Trabajo de grado - Doctorado
S-Coherent measures pairs and Orthogonal polynomials with respect to Sobolev products. Applications
Fecha
2019-08-25Autor
Molano Molano, Luis Alejandro
Institución
Resumen
In this dissertation, the concept of s-coherence, or symmetric $(1,1)$-coherence, of pairs of quasi-definite linear functionals, and the polynomials orthogonal with respect to certain Sobolev inner product type play a preponderant role. The concept of symmetric $(1,1)-$ coherent pair is defined as follows. Let $u$ and $v$ denote two symmetric quasi-definite linear functionals and $ \left\{ P_{n}\right\} _{n\geq 0}$ and $\left\{ R_{n}\right\} _{n\geq 0}$ will denote their respective sequences of monic orthogonal polynomials, (SMOP in short). Suppose that there exist sequences of non-zero real numbers $\left\{ a_{n}\right\} _{n\geq 0}$ and $\left\{b_{n}\right\} _{n\geq 0},$ with $a_{n}b_{n}\neq 0,$ such that \begin{equation} \frac{P_{n+3}^{\prime }(x)}{n+3}+a_{n}\frac{P_{n+1}^{\prime }(x)}{n+1}=R_{n+2}(x)+b_{n}R_{n}(x),\text{ \ \ }n\geq 0, \label{simm} \end{equation} holds. Then the pair $\left\{ u,v\right\} $ is said to be a \textit{ Symmetric }$(1,1)-$\textit{Coherent Pair}. This concept is a natural extension of the concept of symmetric coherent pairs of quasi-definite linear functionals. The structure of this work is as follows. First, a classification of symmetric $(1,1)-$coherent pairs is stated by using a symmetrization process. In addition, we study how from (\ref{simm}), and using the symmetrization process, we can arrive to a non-coherence algebraic relation. Then, the corresponding inverse problem is analyzed exhaustively. After this, we consider the Sobolev inner product \begin{equation} \left\langle p,q\right\rangle _{S}=\int_{ \mathbb{R} }p(x)q(x)d\mu _{0}(x)+\lambda \int_{ \mathbb{R} }p^{\prime }(x)q^{\prime }(x)d\mu _{1}(x),\text{ \ }\lambda 0, \label{innersobolev44} \end{equation} where we assume that $u$ and $v$ are positive-definite, with $\mu _{0}$ and $\mu _{1}$ as the respective positive Borel measures and $\left\{ S_{n}^{\lambda }\right\} _{n\geq 0}$ as the Sobolev orthogonal polynomials associated with (\ref{innersobolev44}). So, the algebraic relation \begin{equation} S_{n+3}^{\lambda }(x)+\eta _{n}(\lambda )S_{n+1}^{\lambda }(x)=P_{n+3}(x)+% \widetilde{a}_{n}P_{n+1}(x), \end{equation} is considered, where special attention is placed on the so called \textit{Sobolev coefficients} $\left\{ \eta _{n}(\lambda ) \right\} _{n\geq 0}$. Then, their recurrence properties as well as those of the corresponding Sobolev norms $\left\{ \left\Vert S_{n}^{\lambda }\right\Vert _{S}^{2}\right\} _{n\geq 0}$ are studied. On the other hand, the particular symmetric $(1,1)-$coherent pair $\left\{ \mu _{0},\mu _{1}\right\} ,$ $d\mu _{0}=e^{-x^{2}}dx,$ $d\mu _{1}=\frac{x^{2}+a}{x^{2}+b}e^{-x^{2}}dx,$ is taken into account. In this way, limit behavior of Soboleb coefficients and the asymptotic properties of Sobolev polynomials are deeply studied. Finally, we exhibit an algorithm to compute Fourier coefficients in expansions of functions that belong to the Sobolev space $W_{2}^{1}\left[ \mathbb{R} ,\mu _{0},\mu _{1}\right] $ by using Sobolev polynomials. En esta disertación, el concepto de s−coherencia, o (1, 1)−coherencia simétrica, de pares de funcionales lineales regulares y los polinomios ortogonales con respecto a cierto producto interno de tipo Sobolev, juegan un papel preponderante. El concepto de par simétrico (1, 1)− coherente es definido de la siguiente forma. Sean u y v dos funcionales lineales, simétricos y regulares, donde {Pn}n≥0 y {Rn}n≥0 representan sus respectivas sucesiones de polinomios ortogonales mónicos, (para ser breves escribiremos SPOM). Supongamos que existen sucesiones no nulas de números reales {an}n≥0 y {bn}n≥0 , with anbn 6= 0, tales que P 0 n+3(x) n + 3 + an P 0 n+1(x) n + 1 = Rn+2(x) + bnRn(x), n ≥ 0, es satisfecha. Entonces el par {u, v} se denomina par sim´etrico (1, 1)−Coherente. Este concepto es introducido en [34] como una extensión natural del concepto de par simétrico coherente estudiado en [55]. La estructura de este trabajo es la siguiente. Primero, una clasificación de pares simétricos (1, 1)−coherentes es establecida usando cierto proceso de simetrización. Adicionalmente estudiamos cómo de (1), y usando el proceso de simetrizaci´on, podemos llegar a una interesante relación algebraica no coherente. El problema inverso asociado a esta relación es analizado exhaustivamente. Luego, consideramos el producto interno de tipo Sobolev hp, qiS = Z R p(x)q(x)dµ0(x) + λ Z R p 0 (x)q 0 (x)dµ1(x), λ 0, donde asumimos que u y v son definidos positivos con µ0 y µ1 como las respectivas medidas de Borel y S λ n n≥0 como la SPOM asociada con (2). Entonces la relación algebraica S λ n+3(x) + ηn(λ)S λ n+1(x) = Pn+3(x) + eanPn+1(x), es considerada, donde especial atención es puesta en los llamados coeficientes de Sobolev {ηn(λ)}n≥0 . Entonces, sus propiedades de recurrencia como las de las respectivas normas de Sobolev n S λ n 2 S o n≥0 son estudiadas. De otro lado, el caso particular del par simétrico (1, 1)−coherente {µ0, µ1} , dµ0 = e −x 2 dx, dµ1 = x 2+a x2+b e −x 2 dx, es tenido en cuenta. Así, el comportamiento límite de los coeficientes de Sobolev y propiedades asintóticas de los polinomios de Sobolev son estudiados exhaustivamente. Finalmente exhibimos un algoritmo para calcular los coeficientes de Fourier en expansiones de funciones en el espacio de Sobolev W1 2 [R, µ0, µ1] a través de polinomios de Sobolev. Para este fin seguimos las ideas planteadas en [55].