dc.contributorSuárez Mahecha, Héctor
dc.contributorCIENCIA Y TECNOLOGIA DE PRODUCTOS CARNICOS Y ACUICOLAS
dc.creatorVargas Romero, Emeli Dayana
dc.date.accessioned2020-03-24T14:30:26Z
dc.date.available2020-03-24T14:30:26Z
dc.date.created2020-03-24T14:30:26Z
dc.date.issued2020-03-12
dc.identifierVargas-Romero, E. 2020. Desarrollo y caracterización de recubrimientos activos a base de nanofibras electrohiladas de policaprolactona, quitosano y extractos oleosos de propóleos colombianos para la conservación de filetes de lomo de cerdo. Tesis Maestría. Instituto de Ciencia y Tecnología de Alimentos. Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/76114
dc.description.abstractActive packaging technologies are promising strategies that allow preserving the quality of meat products by incorporating active compounds with antimicrobial or other properties as antioxidants in the packaging. Recently a new active packaging technology has generated great interest because it has improved characteristics compared to traditional active packaging, this is developed based on nanoscale fibrous structures called nanofibers, which have a high surface-volume ratio and a large potential for the release of active compounds while using less packaging material; being an efficient and safe packaging technology to prevent the negative effects of the deterioration of fresh pork. For this reason, this study developed and characterized an active packaging containing nanofiber based coatings of polycaprolactone (PCL) / chitosan (CH) and polycaprolactone/chitosan and oily extracts of Colombian propolis (EOP) on a low density polyethylene film (LDPE) to preserve the quality of pork tenderloin fillets for 20 days of storage at 4 ° C. The EOP and electrospinning solutions were studied to produce large-scale nanofibers with antioxidant and antimicrobial properties through the use of a free-surface electrospinning technique. The EOP were characterized based on the antioxidant and antimicrobial activity and the electrospinning solutions were characterized by testing of viscosity, conductivity and surface tension, where the addition of EOP showed improvement of the parameters of the solutions such as viscosity and surface tension (P < 0.001) presenting fibers with better morphology than PCL / CH nanofibers. The nanofibers developed showed high EOP encapsulation efficiency and better antimicrobial activity when 5% EOP was added. Subsequently, two active PEBD packages containing PCL/CH and / or EOP nanofiber coatings were used to wrap pork chops fillets for 20 days at 4 ° C. Pork samples were analyzed for pH, color parameters, weight loss, thiobarbituric acid reactive substances (TBARS) and mesophilic and psychrotrophic aerobic bacteria count. The results showed that the incorporation of EOP improved the antioxidant and antimicrobial properties of PCL/CH nanofibers due to better color protection with a stable value of a * (5.31) at 4 days, pH stability during all the storage time and a synergistic bactericidal effect that showed extending the microbial quality of the meat up to 7 days. The results of this study demonstrate that PCL/CH/EOP solutions can be electrospun to generate active nanofibers that allow the development of active packaging with the potential to maintain quality and extend the shelf life of pork.
dc.description.abstractLas tecnologías de envasado activo son estrategias prometedoras que permiten preservar la calidad de los productos cárnicos mediante la incorporación de compuestos activos con propiedades antimicrobianas u otras como antioxidantes en el empaque. Recientemente una nueva tecnología de envasado activo ha generado gran interés debido que presenta características mejoradas en comparación con los envases activos tradicionales, esta se desarrolla a base de estructuras fibrosas a nanoescala llamadas nanofibras, las cuales presentan una alta proporción de superficie-volumen y un gran potencial para la liberación de compuestos activos mientras se utiliza menos material de embalaje; siendo una tecnología de envasado eficiente y segura para contrarrestar los efectos negativos del deterioro de la carne de cerdo fresca. Por este motivo, este estudio desarrolló y caracterizó un empaque activo que contiene recubrimientos a base de nanofibras de policaprolactona (PCL) /quitosano (CH) y policaprolactona/quitosano y extractos oleosos de propóleos Colombianos (EOP) sobre una película de polietileno de baja densidad (PEBD) para preservar la calidad de filetes de lomo de cerdo durante 20 días de almacenamiento a 4ºC. Los EOP y las soluciones de electrohilado se estudiaron para producir nanofibras a gran escala con propiedades antioxidantes y antimicrobianas mediante el uso de una técnica de electrohilado de superficie libre. Los EOP se caracterizaron basándose en la actividad antioxidante y antimicrobiana y las soluciones de electrohilado se caracterizaron mediante pruebas de viscosidad, conductividad y tensión superficial, donde la adición de EOP mostró mejorar los parámetros de las soluciones como la viscosidad, la tensión superficial y la conductividad (P < 0,001) presentando fibras con mejor morfología que las nanofibras de PCL/CH. Las nanofibras desarrolladas presentaron una alta eficiencia de encapsulación de EOP y mejor actividad antimicrobiana cuando se adicionó EOP al 5%. Posteriormente, dos empaques activos de PEBD que contenían recubrimientos de nanofibras de PCL/CH y/o EOP fueron usados para empacar filetes de lomo de cerdo durante 20 días a 4ºC. Las muestras de carne de cerdo fueron analizadas para pH, parámetros de color, pérdida de peso, sustancias reactivas al ácido tiobarbitúrico (TBARS) y conteo de bacterias aeróbicas mesófilas y psicrótrofas. Los resultados mostraron que la incorporación de EOP mejoró las propiedades antioxidantes y antimicrobianas de las nanofibras de PCL/CH debido a una mejor protección del color con un valor estable de a* (5,31) a los 4 días, estabilidad en el pH durante todo el tiempo de almacenamiento y un efecto bactericida sinérgico que mostró extender hasta 7 días la calidad microbiana de la carne. Los resultados de este estudio demuestran que soluciones de PCL/CH/EOP pueden ser electrohiladas para generar nanofibras activas que permiten el desarrollo de empaques activos con el potencial de mantener la calidad y extender la vida útil de la carne de cerdo.
dc.languagespa
dc.publisherInstituto de Ciencia y Tecnología de Alimentos -ICTA-
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAdomavičiūté, E., Stanys, S., Žilius, M., Juškaite, V., Pavilonis, A., & Briedis, V. (2016). Formation and Biopharmaceutical Characterization of Electrospun PVP Mats with Propolis and Silver Nanoparticles for Fast Releasing Wound Dressing. BioMed Research International, 2016. https://doi.org/10.1155/2016/4648287
dc.relationAguirre, J., Leonzapata, M., Alvarezperez, O., Torres, C., Nieto-oropeza, D., Ventura-sobrevilla, J., … Elena, M. (2018). Packaging for Foods. In Food Packaging and Preservation. https://doi.org/10.1016/B978-0-12-811516-9/00001-4
dc.relationAhi, Z. B., Renkler, N. Z., Gul Seker, M., & Tuzlakoglu, K. (2019). Biodegradable Polymer Films with a Natural Antibacterial Extract as Novel Periodontal Barrier Membranes. International Journal of Biomaterials, 2019. https://doi.org/10.1155/2019/7932470
dc.relationAhmed, I., Lin, H., Zou, L., Brody, A. L., Li, Z., Qazi, I. M., … Lv, L. (2017). A comprehensive review on the application of active packaging technologies to muscle foods. Food Control, 82, 163–178. https://doi.org/10.1016/j.foodcont.2017.06.009
dc.relationAkbarian, A., Hadidi, M., Moayedi, F., & Akbarian, M. (2014). Effect of high pressure processing of food characteristics: a review of quality aspect. International Journal of Biosciences. https://doi.org/10.12692/ijb/4.10.193-205
dc.relationAlborzi, S., Lim, L.-T., & Kakuda, Y. (2010). Electrospinning of sodium alginate-pectin ultrafine fibers. Journal of Food Science, 75(1), C100-7. https://doi.org/10.1111/j.1750-3841.2009.01437.x
dc.relationAli, F. H., Kassem, G. M., & Atta-Alla, O. A. (2010). Propolis as a natural decontaminant and antioxidant in fresh oriental sausage. Veterinaria Italiana, 46(2), 167–172.
dc.relationAlparslan, Y., & Baygar, T. (2017). Effect of Chitosan Film Coating Combined with Orange Peel Essential Oil on the Shelf Life of Deepwater Pink Shrimp. Food and Bioprocess Technology, 10(5), 842–853. https://doi.org/10.1007/s11947-017-1862-y
dc.relationAmaya, J. (2019). Estudio de la dosificación del almidón extraído del banano en un polímero de tipo termoplástico. Revista Colombiana de Química, 48, 43–51. https://doi.org/10.15446/rev.colomb.quim.v48n1.74469
dc.relationAn, J., Zhang, H., Zhang, J., Zhao, Y., & Yuan, X. (2009). Preparation and antibacterial activity of electrospun chitosan/poly(ethylene oxide) membranes containing silver nanoparticles. Colloid and Polymer Science, 287(12), 1425–1434. https://doi.org/10.1007/s00396-009-2108-y
dc.relationAnjum, S. I., Ullah, A., Khan, K. A., Attaullah, M., Khan, H., Ali, H., … Dash, C. K. (2018). Composition and functional properties of propolis (bee glue): A review. Saudi Journal of Biological Sciences. https://doi.org/10.1016/j.sjbs.2018.08.013
dc.relationAnu Bhushani, J., & Anandharamakrishnan, C. (2014). Electrospinning and electrospraying techniques: Potential food based applications. Trends in Food Science & Technology, 38(1), 21–33. https://doi.org/https://doi.org/10.1016/j.tifs.2014.03.004
dc.relationArifin, D. Y., Lee, L. Y., & Wang, C.-H. (2006). Mathematical modeling and simulation of drug release from microspheres: Implications to drug delivery systems. Advanced Drug Delivery Reviews, 58(12–13), 1274–1325. https://doi.org/10.1016/j.addr.2006.09.007
dc.relationArıkan, H. K., & Solak, H. H. (2017). Propolis Extract-PVA Nanocomposites of Textile Design: Antimicrobial Effect on Gram Positive and Negative Bacterias. International Journal of Secondary Metabolite, 4(1), 218–224. https://doi.org/10.21448/ijsm.371563
dc.relationArkoun, M., Daigle, F., Heuzey, M. C., & Ajji, A. (2017). Antibacterial electrospun chitosan-based nanofibers: A bacterial membrane perforator. Food Science and Nutrition, 5(4), 865–874. https://doi.org/10.1002/fsn3.468
dc.relationArvanitoyannis, I. S., & Stratakos, A. C. (2012). Application of Modified Atmosphere Packaging and Active/Smart Technologies to Red Meat and Poultry: A Review. Food and Bioprocess Technology, 5(5), 1423–1446. https://doi.org/10.1007/s11947-012-0803-z
dc.relationAsawahame, C., Sutjarittangtham, K., Eitssayeam, S., Tragoolpua, Y., Sirithunyalug, B., & Sirithunyalug, J. (2015). Antibacterial activity and inhibition of adherence of Streptococcus mutans by propolis electrospun fibers. AAPS PharmSciTech, 16(1), 182–191. https://doi.org/10.1208/s12249-014-0209-5
dc.relationAugustin, M. A., & Hemar, Y. (2009). Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews, 38(4), 902–912. https://doi.org/10.1039/B801739P
dc.relationBajpai, A. K., Shukla, S., Bhanu, S., & Kankane, S. (2008). Responsive Polymers in Controlled Drug Delivery. Progress in Polymer Science, 33, 1088–1118. https://doi.org/10.1016/j.progpolymsci.2008.07.005
dc.relationBankova, V., Bertelli, D., Borba, R., Conti, B. J., da Silva Cunha, I. B., Danert, C., … Zampini, C. (2016). Standard methods for Apis mellifera propolis research. Journal of Apicultural Research, 58(2), 1–49. https://doi.org/10.1080/00218839.2016.1222661
dc.relationBastos, E., Guzmán, D., Judith, F., Tello, J., & Scoaris, D. (2011). CARACTERIZACIÓN ANTIMICROBIANA Y FISICOQUÍMICA DE PROPÓLEOS DE Apis mellifera L. (HYMENOPTERA: APIDAE) DE LA REGIÓN ANDINA COLOMBIANA Antimicrobial and Physico-Chemical Characterization of Propolis of Apis mellifera L. (Hymenoptera: Apidae) from the Colom. Acta Biologica Colombiana, 16, 175–184.
dc.relationBhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347. https://doi.org/https://doi.org/10.1016/j.biotechadv.2010.01.004
dc.relationBonou, J., Ahouandjinou, H., F.Baba-Moussa, Adéoti, Z., Metongnon, I., V.Dougnon, … And, F. T. (2016). Assessment of the antimicrobial activity of essential oils from some Beninese medicinal plants : Influence of different tweens. Issues in Biological Sciences and Pharmaceutical Research, 4(September), 43–49. Retrieved from http://dx.doi.org/10.15739/ibspr.16.006
dc.relationBrettmann, B. K., Tsang, S., Forward, K. M., Rutledge, G. C., Myerson, A. S., & Trout, B. L. (2012). Free surface electrospinning of fibers containing microparticles. Langmuir, 28(25), 9714–9721. https://doi.org/10.1021/la301422x
dc.relationCamo, J., Beltran, J. A., & Roncales, P. (2008). Extension of the display life of lamb with an antioxidant active packaging. Meat Science, 80(4), 1086–1091. https://doi.org/10.1016/j.meatsci.2008.04.031
dc.relationCao, Y., Warner, R. D., & Fang, Z. (2019). Effect of chitosan/nisin/gallic acid coating on preservation of pork loin in high oxygen modified atmosphere packaging. Food Control, 101(February), 9–16. https://doi.org/10.1016/j.foodcont.2019.02.013
dc.relationCasper, C. L., Stephens, J. S., Tassi, N. G., Chase, D. B., & Rabolt, J. F. (2004). Controlling Surface Morphology of Electrospun Polystyrene Fibers:  Effect of Humidity and Molecular Weight in the Electrospinning Process. Macromolecules, 37(2), 573–578. https://doi.org/10.1021/ma0351975
dc.relationCerkez, I., Sezer, A., & Bhullar, S. K. (2017). Fabrication and characterization of electrospun poly(e-caprolactone) fibrous membrane with antibacterial functionality. Royal Society Open Science, 4(2). https://doi.org/10.1098/rsos.160911
dc.relationCeylan, Z., Sengor, G. F. U., & Yilmaz, M. T. (2017). A Novel Approach to Limit Chemical Deterioration of Gilthead Sea Bream (Sparus aurata) Fillets: Coating with Electrospun Nanofibers as Characterized by Molecular, Thermal, and Microstructural Properties. Journal of Food Science, 82(5), 1163–1170. https://doi.org/10.1111/1750-3841.13688
dc.relationCipitria, A., Skelton, A., Dargaville, T. R., Dalton, P. D., & Hutmacher, D. W. (2011). Design, fabrication and characterization of PCL electrospun scaffolds - A review. Journal of Materials Chemistry, 21(26), 9419–9453. https://doi.org/10.1039/c0jm04502k
dc.relationComa, V. (2008). Bioactive packaging technologies for extended shelf life of meat-based products. Meat Science, 78(1), 90–103. https://doi.org/https://doi.org/10.1016/j.meatsci.2007.07.035
dc.relationCurcio, M., Puoci, F., Iemma, F., Parisi, O. I., Cirillo, G., Spizzirri, U. G., & Picci, N. (2009). Covalent Insertion of Antioxidant Molecules on Chitosan by a Free Radical Grafting Procedure. Journal of Agricultural and Food Chemistry, 57(13), 5933–5938. https://doi.org/10.1021/jf900778u
dc.relationDai, R., & Lim, L.-T. (2015). Release of allyl isothiocyanate from mustard seed meal powder entrapped in electrospun PLA–PEO nonwovens. Food Research International, 77, 467–475. https://doi.org/https://doi.org/10.1016/j.foodres.2015.08.029
dc.relationDainelli, D., Gontard, N., Spyropoulos, D., Zondervan-van den Beuken, E., & Tobback, P. (2008). Active and intelligent food packaging: legal aspects and safety concerns. Trends in Food Science and Technology, 19(SUPPL. 1), S103–S112. https://doi.org/10.1016/j.tifs.2008.09.011
dc.relationDong, T., Song, S., Liang, M., Wang, Y., Qi, X., Zhang, Y., … Jin, Y. (2017). Gas Permeability and Permselectivity of Poly(L-Lactic Acid)/SiOx Film and Its Application in Equilibrium-Modified Atmosphere Packaging for Chilled Meat. Journal of Food Science, 82(1), 97–107. https://doi.org/10.1111/1750-3841.13560
dc.relationDurán, N., Marcato, P. D., Buffo, C. M. S., De Azevedo, M. M. M., & Esposito, E. (2007). Poly(ε-caprolactone)/propolis extract: Microencapsulation and antibacterial activity evaluation. Pharmazie, 62(4), 287–290. https://doi.org/10.1691/ph.2007.4.6058
dc.relationEgan, A. F. (1983). Lactic acid bacteria of meat and meat products. Antonie van Leeuwenhoek, 49(3), 327–336. https://doi.org/10.1007/BF00399507
dc.relationEnser, M., Hallett, K., Hewitt, B., Fursey, G. A. J., & Wood, J. D. (1996). Fatty acid content and composition of english beef, lamb and pork at retail. Meat Science, 42(4), 443–456. https://doi.org/https://doi.org/10.1016/0309-1740(95)00037-2
dc.relationFalcão, S. I., Vilas-Boas, M., Estevinho, L. M., Barros, C., Domingues, M. R. M., & Cardoso, S. M. (2010). Phenolic characterization of Northeast Portuguese propolis: usual and unusual compounds. Analytical and Bioanalytical Chemistry, 396(2), 887–897. https://doi.org/10.1007/s00216-009-3232-8
dc.relationFaustman, C., Johnson, J. L., Cassens, R. G., & Doyle, M. . (1990). Color reversion in beef: Influence of psychotrophic bacteria. Fleischwirt, 70, 676.
dc.relationFDA. (2013). Revised guidelines for the assesment of microbiological quality of processes foods.
dc.relationFeng, J. J. (2003). Stretching of a straight electrically charged viscoelastic jet. Journal of Non-Newtonian Fluid Mechanics, 116(1), 55–70. https://doi.org/https://doi.org/10.1016/S0377-0257(03)00173-3
dc.relationFernández-López, J., Sevilla, L., Sayas-Barberá, E., Navarro, C., Marín, F., & Pérez-Alvarez, J. A. (2003). Evaluation of the Antioxidant Potential of Hyssop (Hyssopus officinalis L.) and Rosemary (Rosmarinus officinalis L.) Extracts in Cooked Pork Meat. Journal of Food Science, 68(2), 660–664. https://doi.org/10.1111/j.1365-2621.2003.tb05727.x
dc.relationFuenmayor, C. A., Mascheroni, E., Cosio, M. S., Piergiovanni, L., Benedetti, S., Ortenzi, M., … Mannino, S. (2013). Encapsulation of R-(+)-limonene in edible electrospun nanofibers. Chemical Engineering Transactions, 32, 1771–1776. https://doi.org/10.3303/CET1332296
dc.relationGaniari, S., Choulitoudi, E., & Oreopoulou, V. (2017). Edible and active films and coatings as carriers of natural antioxidants for lipid food. Trends in Food Science & Technology, 68, 70–82. https://doi.org/https://doi.org/10.1016/j.tifs.2017.08.009
dc.relationGhisalberti, E. L. (1979). Propolis: A Review. Bee World, 60(2), 59–84. https://doi.org/10.1080/0005772X.1979.11097738
dc.relationGill, A. O., & Gill, C. O. (2005). 13 - Preservative packaging for fresh meats, poultry, and fin fish. In J. H. B. T.-I. in F. P. Han (Ed.), Food Science and Technology (pp. 204–226). https://doi.org/https://doi.org/10.1016/B978-012311632-1/50045-0
dc.relationGreiner, A., & Wendorff, J. H. (2007). Electrospinning: A Fascinating Method for the Preparation of Ultrathin Fibers. Angewandte Chemie International Edition, 46(30), 5670–5703. https://doi.org/10.1002/anie.200604646
dc.relationGutiérrez, T. J. (2017). Chitosan Applications for the Food Industry. In Chitosan. https://doi.org/10.1002/9781119364849.ch8
dc.relationHan, J. H. (2005). 1 - New technologies in food packaging: Overiew. In J. H. B. T.-I. in F. P. Han (Ed.), Food Science and Technology (pp. 3–11). https://doi.org/https://doi.org/10.1016/B978-012311632-1/50033-4
dc.relationHayes, J. E., Stepanyan, V., Allen, P., O’Grady, M. N., & Kerry, J. P. (2011). Evaluation of the effects of selected plant-derived nutraceuticals on the quality and shelf-life stability of raw and cooked pork sausages. LWT - Food Science and Technology, 44(1), 164–172. https://doi.org/https://doi.org/10.1016/j.lwt.2010.05.020
dc.relationHigueras Contreras, L., López-Carballo, G., Gavara, R., & Hernández-Muñoz, P. (2014). Reversible Covalent Immobilization of Cinnamaldehyde on Chitosan Films via Schiff Base Formation and Their Application in Active Food Packaging. Food and Bioprocess Technology, 8, 526–538. https://doi.org/10.1007/s11947-014-1421-8
dc.relationHolley, R. A., Peirson, M. D., Lam, J., & Tan, K. B. (2004). Microbial profiles of commercial, vacuum-packaged, fresh pork of normal or short storage life. International Journal of Food Microbiology, 97(1), 53–62. https://doi.org/10.1016/j.ijfoodmicro.2004.03.029
dc.relationHomayoni, H., Ravandi, S. A. H., & Valizadeh, M. (2009). Electrospinning of chitosan nanofibers: Processing optimization. Carbohydrate Polymers, 77(3), 656–661. https://doi.org/10.1016/j.carbpol.2009.02.008
dc.relationHuang, W., Xu, H., Xue, Y., Huang, R., Deng, H., & Pan, S. (2012). Layer-by-layer immobilization of lysozyme-chitosan-organic rectorite composites on electrospun nanofibrous mats for pork preservation. Food Research International, 48(2), 784–791. https://doi.org/10.1016/j.foodres.2012.06.026
dc.relationIFST, I. of F. S. and T. (1993). Shelf life of foods : guidelines for its determination and prediction / Institute of Food Science & Technology (UK). ondon : Institute of Food Science & Technology (UK).
dc.relationImmich, A. P. S., Arias, M. L., Carreras, N., Boemo, R. L., & Tornero, J. A. (2013). Drug delivery systems using sandwich configurations of electrospun poly(lactic acid) nanofiber membranes and ibuprofen. Materials Science and Engineering: C, 33(7), 4002–4008. https://doi.org/https://doi.org/10.1016/j.msec.2013.05.034
dc.relationJakobsen, M., & Bertelsen, G. (2000). Colour stability and lipid oxidation of fresh beef. Development of a response surface model for predicting the effects of temperature, storage time, and modified atmosphere composition. Meat Science, 54(1), 49–57. https://doi.org/10.1016/s0309-1740(99)00069-8
dc.relationJanmohammadi, M., & Nourbakhsh, M. S. (2019). Electrospun polycaprolactone scaffolds for tissue engineering: a review. International Journal of Polymeric Materials and Polymeric Biomaterials, 68(9), 527–539. https://doi.org/10.1080/00914037.2018.1466139
dc.relationJayasena, D. D., & Jo, C. (2013). Essential oils as potential antimicrobial agents in meat and meat products: A review. Trends in Food Science & Technology, 34(2), 96–108. https://doi.org/https://doi.org/10.1016/j.tifs.2013.09.002
dc.relationJonaidi Jafari, N., Kargozari, M., Ranjbar, R., Rostami, H., & Hamedi, H. (2018). The effect of chitosan coating incorporated with ethanolic extract of propolis on the quality of refrigerated chicken fillet. Journal of Food Processing and Preservation, 42(1), e13336. https://doi.org/10.1111/jfpp.13336
dc.relationKaewprachu, P., Osako, K., Benjakul, S., & Rawdkuen, S. (2015). Quality attributes of minced pork wrapped with catechin–lysozyme incorporated gelatin film. Food Packaging and Shelf Life, 3. https://doi.org/10.1016/j.fpsl.2014.11.002
dc.relationKalantari, K., Afifi, A. M., Jahangirian, H., & Webster, T. J. (2019). Biomedical applications of chitosan electrospun nanofibers as a green polymer – Review. Carbohydrate Polymers, 207(October 2018), 588–600. https://doi.org/10.1016/j.carbpol.2018.12.011
dc.relationKoutsoumanis, K., Stamatiou, A., Skandamis, P., & Nychas, G.-J. E. (2006). Development of a Microbial Model for the Combined Effect of Temperature and pH on Spoilage of Ground Meat, and Validation of the Model under Dynamic Temperature Conditions. Applied and Environmental Microbiology, 72(1), 124 LP – 134. https://doi.org/10.1128/AEM.72.1.124-134.2006
dc.relationLambert, A. D., Smith, J. P., & Dodds, K. L. (1991). Shelf life extension and microbiological safety of fresh meat — a review. Food Microbiology, 8(4), 267–297. https://doi.org/https://doi.org/10.1016/S0740-0020(05)80002-4
dc.relationLambropoulou, K. A., Drosinos, E. H., & Nychas, G. J. (1996). The effect of glucose supplementation on the spoilage microflora and chemical composition of minced beef stored aerobically or under a modified atmosphere at 4 degrees C. International Journal of Food Microbiology, 30(3), 281–291. https://doi.org/10.1016/0168-1605(96)00954-3
dc.relationLee, S., Joo, S. T., Alderton, A. L., Hill, D. W., & Faustman, C. (2003). Oxymyoglobin and Lipid Oxidation in Yellowfin Tuna (Thunnus albacares) Loins. Journal of Food Science, 68(5), 1664–1668. https://doi.org/10.1111/j.1365-2621.2003.tb12310.x
dc.relationLim, L. T. (2015). Encapsulation of bioactive compounds using electrospinning and electrospraying technologies. Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients, 297–317. https://doi.org/10.1002/9781118462157.ch18
dc.relationLim, L. T., Mendes, A. C., & Chronakis, I. S. (2019). Electrospinning and electrospraying technologies for food applications. In Advances in Food and Nutrition Research (1st ed., Vol. 88). https://doi.org/10.1016/bs.afnr.2019.02.005
dc.relationLópez-Caballero, M. E., Gómez-Guillén, M. C., Pérez-Mateos, M., & Montero, P. (2005). A chitosan–gelatin blend as a coating for fish patties. Food Hydrocolloids, 19(2), 303–311. https://doi.org/https://doi.org/10.1016/j.foodhyd.2004.06.006
dc.relationLorenzo, J. M., Batlle, R., & Gómez, M. (2014). Extension of the shelf-life of foal meat with two antioxidant active packaging systems. LWT - Food Science and Technology, 59(1), 181–188. https://doi.org/https://doi.org/10.1016/j.lwt.2014.04.061
dc.relationLuciani, A., Coccoli, V., Orsi, S., Ambrosio, L., & Netti, P. A. (2008). PCL microspheres based functional scaffolds by bottom-up approach with predefined microstructural properties and release profiles. Biomaterials, 29(36), 4800–4807. https://doi.org/10.1016/j.biomaterials.2008.09.007
dc.relationMachado, B. S., Pulcino, T. N., Silva, A. L., Melo, D. T., Silva, R. G., & Mendonça, I. G. (2017). Propolis as an alternative in prevention and control of dental cavity. Journal of Apitherapy, 1(2), 47–50. https://doi.org/10.5455/ja.20160726115117
dc.relationMartínez-Abad, A., Ocio, M. J., & Lagaron, J. M. (2014). Morphology, physical properties, silver release, and antimicrobial capacity of ionic silver-loaded poly(l-lactide) films of interest in food-coating applications. Journal of Applied Polymer Science, 131(21). https://doi.org/10.1002/app.4100
dc.relationMascheroni, E., Figoli, A., Musatti, A., Limbo, S., Drioli, E., Suevo, R., … Rollini, M. (2014). An alternative encapsulation approach for production of active chitosan–propolis beads. International Journal of Food Science & Technology, 49(5), 1401–1407. https://doi.org/10.1111/ijfs.12442
dc.relationMcMillin, K. W. (2008). Where is MAP Going? A review and future potential of modified atmosphere packaging for meat. Meat Science, 80(1), 43–65. https://doi.org/10.1016/j.meatsci.2008.05.028
dc.relationMoghaddam, A. B., Shirvani, B., Aroon, M. A., & Nazari, T. (2018). Physico-chemical properties of hybrid electrospun nanofibers containing polyvinylpyrrolidone (PVP), propolis and aloe vera. Materials Research Express, 5(12). https://doi.org/10.1088/2053-1591/aae0bf
dc.relationMurray, E., Thompson, B. C., Sayyar, S., & Wallace, G. G. (2015). Enzymatic degradation of graphene/polycaprolactone materials for tissue engineering. Polymer Degradation and Stability, 111, 71–77. https://doi.org/https://doi.org/10.1016/j.polymdegradstab.2014.10.010
dc.relationNattress, F. M., & Jeremiah, L. E. (2000). Bacterial mediated off-flavors in retail-ready beef after storage in controlled atmospheres. Food Research International, 33, 743–748. https://doi.org/10.1016/S0963-9969(00)00064-8
dc.relationNeo, Y. P., Swift, S., Ray, S., Gizdavic-Nikolaidis, M., Jin, J., & Perera, C. O. (2013). Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chemistry, 141(3), 3192–3200. https://doi.org/https://doi.org/10.1016/j.foodchem.2013.06.018
dc.relationNPD. (2003). National eating trends in-home/away from home combined; 2001/2002. Retrieved from www.porkfoodservice.com/documents/RAC-MEAL USAGE 2003.PPT
dc.relationO’Grady, M. N., Maher, M., Troy, D. J., Moloney, A. P., & Kerry, J. P. (2006). An assessment of dietary supplementation with tea catechins and rosemary extract on the quality of fresh beef. Meat Science, 73(1), 132–143. https://doi.org/10.1016/j.meatsci.2005.11.008
dc.relationOrsi, R. O., Fernandes, A., Bankova, V., & Sforcin, J. M. (2012). The effects of Brazilian and Bulgarian propolis in vitro against Salmonella Typhi and their synergism with antibiotics acting on the ribosome. Natural Product Research, 26(5), 430–437. https://doi.org/10.1080/14786419.2010.498776
dc.relationPakravan, M., Heuzey, M. C., & Ajji, A. (2011). A fundamental study of chitosan/PEO electrospinning. Polymer, 52(21), 4813–4824. https://doi.org/10.1016/j.polymer.2011.08.034
dc.relationPiedrahíta, D. G., Fuenmayor, C. A., & Suárez, H. (2019). Effect of chitosan-propolis edible coatings on stability of refrigerated cachama (Piaractus brachypomus) vacuum-packed fish fillets. Packaging Technology and Science, 32(3), 143–153. https://doi.org/10.1002/pts.242
dc.relationPobiega, K., Kraśniewska, K., & Gniewosz, M. (2019b). Application of propolis in antimicrobial and antioxidative protection of food quality – A review. Trends in Food Science and Technology, 83(October 2018), 53–62. https://doi.org/10.1016/j.tifs.2018.11.007
dc.relationQian, Y., Zhang, Z., Zheng, L., Song, R., & Zhao, Y. (2014). Fabrication and characterization of electrospun polycaprolactone blended with chitosan-gelatin complex nanofibrous mats. Journal of Nanomaterials, 2014. https://doi.org/10.1155/2014/964621
dc.relationQuintavalla, S., & Vicini, L. (2002). Antimicrobial food packaging in meat industry. Meat Science, 62(3), 373–380. https://doi.org/https://doi.org/10.1016/S0309-1740(02)00121-3
dc.relationRawdkuen, S., Punbusayakul, N., & Lee, D. S. (2016). Chapter 17 - Antimicrobial Packaging for Meat Products (J. B. T.-A. F. P. Barros-Velázquez, Ed.). https://doi.org/https://doi.org/10.1016/B978-0-12-800723-5.00017-6
dc.relationReis, A. S. dos, Diedrich, C., Moura, C. de, Pereira, D., Almeida, J. de F., Silva, L. D. da, … Carpes, S. T. (2017). Physico-chemical characteristics of microencapsulated propolis co-product extract and its effect on storage stability of burger meat during storage at −15 °C. LWT - Food Science and Technology, 76, 306–313. https://doi.org/https://doi.org/10.1016/j.lwt.2016.05.033
dc.relationReneker, D. H., Yarin, A. L., Fong, H., & Koombhongse, S. (2000). Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. Journal of Applied Physics, 87(9), 4531–4547. https://doi.org/10.1063/1.373532
dc.relationRutledge, G. C., & Fridrikh, S. V. (2007). Formation of fibers by electrospinning. Advanced Drug Delivery Reviews, 59(14), 1384–1391. https://doi.org/https://doi.org/10.1016/j.addr.2007.04.020
dc.relationSalamanca, G., Correa, I. L., & Principal, J. (2007). Perfil de flavonoides e índices de oxidación de algunos propóleos colombianos. Zootecnia Tropical, 25(2).
dc.relationSamelis, J., Kakouri, A. & Rementzis, J. (2000). Selective effect of the product type and the packaging conditions on the species of lactic acid bacteria dominating the spoilage microbial association of cooked meats at 4°C. Food Microbiology, 17, 329–340.
dc.relationSánchez, Á. P., Vera, R., Muñoz, E. de J., Gómez, E., Bernad, M. J., Maciel, A., & Mu. (2016). Preparación y caracterización de membranas poliméricas electrohiladas de policaprolactona y quitosano para la liberación controlada de clorhidrato de tiamina. Ciencia En Desarrollo, 7(2), 133. https://doi.org/10.19053/01217488.v7.n2.2016.4818
dc.relationSawaya, A. C. H. F., Barbosa da Silva Cunha, I., & Marcucci, M. C. (2011). Analytical methods applied to diverse types of Brazilian propolis. Chemistry Central Journal, 5(1), 1–10. https://doi.org/10.1186/1752-153X-5-27
dc.relationSenthil Muthu Kumar, T., Senthil Kumar, K., Rajini, N., Siengchin, S., Ayrilmis, N., & Varada Rajulu, A. (2019). A comprehensive review of electrospun nanofibers: Food and packaging perspective. Composites Part B: Engineering, 175(July), 107074. https://doi.org/10.1016/j.compositesb.2019.107074
dc.relationShao, S., Li, L., Yang, G., Li, J., Luo, C., Gong, T., & Zhou, S. (2011). Controlled green tea polyphenols release from electrospun PCL/MWCNTs composite nanofibers. International Journal of Pharmaceutics, 421(2), 310–320. https://doi.org/10.1016/j.ijpharm.2011.09.033
dc.relationSilici, S., & Kutluca, S. (2005). Chemical composition and antibacterial activity of propolis collected by three different races of honeybees in the same region. Journal of Ethnopharmacology, 99(1), 69–73. https://doi.org/https://doi.org/10.1016/j.jep.2005.01.046
dc.relationSiripatrawan, U., & Vitchayakitti, W. (2016). Improving functional properties of chitosan films as active food packaging by incorporating with propolis. Food Hydrocolloids, 61, 695–702. https://doi.org/10.1016/j.foodhyd.2016.06.001
dc.relationSon, B., Yeom, B.-Y., Song, S. H., Lee, C.-S., & Hwang, T. S. (2009). Antibacterial electrospun chitosan/poly(vinyl alcohol) nanofibers containing silver nitrate and titanium dioxide. Journal of Applied Polymer Science, 111(6), 2892–2899. https://doi.org/10.1002/app.29233
dc.relationSteyaert, I., Van Der Schueren, L., Rahier, H., & De Clerck, K. (2012). An alternative solvent system for blend electrospinning of polycaprolactone/chitosan nanofibres. Macromolecular Symposia, 321–322(1), 71–75. https://doi.org/10.1002/masy.201251111
dc.relationSultana, T., Amirian, J., Park, C., Lee, S. J., & Lee, B. T. (2017). Preparation and characterization of polycaprolactone–polyethylene glycol methyl ether and polycaprolactone–chitosan electrospun mats potential for vascular tissue engineering. Journal of Biomaterials Applications, 32(5), 648–662. https://doi.org/10.1177/0885328217733849
dc.relationSutjarittangtham, K., Sanpa, S., Tunkasiri, T., Rachtanapun, P., Chantawannakul, P., Intatha, U., … Eitssayeam, S. (2012). Preparation of polycaprolactone/ethanolic extract propolis nanofibers films. Advanced Materials Research, 506, 226–229. https://doi.org/10.4028/www.scientific.net/AMR.506.226
dc.relationTalero, C., Hernandéz, D., & Figueroa, J. (2012). CALIDAD MICROBIOLÓGICA DE PROPÓLEO CRUDO Y SÓLIDOS SOLUBLES DE EXTRACTOS DE PROPÓLEOS DE Apis mellifera EN COLOMBIA. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 59(II), 109–118.
dc.relationTaylor, G. I., & Van Dyke, M. D. (1969). Electrically driven jets. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 313(1515), 453–475. https://doi.org/10.1098/rspa.1969.0205
dc.relationTorlak, E., & Sert, D. (2013). Antibacterial effectiveness of chitosan-propolis coated polypropylene films against foodborne pathogens. International Journal of Biological Macromolecules, 60, 52–55. https://doi.org/10.1016/j.ijbiomac.2013.05.013
dc.relationTorres-Giner, S. (2011). Multifunctional and Nanoreinforced Polymers for Food Packaging. Multifunctional and Nanoreinforced Polymers for Food Packaging, 108–125. https://doi.org/10.1533/9780857092786.1.108
dc.relationTosi, E. A., Ré, E., Ortega, M. E., & Cazzoli, A. F. (2007). Food preservative based on propolis: Bacteriostatic activity of propolis polyphenols and flavonoids upon Escherichia coli. Food Chemistry, 104(3), 1025–1029. https://doi.org/10.1016/j.foodchem.2007.01.011
dc.relationUSDA-FSIS. (2000). HACCP implementation: First year Salmonella test results. U.S. Department of Agriculture Food Safety and Inspection Service.
dc.relationValle, P., Garcia Armesto, M., Campos Fernández, J., Posado, A., Arriaga, D., & Rúa, J. (2018). Antimicrobial effects of gallic acid, octyl gallate and propyl gallate on carnobacterium divergens and leuconostoc carnosum originating from meat. Journal of Food and Nutrition Research, 57, 76–86.
dc.relationVega-Lugo, A. C., & Lim, L. T. (2009). Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Research International, 42(8), 933–940. https://doi.org/10.1016/j.foodres.2009.05.005
dc.relationVega, A.-C., & Lim, L.-T. (2012). Effects of poly(ethylene oxide) and pH on the electrospinning of whey protein isolate. Journal of Polymer Science Part B: Polymer Physics, 50(16), 1188–1197. https://doi.org/10.1002/polb.23106
dc.relationViana, E., Gomide, L., & Vanetti, M. (2005). Effect of modified atmospheres on microbiological, color and sensory properties of refrigerated pork. Meat Science, 71, 696–705. https://doi.org/10.1016/j.meatsci.2005.05.013
dc.relationVickers, T. (2007). Radical chain reaction mechanism of lipid peroxidation. Retrieved from https://commons.wikimedia.org/wiki/File:Lipid_peroxidation-es.svg
dc.relationvon Burkersroda, F., Schedl, L., & Gopferich, A. (2002). Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 23(21), 4221–4231. https://doi.org/10.1016/s0142-9612(02)00170-9
dc.relationWang, S., Marcone, M. F., Barbut, S., & Lim, L.-T. (2013). Electrospun soy protein isolate-based fiber fortified with anthocyanin-rich red raspberry (Rubus strigosus) extracts. Food Research International, 52(2), 467–472. https://doi.org/https://doi.org/10.1016/j.foodres.2012.12.036
dc.relationWen, P., Zhu, D.-H., Feng, K., Liu, F.-J., Lou, W.-Y., Li, N., … Wu, H. (2016). Fabrication of electrospun polylactic acid nanofilm incorporating cinnamon essential oil/β-cyclodextrin inclusion complex for antimicrobial packaging. Food Chemistry, 196, 996–1004. https://doi.org/https://doi.org/10.1016/j.foodchem.2015.10.043
dc.relationWoodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science (Oxford), 35(10), 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002
dc.relationWu, T., Ding, M., Shi, C., Qiao, Y., Wang, P., Qiao, R., … Zhong, J. (2019). Resorbable polymer electrospun nanofibers: History, shapes and application for tissue engineering. Chinese Chemical Letters. https://doi.org/https://doi.org/10.1016/j.cclet.2019.07.033
dc.relationXia, X., Kong, B., Xiong, Y. L., & Meng, X. (2007). Extending the Shelf-Life of Chilled Pork By Combination of Chitosan Coating With Spice Extracts. 7–8.
dc.relationXiao, J., Shi, C., Zheng, H., Shi, Z., Jiang, D., Li, Y., & Huang, Q. (2016). Kafirin Protein Based Electrospun Fibers with Tunable Mechanical Property, Wettability, and Release Profile. Journal of Agricultural and Food Chemistry, 64(16), 3226–3233. https://doi.org/10.1021/acs.jafc.6b00388
dc.relationYang, H., Hewes, D., Salaheen, S., Federman, C., & Biswas, D. (2014). Effects of blackberry juice on growth inhibition of foodborne pathogens and growth promotion of Lactobacillus. Food Control, 37, 15–20. https://doi.org/https://doi.org/10.1016/j.foodcont.2013.08.042
dc.relationYano, H., Sugiyama, J., Nakagaito, A. N., Nogi, M., Matsuura, T., Hikita, M., & Handa, K. (2005). Optically transparent composites reinforced with networks of bacterial nanofibers. Advanced Materials, 17(2), 153–155. https://doi.org/10.1002/adma.200400597
dc.relationZabaiou, N., Fouache, A., Trousson, A., Baron, S., Zellagui, A., Lahouel, M., & Lobaccaro, J.-M. A. (2017). Biological properties of propolis extracts: Something new from an ancient product. Chemistry and Physics of Lipids, 207(Pt B), 214–222. https://doi.org/10.1016/j.chemphyslip.2017.04.005
dc.relationZakrys, P. I., O’Sullivan, M. G., Allen, P., & Kerry, J. P. (2009). Consumer acceptability and physiochemical characteristics of modified atmosphere packed beef steaks. Meat Science, 81(4), 720–725. https://doi.org/10.1016/j.meatsci.2008.10.024
dc.relationZdraveva, E., Fang, J., Mijovic, B., & Lin, T. (2016). Electrospun nanofibers. In Structure and Properties of High-Performance Fibers. https://doi.org/10.1016/B978-0-08-100550-7.00011-5
dc.relationZein, I., Hutmacher, D. W., Tan, K. C., & Teoh, S. H. (2002). Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomaterials, 23(4), 1169–1185. https://doi.org/https://doi.org/10.1016/S0142-9612(01)00232-0
dc.relationZhao, L.-M., Shi, L.-E., Zhang, Z.-L., Chen, J.-M., Shi, D.-D., Yang, J., & Tang, Z.-X. (2011). Preparation and application of chitosan nanoparticles and nanofibers. Brazilian Journal of Chemical Engineering, 28, 353–362. Retrieved from http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0104-66322011000300001&nrm=iso
dc.relationZhou, F.-L., Gong, R.-H., & Porat, I. (2009). Mass production of nanofibre assemblies by electrostatic spinning. Polymer International, 58(4), 331–342. https://doi.org/10.1002/pi.2521
dc.relationZhu, X., Wu, H., Yang, J., Tong, J., Yi, J., Hu, Z., … Fan, L. (2015). Antibacterial activity of chitosan grafting nisin: Preparation and characterization. Reactive and Functional Polymers, 91–92, 71–76. https://doi.org/https://doi.org/10.1016/j.reactfunctpolym.2015.04.009
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleDesarrollo y caracterización de recubrimientos activos a base de nanofibras electrohiladas de policaprolactona, quitosano y extractos oleosos de propóleos colombianos para la conservación de filetes de lomo de cerdo.
dc.typeOtro


Este ítem pertenece a la siguiente institución