dc.contributorGonzález D'León, Rafael Sebastian
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.creatorQuiceno Durán, Yeison Augusto
dc.date.accessioned2020-08-14T19:19:45Z
dc.date.available2020-08-14T19:19:45Z
dc.date.created2020-08-14T19:19:45Z
dc.date.issued2020-04-27
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78042
dc.description.abstractThe notion of a Whitney dual for a graded partially ordered set (poset) $P$ with a minimum element $\hat{0}$ has been introduced recently by Gonz\'alez D'Le\'on and Hallam with some interesting connections to other areas of algebra and combinatorics. We say that two posets are Whitney duals to each other if (the absolute value of) their Whitney numbers of the first and second kind are interchanged between the two posets. Some families of familiar posets such as the poset $\Pi_{n}$ of partitions of the set $\{1,2,3...,n\}$ have Whitney duals. This has been proved by defining a suitable edge labeling $\lambda$ on the edges of the Hasse diagram of $\Pi_{n}$ satisfying certain conditions. Such an edge labeling is called a Whitney labeling and Gonz\'alez D'Le\'on - Hallam proved that every graded poset that admits a Whitney labeling has a Whitney dual. We study the Whitney duality property for two families of operadic posets, finding Whitney labelings and constructing combinatorial descriptions of their Whitney duals. One is known as the family of posets of weighted partitions $\Pi_{n}^k$, studied by Gonz\'alez D'Le\'on and Wachs related to the operad $\mathcal{C}om^k$ of commutative algebras with $k$ totally commutative products, and the other is the family of posets of pointed partitions $\Pi_{n}^{\bullet}$, studied by Chapoton and Vallette associated to the operad $\mathcal{P}erm$ of $\mathcal{P}erm$-algebras. We prove that a labeling, previously defined by Gonz\'alez D'Le\'on, for $\Pi_{n}^k$ is a Whitney labeling and prove that its associated Whitney dual is a poset of colored Lyndon forests. We also find a Whitney labeling for $\Pi_{n}^{\bullet}$ and then use this labeling to show that its associated Whitney dual is a poset of pointed Lyndon forests. For the case $k=2$, it turns out that the families $\Pi_{n}^2$ and $\Pi_{n}^{\bullet}$ have the same Whitney numbers of the first and second kind. Our results imply that there are multiple non-isomorphic Whitney duals for these two families in this case.
dc.description.abstractTítulo: Duales de Whitney de posets operadic. González D'León y Hallam introdujeron recientemente la noción de duales de Whitney para un conjunto parcialmente ordenado (poset) graduado $P$ con un elemento mínimo $\hat{0}$ con algunas conexiones interesantes a otras áreas del álgebra y la combinatoria. Decimos que dos posets son duales de Whitney entre sí, si (el valor absoluto de) sus números de Whitney del primer y segundo tipo se intercambian entre los dos posets. Algunas familias de posets familiares como el poset $\Pi_{n}$ de particiones del conjunto $\{1,2,3 ..., n \}$ tienen duales de Whitney. Esto se ha demostrado definiendo un etiquetamiento adecuado $\lambda$ en las aristas del diagrama de Hasse de $\Pi_{n}$ que satisface ciertas condiciones. A tal etiquetamiento de aristas se le llama etiquetamiento de Whitney y González D'León - Hallam demostraron que todo poset graduado que admite un etiquetamiento de Whitney tiene un dual de Whitney. Estudiamos la propiedad de dualidad de Whitney para dos familias de posets operadicos, por medio de etiquetamientos de Whitney y de la construcción de descripciones combinatorias de sus duales de Whitney. Una de las familias es la familia de posets de particiones con pesos $\Pi_{n}^k$, estudiadas por González D'León y Wachs, relacionadas con el operad $\mathcal{C}om^k$ de álgebras conmutativas con $k$ productos totalmente conmutativos, y la otra es la familia de posets de particiones punteadas $\Pi_{n}^{\bullet}$, estudiadas por Chapoton y Vallette asociadas al operad $\mathcal{P}erm$ de $\mathcal{P}erm$-álgebras. Demostramos que un etiquetamiento, previamente definido por González D'León, para $\Pi_{n}^k$ es un etiquetamiento de Whitney y demostramos que su dual de Whitney asociado es un poset de bosques de Lyndon coloreados. También encontramos un etiquetamiento de Whitney para $\Pi_{n}^{\bullet}$ y luego usamos este etiquetamiento para mostrar que su dual de Whitney asociado es un poset de bosques de Lyndon punteados. Para el caso $k=2$, resulta que las familias $\Pi_{n}^2$ y $\Pi_{n}^{\bullet}$ tienen los mismos números de Whitney del primer y segundo tipo. Nuestros resultados implican que hay múltiples duales de Whitney no isomorfos entre sí para estas dos familias en este caso.
dc.languageeng
dc.publisherMedellín - Ciencias - Maestría en Ciencias - Matemáticas
dc.publisherEscuela de matemáticas
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationKarim Adiprasito, June Huh, and Eric Katz. Hodge theory for combinatorial geometries.Annals of Mathematics, 188(2):381–452, 2018.
dc.relationFrédéric Chapoton and Bruno Vallette. Pointed and multi-pointed partitions of type a and b. Journal of Algebraic Combinatorics, 23(4):295–316, 2006.
dc.relationBérénice Delcroix-Oger. Semi-pointed partition posets.Discrete Mathematics & Theoretical Computer Science, 2015.
dc.relationRafael S González D’León. On the free lie algebra with multiple brackets.Advances in Applied Mathematics, 79:37–97, 2016.
dc.relationVladimir V Dotsenko and Anton S Khoroshkin. Character formulas for the operad of two compatible brackets and for the bi-hamiltonian operad.Functional Analysis and its Applications, 41(1):1–17, 2007.
dc.relationRafael González D’León and Michelle Wachs. On the (co) homology of the poset of weighted partitions.Transactions of the American Mathematical Society, 368(10):6779–6818, 2016.
dc.relationRafael S. González D’León and Joshua Hallam. The Whitney duals of a graded poset.arXiv preprint arXiv:1803.03151, 2018.
dc.relationRafael S. González D’León and Joshua Hallam. Whitney duals, Whitney twins, and operatic partitions posets. In preparation, 2018.
dc.relationRafael S. González D’León, Joshua Hallam, and Jose Alejandro Samper. Conjectures on Whitney duals and whitney labelings. In preparation, 2019.
dc.relationJean-Louis Loday and Bruno Vallette. Algebraic operads, volume 346. Springer Science & Business Media, 2012.
dc.relationJ Peter May. Lectures notes in mathematics, 1972.
dc.relationMiguel Méndez and Julia Yang. Möbius species. Advances in Mathematics, 85(1):83–128, 1991.
dc.relationDavid L Reiner. The combinatorics of polynomial sequences. Studies in Applied Mathematics, 58(2):95–117, 1978.
dc.relationBruce E Sagan. A note on abel polynomials and rooted labeled forests.Discrete Mathematics, 44(3):293–298, 1983.
dc.relationRichard P. Stanley. Acyclic orientations of graphs.Discrete Math., 5:171–178, 1973.
dc.relationRichard P Stanley. Enumerative combinatorics volume 1 second edition.Cambridge studies in advanced mathematics, 2011.
dc.relationBruno Vallette. Homology of generalized partition posets. Journal of Pure and AppliedAlgebra, 208(2):699–725, 2007.
dc.relationHassler Whitney. A logical expansion in mathematics.Bull. Amer. Math. Soc.,38(8):572–579, 1932.
dc.relationThomas Zaslavsky.Facing up to Arrangements: Face-Count Formulas for Partitions of Space by Hyperplanes: Face-count Formulas for Partitions of Space by Hyperplanes, volume 154. American Mathematical Soc., 1975.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleOn Whitney duals of operadic posets
dc.typeOtro


Este ítem pertenece a la siguiente institución