biodegradation. Science, 249(4970), 778-781. doi: 10.2307/2878083
dc.relationKnight, T. (2003). Idempotent Vector Design for Standard Assembly of Biobricks. MIT Artificial Intelligence Laboratory; MIT Synthetic Biology Working Group.
dc.relationKostal, J., Yang, R., Wu, C. H., Mulchandani, A., & Chen, W. (2004). Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol, 70(8), 4582-4587. doi: 10.1128/AEM.70.8.4582-4587.2004
dc.relationLatorre, S. M. (2014). Búsqueda de genes de resistencia a arsénico en el metagenoma microbiano de la Sabana de Bogotá. Magister en Ciencias- Microbiologia, Universidad Nacional de Colombia
dc.relationLewis, J. C., Feltus, A., Ensor, C. M., Ramanathan, S., & Daunert, S. (1998). Applications of reporter genes. Anal Chem, 70(17), 579A-585A.
dc.relationLiao, V. H.-C., & Ou, K.-L. (2005). Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environmental Toxicology and Chemistry, 24(7), 1624-1631. doi: 10.1897/04-500r.1
dc.relationLiao, V. H., & Ou, K. L. (2005). Development and testing of a green fluorescent protein-based bacterial biosensor for measuring bioavailable arsenic in contaminated groundwater samples. Environ Toxicol Chem, 24(7), 1624-1631
dc.relationLitter. (2009). Metodologías analíticas para la detección de arsénico en aguas y suelos.
dc.relationLitter, M. I., Morgada, M. E., & Bundschuh, J. (2010). Possible treatments for arsenic removal in Latin American waters for human consumption. Environ Pollut, 158(5), 1105-1118. doi: 10.1016/j.envpol.2010.01.028
dc.relationLiu, Z., Mukhopadhyay, R., Shi, J., Ye, J., & Rosen, B. P. (2003). Chapter 18 - Structural proteomics of arsenic transport and detoxification. Arsenic Exposure and Health Effects V (pp. 241-253). Amsterdam: Elsevier Science B.V.
dc.relationLukyanov, K. A., Fradkov, A. F., Gurskaya, N. G., Matz, M. V., Labas, Y. A., Savitsky, A. P., Lukyanov, S. A. (2000). Natural Animal Coloration Can Be Determined by a Nonfluorescent Green Fluorescent Protein Homolog. Journal of Biological Chemistry, 275(34), 25879-25882. doi: 10.1074/jbc.C000338200
dc.relationLuong, J. H., Male, K. B., & Glennon, J. D. (2008). Biosensor technology: technology push versus market pull. [Review]. Biotechnol Adv, 26(5), 492-500. doi: 10.1016/j.biotechadv.2008.05.007
dc.relationLuong, J. H. T., Majid, E., & Male, K. B. (2007). Analytical Tools for Monitoring Arsenic in the Environment. The Open Analytical Chemistry Journal, 1(1), 7-14. doi: 10.2174/187406500701017005
dc.relationMandal, B. K., & Suzuki, K. T. (2002). Arsenic round the world: a review. Talanta, 58(1), 201-235. doi: http://dx.doi.org/10.1016/S0039-9140(02)00268-0
dc.relationMarchisio, M. A., & Rudolf, F. (2011). Synthetic biosensing systems. The International Journal of Biochemistry & Cell Biology, 43(3), 310-319. doi: http://dx.doi.org/10.1016/j.biocel.2010.11.012
dc.relationMarín. (1978). Recursos minerales de colombia.
dc.relationMcLaren, K. (1976). XIII—The Development of the CIE 1976 (L* a* b*) Uniform Colour Space and Colour-difference Formula. Journal of the Society of Dyers and Colourists, 92(9), 338-341. doi: 10.1111/j.1478-4408.1976.tb03301.x
dc.relationMERCOSUR. (2013). El problema del arsénico en el Mercosur. Un abordaje integrado y multidisciplinar en la investigación y desarrollo para contribuir a su resolución. Retrieved 14 de marzo 2014, from http://www.cyted.org/documentos/noticias/doc_28.pdf
dc.relationMerulla, D., Buffi, N., Beggah, S., Truffer, F., Geiser, M., Renaud, P., & van der Meer, J. R. (2013). Bioreporters and biosensors for arsenic detection. Biotechnological solutions for a world-wide pollution problem. Curr Opin Biotechnol, 24(3), 534-541. doi: 10.1016/j.copbio.2012.09.002
dc.relationResolución 2115 (2007).
dc.relationMiraglia, L. J., King, F. J., & Damoiseaux, R. (2011). Seeing the light: Luminescent reporter gene assays. Combinatorial Chemistry and High Throughput Screening, 14(8), 648-657. doi: 10.2174/138620711796504389
dc.relationMiyawaki, A., Shcherbakova, D. M., & Verkhusha, V. V. (2012). Red fluorescent proteins: chromophore formation and cellular applications. Current Opinion in Structural Biology, 22(5), 679-688. doi: http://dx.doi.org/10.1016/j.sbi.2012.09.002
dc.relationMorin, J. G., & Hastings, J. W. (1971). Biochemistry of the bioluminescence of colonial hydroids and other coelenterates. J Cell Physiol, 77(3), 305-312. doi: 10.1002/jcp.1040770304
dc.relationMukhopadhyay, R., Rosen, B. P., Phung, L. T., & Silver, S. (2002). Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev, 26(3), 311-325.
dc.relationMuller, D., Lièvremont, D., Simeonova, D. D., Hubert, J.-C., & Lett, M.-C. (2003). Arsenite Oxidase aox Genes from a Metal-Resistant β-Proteobacterium. J Bacteriol, 185(1), 135-141. doi: 10.1128/jb.185.1.135-141.2003
dc.relationMuñoz, E. J. (2008). Determinación de arsénico por técnicas de absorción atómica en vegetales, suelos y aguas de riego. Universidad Nacional de Colombia
dc.relationNaylor, L. H. (1999). Reporter gene technology: the future looks bright. [Review]. Biochem Pharmacol, 58(5), 749-757
dc.relationNg, J. C., Wang, J., & Shraim, A. (2003). A global health problem caused by arsenic from natural sources. [Review]. Chemosphere, 52(9), 1353-1359. doi: 10.1016/S0045-6535(03)00470-3
dc.relationNicolli, H. B. (2006). Arsénico en aguas subterráneas de Latinoamérica: panorama y perspectivas. CONICET, Buenos Aires.: Instituto de Geoquímica, Centro de Investigaciones San Miguel.
dc.relationNordstrom, D. K. (2002). Worldwide Occurrences of Arsenic in Ground Water. Science, 296(5576), 2143-2145. doi: 10.1126/science.1072375
dc.relationNotredame, C., Higgins, D. G., & Heringa, J. (2000). T-Coffee: A novel method for fast and accurate multiple sequence alignment. Journal of molecular biology, 302(1), 205-217. doi: 10.1006/jmbi.2000.4042
dc.relationPaez-Espino, D., Tamames, J., de Lorenzo, V., & Canovas, D. (2009). Microbial responses to environmental arsenic Biometals, 22(1), 117-130. doi: 10.1007/s10534-008-9195-y
dc.relationPark, M., Tsai, S.-L., & Chen, W. (2013). Microbial Biosensors: Engineered Microorganisms as the Sensing Machinery. Sensors, 13(5), 5777-5795.
dc.relationPetänen, T., & Romantschuk, M. (2002). Use of bioluminescent bacterial sensors as an alternative method for measuring heavy metals in soil extracts. Analytica Chimica Acta, 456(1), 55-61. doi: http://dx.doi.org/10.1016/S0003-2670(01)00963-1
dc.relationPetrusevsky. (2007). Arsenic in drinking water. In S. S (Ed.).
dc.relationPreston, S., Coad, N., Townend, J., Killham, K., & Paton, G. I. (2000). Biosensing the acute toxicity of metal interactions: Are they additive, synergistic, or antagonistic? Environmental Toxicology and Chemistry, 19(3), 775-780. doi: 10.1002/etc.5620190332
dc.relationRamanathan, S., Shi, W., Rosen, B. P., & Daunert, S. (1997). Sensing Antimonite and Arsenite at the Subattomole Level with Genetically Engineered Bioluminescent Bacteria. Anal Chem, 69(16), 3380-3384.
dc.relationRamanathan, S., Shi, W., Rosen, B. P., & Daunert, S. (1998). Bacteria-based chemiluminescence sensing system using β-galactosidase under the control of the ArsR regulatory protein of the ars operon. Analytica Chimica Acta, 369(3), 189-195. doi: http://dx.doi.org/10.1016/S0003-2670(98)00244-X
dc.relationRanjan, R., Rastogi, N. K., & Thakur, M. S. (2012). Development of immobilized biophotonic beads consisting of Photobacterium leiognathi for the detection of heavy metals and pesticide. Journal of Hazardous Materials, 225–226(0), 114-123. doi: http://dx.doi.org/10.1016/j.jhazmat.2012.04.076
dc.relationRavenscroft, P. (2007). Predicting the global extent of arsenic pollution of groundwater and its potential impact on human health.Final report. New York: UNICEF.
dc.relationRegPrecise. (2009- 2015). Collection of Manually Curated Inferences of Regulons in Prokaryotic Genomes. http://regprecise.lbl.gov/RegPrecise/help.jsp#what
dc.relationRemington, S. J. (2006). Fluorescent proteins: maturation, photochemistry and photophysics. Current Opinion in Structural Biology, 16(6), 714-721. doi: http://dx.doi.org/10.1016/j.sbi.2006.10.001
dc.relationRoberto, F. F., Barnes, J. M., & Bruhn, D. F. (2002). Evaluation of a GFP reporter gene construct for environmental arsenic detection. Talanta, 58(1), 181-188.
dc.relationRogers, K. R. (1995). Biosensors for environmental applications. Biosensors and Bioelectronics, 10(6–7), 533-541. doi: http://dx.doi.org/10.1016/0956-5663(95)96929-S
dc.relationRonderos, M. T. (2011). La fiebre minera se apodero de colombia. Semana.
dc.relationRosen, B. P. (1999). Families of arsenic transporters. [Research Support, U.S. Gov't, P.H.S.]. Trends Microbiol, 7(5), 207-212.
dc.relationRosenstein, R., Nikoleit, K., & Götz, F. (1994). Binding of ArsR, the repressor of the Staphylococcus xylosus (pSX267) arsenic resistance operon to a sequence with dyad symmetry within the ars promoter. Molecular and General Genetics MGG, 242(5), 566-572. doi: 10.1007/bf00285280
dc.relationSalaün, P., Gibbon-Walsh, K. B., Alves, G. M. S., Soares, H. M. V. M., & van den Berg, C. M. G. (2012). Determination of arsenic and antimony in seawater by voltammetric and chronopotentiometric stripping using a vibrated gold microwire electrode. Analytica Chimica Acta, 746(0), 53-62. doi: http://dx.doi.org/10.1016/j.aca.2012.08.013
dc.relationSaltikov, C. W., & Olson, B. H. (2002). Homology of Escherichia coli R773 arsA, arsB, and arsC Genes in Arsenic-Resistant Bacteria Isolated from Raw Sewage and Arsenic-Enriched Creek Waters. Appl Environ Microbiol, 68(1), 280-288. doi: 10.1128/aem.68.1.280-288.2002
dc.relationSambrook, J. (2001). Molecular cloning : a laboratory manual. In D. W. Russell (Ed.), (3rd ed. ed.). Cold Spring Harbor, N.Y. :: Cold Spring Harbor Laboratory Press.
dc.relationSan Francisco, M. J., Hope, C. L., Owolabi, J. B., Tisa, L. S., & Rosen, B. P. (1990). Identification of the metalloregulatory element of the plasmid-encoded arsenical resistance operon. Nucleic Acids Res, 18(3), 619-624
dc.relationSayler, G., Cox, C., Burlage, R., Ripp, S., Nivens, D., Werner, C. Matrubutham, U. (1999). Field Application of a Genetically Engineered Microorganism for Polycyclic Aromatic Hydrocarbon Bioremediation Process Monitoring and Control. In R. Fass, Y. Flashner & S. Reuveny (Eds.), Novel Approaches for Bioremediation of Organic Pollution (pp. 241-254): Springer US.
dc.relationScott, D. L., Ramanathan, S., Shi, W., Rosen, B. P., & Daunert, S. (1997). Genetically Engineered Bacteria:  Electrochemical Sensing Systems for Antimonite and Arsenite. Anal Chem, 69(1), 16-20. doi: 10.1021/ac960788x
dc.relationSchäfer, L. V., Groenhof, G., Boggio-Pasqua, M., Robb, M. A., & Grubmüller, H. (2008). Chromophore Protonation State Controls Photoswitching of the Fluoroprotein asFP595. PLoS Computational Biology, 4(3), e1000034. doi: 10.1371/journal.pcbi.1000034
dc.relationScharnagl, C., Raupp-Kossmann, R., & Fischer, S. F. (1999). Molecular basis for pH sensitivity and proton transfer in green fluorescent protein: protonation and conformational substates from electrostatic calculations. Biophysical Journal, 77(4), 1839-1857.
dc.relationSengupta, M. K., & Dasgupta, P. K. (2009). An Automated Hydride Generation Interface to ICPMS for Measuring Total Arsenic in Environmental Samples. Anal Chem, 81(23), 9737-9743. doi: 10.1021/ac9020243
dc.relationShaner, N. C., Campbell, R. E., Steinbach, P. A., Giepmans, B. N. G., Palmer, A. E., & Tsien, R. Y. (2004). Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. [10.1038/nbt1037]. Nat Biotech, 22(12), 1567-1572. doi: http://www.nature.com/nbt/journal/v22/n12/suppinfo/nbt1037_S1.html
dc.relationSharma, P., Asad, S., & Ali, A. (2013). Bioluminescent bioreporter for assessment of arsenic contamination in water samples of India. [Research Support, Non-U.S. Gov't]. J Biosci, 38(2), 251-258
dc.relationShen, S., Li, X.-F., Cullen, W. R., Weinfeld, M., & Le, X. C. (2013). Arsenic Binding to Proteins. Chemical Reviews, 113(10), 7769-7792. doi: 10.1021/cr300015c
dc.relationSiddiki, M. S. R., Kawakami, Y., Ueda, S., & Maeda, I. (2011). Solid Phase Biosensors for Arsenic or Cadmium Composed of A trans Factor and cis Element Complex. Sensors, 11(11), 10063-10073.
dc.relationSiegfried, K., Endes, C., Bhuiyan, A. F. M. K., Kuppardt, A., Mattusch, J., van der Meer, J. R., . . . Harms, H. (2012). Field Testing of Arsenic in Groundwater Samples of Bangladesh Using a Test Kit Based on Lyophilized Bioreporter Bacteria. Environ Sci Technol, 46(6), 3281-3287. doi: 10.1021/es203511k
dc.relationSilver, S., Budd, K., Leahy, K. M., Shaw, W. V., Hammond, D., Novick, R. P., Rosenberg, H. (1981). Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in escherichia coli and Staphylococcus aureus. J Bacteriol, 146(3), 983-996.
dc.relationSilver, S., Ji, G., Bröer, S., Dey, S., Dou, D., & Rosen, B. P. (1993). Orphan enzyme or patriarch of a new tribe: the arsenic resistance ATPase of bacterial plasmids. Molecular Microbiology, 8(4), 637-642. doi: 10.1111/j.1365-2958.1993.tb01607.x
dc.relationSilver, S., & Phung le, T. (2005). A bacterial view of the periodic table: genes and proteins for toxic inorganic ions. [Review]. J Ind Microbiol Biotechnol, 32(11-12), 587-605. doi: 10.1007/s10295-005-0019-6
dc.relationSmith, A. H., & Smith, M. M. H. (2004). Arsenic drinking water regulations in developing countries with extensive exposure. Toxicology, 198(1–3), 39-44. doi: http://dx.doi.org/10.1016/j.tox.2004.02.024
dc.relationStanier, R. Y., Ingraham, J. L., Wheelis, M. L., & Painter, P. R. (2005). Microbiología.
dc.relationStocker, J., Balluch, D., Gsell, M., Harms, H., Feliciano, J., Daunert, S., van der Meer, J. R. (2003). Development of a set of simple bacterial biosensors for quantitative and rapid measurements of arsenite and arsenate in potable water. Environ Sci Technol, 37(20), 4743-4750.
dc.relationStolz, J. F., Basu, P., Santini, J. M., & Oremland, R. S. (2006). Arsenic and selenium in microbial metabolism. [Review]. Annu Rev Microbiol, 60, 107-130. doi: 10.1146/annurev.micro.60.080805.142053
dc.relationStolz, J. F., & Oremland, R. S. (2011). Microbial Metal and Metalloid Metabolism: Advances and Applications: ASM Press.
dc.relationSu, L., Jia, W., Hou, C., & Lei, Y. (2011). Microbial biosensors: A review. Biosensors and Bioelectronics, 26(5), 1788-1799. doi: http://dx.doi.org/10.1016/j.bios.2010.09.005
dc.relationSummers, A. O. (1992). Untwist and shout: a heavy metal-responsive transcriptional regulator. J Bacteriol, 174(10), 3097-3101.
dc.relationTamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729. doi: 10.1093/molbev/mst197
dc.relationTani, C., Inoue, K., Tani, Y., Harun-ur-Rashid, M., Azuma, N., Ueda, S., Maeda, I. (2009). Sensitive fluorescent microplate bioassay using recombinant Escherichia coli with multiple promoter–reporter units in tandem for detection of arsenic. Journal of Bioscience and Bioengineering, 108(5), 414-420. doi: http://dx.doi.org/10.1016/j.jbiosc.2009.05.014
dc.relationTauriainen, S., Karp, M., Chang, W., & Virta, M. (1997). Recombinant luminescent bacteria for measuring bioavailable arsenite and antimonite. Appl Environ Microbiol, 63(11), 4456-4461.
dc.relationTauriainen, S., Virta, M., Chang, W., & Karp, M. (1999). Measurement of Firefly Luciferase Reporter Gene Activity from Cells and Lysates Using Escherichia coli Arsenite and Mercury Sensors. Analytical Biochemistry, 272(2), 191-198. doi: http://dx.doi.org/10.1006/abio.1999.4193
dc.relationTorres, J. M., P. (2008). Recuperación de cepas tolerantes a concentraciones de arsénico., Universidad Nacional de colombia.
dc.relationTrang, P. T. K., Berg, M., Viet, P. H., Mui, N. V., & van der Meer, J. R. (2005). Bacterial Bioassay for Rapid and Accurate Analysis of Arsenic in Highly Variable Groundwater Samples. Environ Sci Technol, 39(19), 7625-7630. doi: 10.1021/es050992e
dc.relationTsai, S. L., Singh, S., & Chen, W. (2009). Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol, 20(6), 659-667. doi: 10.1016/j.copbio.2009.09.013
dc.relationTsien, R. Y. (1998). The green fluorescent protein.Annu Rev Biochem, 67, 509-544. doi: 10.1146/annurev.biochem.67.1.509
dc.relationUntergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R., & Leunissen, J. A. M. (2007). Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res, 35(Web Server issue), W71-W74. doi: 10.1093/nar/gkm306
dc.relationvan der Meer, J. R., & Belkin, S. (2010). Where microbiology meets microengineering: design and applications of reporter bacteria. [Review]. Nat Rev Micro, 8(7), 511-522. doi: 10.1038/nrmicro2392
dc.relationVan Dyk, T. K., Majarian, W. R., Konstantinov, K. B., Young, R. M., Dhurjati, P. S., & LaRossa, R. A. (1994). Rapid and sensitive pollutant detection by induction of heat shock gene-bioluminescence gene fusions. Appl Environ Microbiol, 60(5), 1414-1420.
dc.relationVerkhusha, V. V., Chudakov, D. M., Gurskaya, N. G., Lukyanov, S., & Lukyanov, K. A. (2004). Common Pathway for the Red Chromophore Formation in Fluorescent Proteins and Chromoproteins. Chemistry & Biology, 11(6), 845-854. doi: http://dx.doi.org/10.1016/j.chembiol.2004.04.007
dc.relationVerkhusha, V. V., & Lukyanov, K. A. (2004). The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat Biotech, 22(3), 289-296.
dc.relationWackwitz, A., Harms, H., Chatzinotas, A., Breuer, U., Vogne, C., & Van Der Meer, J. R. (2008). Internal arsenite bioassay calibration using multiple bioreporter cell lines. Microbial Biotechnology, 1(2), 149-157. doi: 10.1111/j.1751-7915.2007.00011.x
dc.relationWachter, R. M. (2006). The Family of GFP-Like Proteins: Structure, Function, Photophysics and Biosensor Applications. Introduction and Perspective. Photochemistry and Photobiology, 82(2), 339-344. doi: 10.1562/2005-10-02-ir-708
dc.relationWang, B., Barahona, M., & Buck, M. (2013). A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosensors and Bioelectronics, 40(1), 368-376. doi: http://dx.doi.org/10.1016/j.bios.2012.08.011
dc.relationWeber, W., & Fussenegger, M. (2011). Molecular diversity—the toolbox for synthetic gene switches and networks. Current Opinion in Chemical Biology, 15(3), 414-420. doi: http://dx.doi.org/10.1016/j.cbpa.2011.03.003
dc.relationWilmann, P. G., Petersen, J., Devenish, R. J., Prescott, M., & Rossjohn, J. (2005). Variations on the GFP Chromophore: a polypeptide fragmentation within the chromophore revealed in the 2.1-å crystal structure of a nonfluorescent chromoprotein from anemonia sulcata. Journal of Biological Chemistry, 280(4), 2401-2404. doi: 10.1074/jbc.C400484200
dc.relationWokittel. (1960). Compilación de los estudios geológicos oficiales en Colombia. (Vol. 10 ). Bogotá.
dc.relationWood, K. V. (1995). Marker proteins for gene expression. Curr Opin Biotechnol, 6(1), 50-58. doi: http://dx.doi.org/10.1016/0958-1669(95)80009-3
dc.relationWu, J., & Rosen, B. P. (1991). The ArsR protein is a trans-acting regulatory protein. Molecular Microbiology, 5(6), 1331-1336.
dc.relationWu, J., & Rosen, B. P. (1993). The arsD gene encodes a second trans-acting regulatory protein of the plasmid-encoded arsenical resistance operon. Molecular Microbiology, 8(3), 615-623. doi: 10.1111/j.1365-2958.1993.tb01605.x
dc.relationWu, J., & Rosen, B. P. (1993). Metalloregulated expression of the ars operon. J Biol Chem, 268(1), 52-58.
dc.relationXu, C., & Rosen, B. P. (1997). Dimerization is essential for DNA binding and repression by the ArsR metalloregulatory protein of Escherichia coli. Journal of Biological Chemistry, 272(25), 15734-15738. doi: 10.1074/jbc.272.25.15734
dc.relationXu, C., Shi, W., & Rosen, B. P. (1996). The Chromosomal arsR Gene of Escherichia coli Encodes a trans-acting Metalloregulatory Protein. Journal of Biological Chemistry, 271(5), 2427-2432. doi: 10.1074/jbc.271.5.2427
dc.relationYagi, K. (2007). Applications of whole-cell bacterial sensors in biotechnology and environmental science. [Review]. Appl Microbiol Biotechnol, 73(6), 1251-1258. doi: 10.1007/s00253-006-0718-6
dc.relationYoshida, K., Inoue, K., Takahashi, Y., Ueda, S., Isoda, K., Yagi, K., & Maeda, I. (2008). Novel carotenoid-based biosensor for simple visual detection of arsenite: characterization and preliminary evaluation for environmental application. Appl Environ Microbiol, 74(21), 6730-6738. doi: 10.1128/AEM.00498-08
dc.relationYunus, M., Sohel, N., Hore, S. K., & Rahman, M. (2011). Arsenic exposure and adverse health effects: a review of recent findings from arsenic and health studies in Matlab, Bangladesh. Kaohsiung J Med Sci, 27(9), 371-376. doi: 10.1016/j.kjms.2011.05.012
dc.relationZhang, J. Y., Zheng, C. G., Ren, D. Y., Chou, C. L., Liu, J., Zeng, R. S., Ge, Y. T. (2004). Distribution of potentially hazardous trace elements in coals from Shanxi province, China. Fuel, 83(1), 129-135. doi: 10.1016/s0016-2361(03)00221-7
dc.relationZhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7(1-2), 203-214. doi: 10.1089/10665270050081478
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleDiseño de un biosensor para la detección de arsénico
dc.typeOtro


Este ítem pertenece a la siguiente institución