dc.contributorRivera Rodríguez, Sergio Raúl
dc.contributorMojica Nava, Eduardo
dc.contributorGrupo de Investigación EMC-UN
dc.creatorDorado Rojas, Sergio Andrés
dc.date.accessioned2021-05-31T20:52:16Z
dc.date.available2021-05-31T20:52:16Z
dc.date.created2021-05-31T20:52:16Z
dc.date.issued2021-05-31
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79578
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractNon-conventional renewable energies represent a significant challenge for electric grids due to the technicalities associated with their implementation. Integration of such energy sources requires revisiting the grid structure and operation paradigm. The most relevant difficulty is that such a transformation must be carried out while keeping the system operational. In a conventional power system, synchronous machines are widely used as traditional electricity generators. These rotating machines store kinetic energy in their rotors. Rotor kinetic energy can be released or captured to compensate for load or generation disturbances, thus keeping the system's frequency constant (inertia characteristic). Large-scale renewable integration reduces the grid's inertia significantly since they interface to the network through inertia-less power converters. Several control strategies have been proposed to enhance the inertia capability of renewable generation units such as solar photovoltaic plants or wind turbines. However, this control loop does not guarantee frequency restoration to the nominal value. For this reason, it is critical to consider a secondary control loop to drive the frequency back to the desired steady-state operating condition. This work considers a system with high penetration of solar photovoltaic and wind energy. The main objective is to evaluate a decentralized linear controller's performance for a secondary control loop with the active contribution of renewable units. The resulting controller is benchmarked against conventional alternatives such as a linear quadratic regulator. The document focuses mostly on designing a secondary load frequency controller under the active disturbance rejection paradigm using a linear technique such as an extended-state observer.
dc.description.abstractLas energías renovables no convencionales suponen un gran desafío para los sistemas eléctricos dadas las dificultades técnicas que conlleva su implementación en la red existente. La incorporación de estas fuentes de generación obliga a una transformación total de la red y a un cambio de paradigma en su operación. La dificultad más grande, empero, es que dicho proceso debe llevarse a cabo sin interrumpir el funcionamiento del sistema. En una red eléctrica tradicional, los generadores sincrónicos se utilizan ampliamiente como unidades convencionales de generación de electricidad. Estas máquinas rotativas están en la capacidad de almacenar energía cinética en sus rotores, la cual pueden entregar al sistema para recobrar el balance que conduzca la frecuencia a un valor estable luego de la ocurrencia de una perturbación de carga o generación. Esto se conoce como capacidad de inercia. La integración de renovables a gran escala disminuye la capacidad de inercia de la red, ya que gran parte de las unidades de generación eólica y solar fotovoltaica se conectan al sistema mediante convertidores de electrónica de potencia. En la actualidad se han desarrollado distintas estrategias de control para proveer de capacidad de inercia a los generadores eólicos y solares fotovoltaicos. No obstante, este lazo por sí mismo no garantiza que la frecuencia de operación del sistema vaya a retornar a su valor nominal, ya que solo se encarga de estabilizar el valor de la frecuencia después de una perturbación. Por ello, es importante la consideración de un lazo de control secundario capaz de reestablecer la frecuencia a su valor nominal. Por todo lo anterior, este trabajo se enmarca en un escenario de alta penetración de generación eólica y solar fotovoltaica en un sistema de potencia. El principal propósito de esta investigación es evaluar el desempeño de un controlador descentralizado lineal en un lazo secundario de frecuencia con la participación de generadores eólicos y solar fotovoltaicos en comparación con una arquitectura basada en compensadores tradicionales como el LQR. El documento se centra en el diseño de un controlador secundario de frecuencia bajo el paradigma del rechazo activo de perturbaciones utilizando una técnica lineal como el observador de estado extendido.
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ingeniería - Maestría en Ingeniería - Automatización Industrial
dc.publisherDepartamento de Ingeniería Eléctrica y Electrónica
dc.publisherFacultad de Ingeniería
dc.publisherBogotá
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationAli, R., Qudaih, Y. S., Mitani, Y. & Mohamed, T. H. (2013). A Robust Load Frequency Control of Power System with fluctuation of renewable energy sources, 20-23.
dc.relationAnderson, G. (2012). Dynamics and Control of Electric Power Systems. Swiss Federal Institute of Technology (ETH) Zurich.
dc.relationApostolopoulou, D., Domínguez-garcía, A. D., Sauer, P. W. & Fellow, L. (2015). An Assessment of the Impact of Uncertainty on Automatic Generation Control Systems. 31(4), 1-9.
dc.relationAttya, A. B., Dominguez-garcia, J. L. & Anaya-lara, O. (2018. A review on frequency support provision by wind power plants : Current and future challenges. Renewable and Sustainable Energy Reviews, & (June 2016), 2071-2087. https://doi.org/10.1016/j.rser.2017.06.016
dc.relationAziz, A., Than, A. & Stojcevski, A. (2017). Frequency regulation capabilities in wind power plant. Sustainable Energy Technologies and Assessments, (October). https://doi.org/10.1016/j.seta.2017.10.002
dc.relationAziz, A., Than, A. & Stojcevski, A. (2018). Analysis of frequency sensitive wind plant penetration effect on load frequency control of hybrid power system. Electrical Power and Energy Systems, 99 (January), 603-617. https://do1.org/10.1016/j.ijepes.2018.01.045
dc.relationBadihi, H., Zhang, Y. & Hong, H. (2015). Active power control design for supporting grid frequency regulation in wind farms. Annual Reviews in Control, 40, 70-81. https://doi.org/10.1016/j.arcontrol. 2015.09.005
dc.relationBaudette, M., Castro, M., Rabuzin, T., Lavenius, J., Bogodorova, T. & Vanfretti, L. (2018). OpenIPSL: Open- Instance Power System Library - Update 1.5 to ¡Tesla Power Systems Library (iPSL): A Modelica library for phasor time-domain simulations. SoftwareX, 7, 34-36. https://doi.org/10.1016/j.softx.2018. 01.002
dc.relation3evrani, H. (2014). Robust Power System. Frequency Control (and ed.). Springer. https://doi.org/10.1007/978-0- 387-84878-5
dc.relationBevrani, H., Daneshfar, F. & Hiyama, T. (2012). A new intelligent agent-based AGC design with real-time application. IEEE Transactions on Systems, Man and Cybernetics Part C: Applications and Reviews, 42(6), 994-1002. https://doi.org/10.1109/TSMCC.2011.2175916
dc.relation3evrani, H. & Hiyama, T. (2011). Intelligent Automatic Generation Control. CC Press. https://doi.org/9781439849545
dc.relationBevrani, H., Mitani, Y. & Tsuji, K. (2004). Robust LFC Design Using Mixed Hz - Hinf Technique. International Conference on Electrical Engineering.
dc.relationBijami, E. & Farsangi, M. M. (2017). Networked distributed automatic generation control of power system with dynamic participation of wind turbines through uncertain delayed communication network. IT Renewable Power Generation, 11(8), 1254-1269. https://doi.org/10.1049/iet-rpg.2016.0508
dc.relationChang-Chien, L. R. Sun, C. C. & Yeh, Y. J. (2014). Modeling of wind farm participation in AGC. IEEE Transactions on Power Systems, 29(3), 1204-1211. https://doi.org/10.1109/TPWRS.2013.2291397
dc.relationChow, J. H. & Sanchez-Gasca, J. J. (2020). Power System Modeling, Computation and Control. Wiley-IEEE.
dc.relationColeman, C. (1965). Local Trajectory Equivalence of Differential Systems. Proceedings of the Americal Mathematical Society, 16(5), 890-892.
dc.relationConte, C., Jones, C. N., Morari, M. & Zeilinger, M. N. (2016). Distributed synthesis and stability of cooperative distributed model predictive control for linear systems. Automatica, 69, 117-125. https://doi.org/10. 1016/j.automatica.2016.02.009
dc.relationDas, D., Aditya, S. & Kothari, D. (1999). Dynamics of diesel and wind turbine generators on an isolated power system. International Journal of Electrical Power & Energy Systems, 22(3), 183-189. https://doi.org/10. 1016/S0142-0615(98)00033-7
dc.relationDatta, A., Bhattacharjee, K., S. Debbarma, S. & Kar, B. (2015). Load Frequency Control of a Renewable Energy Sources based Hybrid System, 34-38.
dc.relationde Alegría, I. M., Andreu, J., Martín, J. L., Ibañez, P., Villate, J. L. & Camblong, H. (2007). Connection requirements for wind farms: A survey on technical requirements and regulation. Renewable and Sustainable Energy Reviews, 11(8), 1858-1872. hitps://doi.org/10.1016/j.rser.2006.01.008
dc.relationDemetriou, P., Asprou, M., Quiros-Tortos, J. & Kyriakides, E. (2015). Dynamic IEEE Test Systems for Transient Analysis. IEEE Systems Journal, 11(4), 1-10. https://doi.org/10.1109/JSYST.2015.2444893
dc.relationDíaz-González, F., Hau, M., Sumper, A. & Gomis-bellmunt, O. (2014). Participation of wind power plants in system frequency control : Review of grid code requirements and control methods. Renewable and Sustainable Energy Reviews, 34, 551-564. https://doi.org/10.1016/j.rser.2014.03.040
dc.relationDorado-Rojas,: A., Cortes-Romero, J., Rivera, S. & Mojica-Nava, E. (2019). ADRC for Decentralized Load Frequency Control with Renewable Energy Generation. 2019 IEEE Milan Power Tech, 1-6. https://doi. org/10.1109/PTC.2019.8810873
dc.relationENTSO-E, E. N. o. T. S. O. f. E. (2015). Rate of Change of Frequency (ROCOF) withstand capability. https://www. entsoe.eu/Documents/Network%20codes%20documents/Implementation/CNC/IGD-RoCoF% 73%5C_%7Dwithstand%73%5C_%7Dcapability.pdf
dc.relationFliess, M. & Join, C. (2013). Model-free control. https://doi.org/10.1080/00207179.2013.810345
dc.relationFrancis, B. A. & Wonham, W. M. (1976). The internal model principle of control theory. Automatica, 12(5), 457-465. https://doi.org/10.1016/0005-1098(76)90006-6
dc.relationFu, C. & Tan, W. (2017). Decentralised load frequency control for power systems with communication delays via active disturbance rejection. LET Generation, Transmission & Distribution. https://doi.org/10.1049/iet- gtd.2017.0852
dc.relationGanger, D., Zhang, J. & Vital, V. (2018). Forecast-Based Anticipatory Frequency Control in Power Systems. IEEE Transactions on Power Systems, 33(1), 1004-1012.
dc.relationGanguly, S., Shiva, C. K. & Mukherjee, V. (2018). Frequency stabilization of isolated and grid connected hybrid power system models. Journal of Energy Storage, 19, 145-159. https://doi.org/10.1016/j.est.2018.07.014
dc.relationGómez-Expósito, A., Conejo, A. & Cañizares, C. (2008). Electric Energy Systems: Analysis and Operation. CRC Press.
dc.relationGrainger, J. J. & Stevenson Jr, W. D. (1994). Power System Analysis. McGraw-Hill.
dc.relationGuo, Q. L. ke Tan, W. (2013). Load Frequency Control of Hybrid Power Systems via Active Disturbance Rejection Control (ADRC). Applied Mechanics and Materials, 325-326, 1145-1151. https://doi.org/10.4028/ www.scientific.net/AMM.325-326.1145
dc.relationHan, J. (2009). From PID to Active Disturbance Rejection Control. IEEE Transactions on Industrial Electronics, 56(3), 900-906. https://doi.org/10.1109/TIE.2008.2011621
dc.relationHermans, R. M., Joki, A., Lazar, M., Alessio, A., Van Den Bosch, P. P., Hiskens, I. A. & Bemporad, A. (2012). Assessment of non-centralised model predictive control techniques or electrical power networks. International Journal of Control, 85(8), 1162-1177. https://doi.org/10.1080/00207179.2012.679972
dc.relationHydro-Québec. (2005). Technical requirements for the connection of generation facilities to the Hydro-Québec transmission system: Supplementary requirements for wind generation.
dc.relationJayaweera, D. (2016). Smart Power Systems and Renewable Energy System Integration (D. Jayaweera, Ed.; Vol. 57). Springer International Publishing. https://doi.org/10.1007/978-3-319-30427-4
dc.relationKim, H., Zhu, M. & Lian, J. (2017). Distributed Robust Adaptive Frequency Control of Power Systems with Dynamic Loads. IEEE Transactions m Automatic Control, 1-10.
dc.relationKlein, N. (2015). This Changes Everything: Capitalism vs. The Climate. Simon & Schuster.
dc.relationKundur, P., Paserba, J., Ajarapu, V., Anderson, G., Bose, A., Canizares, C., Hatziargyriou, N., Hill, D. R., Stankovic, A., Taylor, C., Van Cutsem, T. & Vittal, V. (2004). Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. IEEE Transactions on Power Systems, 19(3), 1387-1401. https://doi.org/10.1109/TPWRS.2004.825981
dc.relationKundur, P. (1994). Power system stability and control. McGraw-Hill.
dc.relationLalor, G., Mullane, A. & O'Malley, M. (2005). Frequency control and wind turbine technologies. IEEE Transactions on Power Systems, 20(4), 1905-1913. https://dol.org/10.1109/TPWRS.2005.857393
dc.relationLi, P., Hu, W., Hu, R., Huang, Q., Yao, J. & Chen, Z. (2017). Strategy for wind power plant contribution to frequency control under variable wind speed. Renewable Energy, 1-11. https://doi.org/10.1016/j. renene.2017.12.046
dc.relationLi, Z. & Duan, Z. (2015). Cooperative Control of Multi-Agent Systems: A Consensus Region Approach. CRC Press.
dc.relationLiu, F., Li, Y., Cao, Y., She, J. & Wu, M. (2016). A Two-Layer Active Disturbance Rejection Controller Design for Load Frequency Control of Interconnected Power System. IEEE Transactions on Power Systems, 31(4), 3320-3321. https://doi.org/10.1109/TPWRS.2015.2480005
dc.relationLiu, X., Nong, H., Xi, K. & Yao, X. (2013). Robust Distributed Model Predictive Load Frequency Control of Interconnected Power System. Mathematical Problems in Engineering.
dc.relationMachowski, J., Bialek, J. W. & Bumby, J. R. (2008). Power System Dynamics, Stability and Control (and ed.). John Wiley & Sons.
dc.relationMaestre, J. M. & Negenborn, R. R. (2014). Distributed Model Predictive Control Made Easy. Springer. https://doi. org/https://doi.org/10.1007/978-94-007-7006-5
dc.relationMejía Reyes, E. O. (2014). Regulación Primaria de Frecuencia de Sistemas Eléctricos con Alta Penetración de Energía Eólica. Instituto de Energía Eléctrica - Universidad Nacional de San Juan.
dc.relationMilano, F. & Ortega Manjavacas, A. (2020). Frequency Variations in Power Systems: Modeling, State Estimation and Control. Wiley.
dc.relationMohamed, T. H., Bevrani, H., Hassan, A. A. & Hiyama, T. (2011). Decentralized model predictive based load frequency control in an interconnected power system. Energy Conversion and Management, 52(2), 1208-1214. https://doi.org/10.1016/j.enconman.2010.09.016
dc.relationMorris, C. & Jungjohann, A. (2016). Energy Democracy - Germany's Energiewende to Renewables. Palgrave Macmillan. https://doi.org/10.1007/978-3-319-31891-2
dc.relationNanou, S. I., Papakonstantinou, A. G. & Papathanassiou, S. A. (2015). A generic model of two-stage grid- connected PV systems with primary frequency response and inertia emulation. Electric Power Systems Research, 127, 186-196. https://doi.org/10.1016/j.epsr.2015.06.011
dc.relationPandey, S. K., Mohanty, S. R. & Kishor, N. (2013). A literature survey on load-frequency control for conven- tional and distribution generation power systems. Renewable and Sustainable Energy Reviews, 25, 318-334. https://doi.org/10.1016/j.rser.2013.04.029
dc.relationPradeepthi Pavani, A. & Abhilash, T. (2017). Multi Area Load Frequency Control of Power System Involving Renewable And Non-Renewable Energy Sources. International Conference on Innovations in Power and Advanced Computing Technologies, 1-5.
dc.relationRawat, S., Bhola, J., Panda, M. K. & Rath, B. (2016). Load Frequency control of a Renewable Hybrid Power System with Simple Fuzzy Logic controller, 918-923.
dc.relationREN. (2019). Renewable Now (REN.net). ren21.net/reports/global-status-report/
dc.relationRinke, T. B. (2011). MPC-based Frequency Regulation and Inertia Mimicking for Improved Grid Integration of Renewable Energy Sources (Doctoral dissertation). Swiss Federal Institute of Technology (ETH) Zurich and Ruhr-Universität Bochum.
dc.relationRodríguez-Amenedo, J. L., Arnalte, S. & Burgos, J. C. (2002). Automatic generation control of a wind farm with variable speed. Energy Conversion, IEEE Transactions on, 17(2), 279-284. https://doi.org/10.1109/ TEC.2002.1009481
dc.relationSaadat, H. (1999). Power Systems Analysis (1st). McGraw-Hill.
dc.relationShankar, R., Pradhan, S., Chatterjee, K. & Mandal, R. (2017). A comprehensive state of the art literature survey on LFC mechanism for power system. Renewable and Sustainable Energy Reviews, 76( April), 1185- 1207. https://doi.org/10.1016/j.rser.2017.02.064
dc.relationShayeghi, H., Shayanfar, H. A. & Jalili, A. (2009). Load frequency control strategies: A state-of-the-art survey for the researcher. Energy Conversion and Management, 50(2), 344-353. https://doi. org / 10.1016/j. enconman.2008.09.014
dc.relationSira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M. & Zurita-Bustamante, E. W. (2018). Active Disturbance Rejection Control of Dynamic Systems: A Flatness-based Approach. Butterworth-Heinemann.
dc.relationSumathi, S., Ashok Kumar, L. & Surekha, P. (2015). Solar PV and Wind Energy Conversion Systems. Springer. https://doi.org/10.1007/978-3-319-14941-7
dc.relationTang, Y., Bai, Y., Huang, C. & Du, B. (2015). Linear active disturbance rejection-based load frequency control concerning high penetration of wind energy. Energy Conversion and Management, 95, 259-271. https://doi.org/10.1016/j.enconman.2015.02.005
dc.relationToulabi, M., Bahrami, S. & Ranjbar, A. M. (2017). Application of Edge theorem for robust stability analysis of a power system with participating wind power plants in automatic generation control task. IET Renewable Power Generation, 12(7), 1049-1057. https://doi.org/10.1049/iet-rpg.2016.0931
dc.relationUnidad de Planeación Minero Energética. (2014). Integración de energías renovables no convencionales en Colombia.
dc.relationVenkat, A. N., Hiskens, I. A., Rawlings, J. B. & Wright, S. J. (2008). Distributed MPC strategies with application to power system automatic generation control. IEEE Transactions on Control Systems Technology, 16(6), 1192-1206. https://doi.org/10.1109/TCST.2008.919414
dc.relationWang, C. & McCalley, J. D. (2013). Impact of wind power on control performance standards. International Journal of Electrical Power and Energy Systems, 47(1), 225-234. https://doi.org/10.1016/j.ijepes.2012.11.010
dc.relationWang, Z., Liu, F., Low, S. H., Zhao, C. & Mei, S. (2018). Distributed Frequency Control with Operational Constraints, Part II : Network Power Balance. IEEE Transactions on Smart Grid. https://doi.org/10.1109/ TSG.2017.2731811
dc.relationWeitenberg, E., Jiang, Y., Zhao, C., Mallada, E., De Persis, C. & Dörfler, F. (2017). Robust Decentralized Secondary Frequency Control in Power Systems: Merits and Trade-Offs. http://arxiv.org/abs/1711. 07332
dc.relationYazdani, A., Di Fazio, A. R., Ghoddami, H., Russo, M., Kazerani, M., Jatskevich, J., Strunz, K., Leva, S. & Martinez, J. A. (2011). Modeling Guidelines and a Benchmark for Power System Simulation Studies of Three-Phase Single-Stage Photovoltaic Systems Task Force on Modeling and Analysis of Electronically-Coupled Distributed Resources. IEEE Transactions on Power Delivery, 26(2), 1247-1264.
dc.relationZheng, Y., Zhou, J., Xu, Y., Zhang, Y. & Qian, Z. (2017). A distributed model predictive control based load frequency control scheme for multi-area interconnected power system using discrete-time Laguerre functions. ISA Transactions, 68, 127-140. https://doi.org/10.1016/j.isatra.2017.03.009
dc.relationZheng, Y., Li, S. & Li, N. (2011). Distributed model predictive control over network information exchange for large-scale systems. Control Engineering Practice, 19(7), 757-769. https://doi.org/10.1016/j.conengprac. 2011.04.003
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleDecentralized load frequency control for a power system with high penetration of wind and solar photovoltaic generation
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución