dc.contributorRincón Fulla, Marlon
dc.contributorGarcía García, Claudia Patricia
dc.contributorMateriales Cerámicos y Vítreos
dc.creatorOcampo Gutierrez, Sebastian
dc.date.accessioned2021-10-20T18:38:26Z
dc.date.accessioned2022-09-21T16:44:41Z
dc.date.available2021-10-20T18:38:26Z
dc.date.available2022-09-21T16:44:41Z
dc.date.created2021-10-20T18:38:26Z
dc.date.issued2021
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/80587
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3395190
dc.description.abstractCaracterización computacional de la fuerza ejercida sobre un sustrato de hidrogel optimizado para manufactura aditiva de scaffolds Muchos de los procesos o fenómenos que se estudian con células provienen de estudios donde se realizan cultivos en pozos con superficies rígidas y en monocapa. Si bien se puede extraer información importante de estos estudios, este ambiente de cultivo no es semejante al que encuentran las células in vivo. Por eso, es necesario desarrollar nuevos ambientes mas significativos fisiológicamente. En el presente trabajo se presenta una metodología para desarrollar un material de hidrogel de alginato con partículas cerámicas suspendidas en su volumen, con la potencialidad de soportar cultivos en 3D, y formar scaffolds con estructuras definidas matemáticamente a partir de superficies minimales triplemente periódicas. Con este material, que presenta propiedades elásticas y que muestra poder ser procesado por manufactura aditiva para obtener su forma final, se implementa la técnica de microscopía de fuerza de tracción, una técnica que permite ver las fuerzas ejercidas sobre el material aprovechando su elasticidad. Esta técnica, que es de caracter computacional, se implementa a través de la microscopía holográfica, con reconstrucciones de intensidad. De esta manera, se desarrolla un material que puede ser impreso en 3D, obtener scaffolds con estructuras complejas, y además recuperar mapas de distribución de fuerza ejercida sobre este a través de la microscopía de fuerza de tracción, usando la holografía digital sin lentes como método de captura de la información. (texto tomado de la fuente)
dc.description.abstractComputational characterization of traction forces exerted over an alginate substrate optimized for additive manufacturing of scaffolds The general knowledge of many cell-based processes comes from experimentation on flat surfaces, mainly in culture wells made of either a polymer or glass. These are 2D, stiff and non-physiological environments, which are simple for experimentation, yet do not replicate all the conditions a cell experiences in vivo. In this work a methodology to develop a alginate hydrogel based material with ceramic particles suspension is presented. This material has the potential to act as a scaffold with a complex architecture processed via additive manufacturing, and is shown in the shape of a triply periodic minimal surface based structure. The formed hydrogel shows elastic properties suitable to implement traction force microscopy TFM, a computational technique to compute force fields exerted on the substrate. This is achieved using digital lensless holographic microscopy, a holographic technique that vastly reduces costs. The ceramic particles in the hydrogel are used as fiducial markers to calculate displacement in TFM. A material is developed based on alginate hydrogel, capable of complex architecture via additive manufacturing, suitable for 3D cell culturing. This material can also be used to measure forces exerted on it via traction force microscopy with help from holographic microscopy, using the embedded ceramic particles as fiducial markers. This way, a complex, more physiological environment can be achieved, and the means to recover some information are already proven to work on the material.
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherMedellín - Minas - Maestría en Ingeniería - Materiales y Procesos
dc.publisherDepartamento de Materiales y Minerales
dc.publisherFacultad de Minas
dc.publisherMedellín, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relationKarin A. Jansen et al. "A guide to mechanobiology: Where biology and physics meet". en. In: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1853.11 (Nov. 2015). ZSCC: 0000081, pp. 3043–3052. DOI: 10.1016/j.bbamcr.2015. 05.007.
dc.relationCheng Dong, Nastaran Zahir, and Konstantinos Konstantopoulos, eds. Biomechanics in Oncology. Vol. 1092. Advances in Experimental Medicine and Biology. Cham: Springer International Publishing, 2018. DOI: 10.1007/978-3- 319-95294-9.
dc.relationHuw Colin-York and Marco Fritzsche. "The Future of Traction Force Microscopy". In: Current Opinion in Biomedical Engineering 5 (Mar. 2018), pp. 1–5. DOI: 10.1016/ j.cobme.2017.10.002.
dc.relationJessica L. Teo et al. "A Biologist’s Guide to Traction Force Microscopy Using Polydimethylsiloxane Substrate for Two-Dimensional Cell Cultures". In: STAR Protocols 1.2 (Sept. 2020), p. 100098. DOI: 10.1016/j.xpro.2020.100098.
dc.relationJ. L. Tan et al. "Cells Lying on a Bed of Microneedles: An Approach to Isolate Mechanical Force". In: Proceedings of the National Academy of Sciences 100.4 (Feb. 18, 2003), pp. 1484–1489. DOI: 10.1073/pnas.0235407100.
dc.relationStanislaw Makarchuk et al. "Holographic Traction Force Microscopy". In: Scientific Reports 8.1 (Dec. 2018), p. 3038. DOI: 10.1038/s41598-018-21206-2.
dc.relationChristian Franck et al. "Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions". In: PLoS ONE 6.3 (Mar. 29, 2011). Ed. by Igor Sokolov, e17833. DOI: 10.1371/journal.pone.0017833.
dc.relationChun Yang et al. "Mechanical memory and dosing influence stem cell fate". en. In: Nature Materials 13.6 (June 2014), pp. 645–652. DOI: 10.1038/nmat3889.
dc.relationLaurent Pieuchot et al. "Curvotaxis directs cell migration through cell-scale curvature landscapes". en. In: Nature Communications 9.1 (Dec. 2018), p. 3995. DOI: 10.1038/s41467-018-06494-6.
dc.relationCasey M. Kraning-Rush, Joseph P. Califano, and Cynthia A. Reinhart-King. "Cellular Traction Stresses Increase with Increasing Metastatic Potential". In: PLoS ONE 7.2 (Feb. 28, 2012). Ed. by Elizabeth G. Laird, e32572. DOI: 10.1371/ journal.pone.0032572.
dc.relationKarin A. Jansen et al. "Cells Actively Stiffen Fibrin Networks by Generating Contractile Stress". In: Biophysical Journal 105.10 (Nov. 2013), pp. 2240–2251. DOI: 10.1016/j.bpj.2013.10.008.
dc.relationWei Song et al. "Dynamic Self-Organization of Microwell-Aggregated Cellular Mixtures". In: Soft Matter 12.26 (2016), pp. 5739–5746. DOI:10.1039/ C6SM00456C.
dc.relationJunmin Lee et al. "Controlling cell geometry on substrates of variable stiffness can tune the degree of osteogenesis in human mesenchymal stem cells". In: Journal of the Mechanical Behavior of Biomedical Materials 38 (Oct. 2014), pp. 209– 218. DOI: 10.1016/j.jmbbm.2014.01.009.
dc.relationNicolas Pielawski et al. "In Silico Prediction of Cell Traction Forces". In: (Oct. 16, 2019). arXiv: 1910.07380 [eess, q-bio].
dc.relationJennet Toyjanova et al. "High Resolution, Large Deformation 3D Traction Force Microscopy". In: PLoS ONE 9.4 (Apr. 16, 2014). Ed. by Igor Sokolov, e90976. DOI: 10.1371/journal.pone.0090976.
dc.relationUlrich S. Schwarz and Jerome R.D. Soiné. "Traction Force Microscopy on Soft Elastic Substrates: A Guide to Recent Computational Advances". In: Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1853.11 (Nov. 2015), pp. 3095– 3104. DOI: 10.1016/j.bbamcr.2015.05.028.
dc.relationMatthew S. Hall et al. "Toward Single Cell Traction Microscopy within 3D Collagen Matrices". In: Experimental Cell Research 319.16 (Oct. 2013), pp. 2396– 2408. DOI: 10.1016/j.yexcr.2013.06.009.
dc.relationSteven R. Caliari and Jason A. Burdick. "A practical guide to hydrogels for cell culture". In: Nature Methods 13.5 (May 2016), pp. 405–414. DOI: 10.1038/ nmeth.3839.
dc.relationMichael C. Nolan et al. "Optimising low molecular weight hydrogels for automated 3D printing". In: Soft Matter 13.45 (2017), pp. 8426–8432. DOI: 10.1039/C7SM01694H.
dc.relationMorteza Bahram, Naimeh Mohseni, and Mehdi Moghtader. "An Introduction to Hydrogels and Some Recent Applications". In: Emerging Concepts in Analysis and Applications of Hydrogels. InTech, Aug. 2016. DOI: 10.5772/64301.
dc.relationEnrica Caló and Vitaliy V. Khutoryanskiy. "Biomedical applications of hydrogels: A review of patents and commercial products". In: European Polymer Journal 65 (2015), pp. 252–267. DOI: 10.1016/j.eurpolymj.2014.11.024.
dc.relationFrancesca Gattazzo, Anna Urciuolo, and Paolo Bonaldo. "Extracellular matrix: A dynamic microenvironment for stem cell niche". In: Biochimica et Biophysica Acta (BBA) - General Subjects 1840.8 (Aug. 2014), pp. 2506–2519. DOI: 10.1016/j. bbagen.2014.01.010.
dc.relationJeanie L Drury and David J Mooney. "Hydrogels for tissue engineering: scaffold design variables and applications". In: Biomaterials 24.24 (Nov. 2003), pp. 4337– 4351. DOI: 10.1016/S0142-9612(03)00340-5.
dc.relationEnas M Ahmed. "Hydrogel: Preparation, characterization, and applications: A review". In: Journal of Advanced Research 6.2 (Mar. 2015), pp. 105–121. DOI: 10. 1016/j.jare.2013.07.006.
dc.relationN. A. Peppas et al. "Hydrogels in Biology and Medicine: From Molecular Principles to Bionanotechnology". In: Advanced Materials 18.11 (June 2006), pp. 1345– 1360. DOI: 10.1002/adma.200501612.
dc.relationN.A. Peppas et al. "Hydrogels in pharmaceutical formulations". In: European Journal of Pharmaceutics and Biopharmaceutics 50.1 (2000), pp. 27–46. DOI: 10. 1016/s0939-6411(00)00090-4.
dc.relationJohn W. Weisel and Rustem I. Litvinov. "Mechanisms of Fibrin Polymerization and Clinical Implications". In: Blood 121.10 (Mar. 7, 2013), pp. 1712–1719. DOI: 10.1182/blood-2012-09-306639.
dc.relationWael jumah Aljohani et al. "Application of Sodium Alginate Hydrogel". In: IOSR Journal of Biotechnology and Biochemistry 03.3 (May 2017), pp. 19–31. DOI: 10. 9790/264X-03031931.
dc.relationR. Sainitya et al. "Scaffolds Containing Chitosan/Carboxymethyl Cellulose/Mesoporous Wollastonite for Bone Tissue Engineering". In: International Journal of Biological Macromolecules 80 (Sept. 2015), pp. 481–488. DOI: 10.1016/j.ijbiomac. 2015.07.016.
dc.relationPanupong Jaipan, Alexander Nguyen, and Roger J. Narayan. “Gelatin-based hydrogels for biomedical applications”. In: MRS Communications 7.3 (Sept. 2017), pp. 416–426. DOI: 10.1557/mrc.2017.92.
dc.relationAugusto Zuluaga-Vélez et al. “Silk Fibroin Hydrogels from the Colombian Silkworm Bombyx Mori L: Evaluation of Physicochemical Properties”. In: PLOS ONE 14.3 (Mar. 4, 2019). Ed. by Athanassia Athanassiou, e0213303. DOI: 10. 1371/journal.pone.0213303.
dc.relationCanhui Yang, Tenghao Yin, and Zhigang Suo. “Polyacrylamide Hydrogels. I. Network Imperfection”. In: Journal of the Mechanics and Physics of Solids 131 (Oct. 2019), pp. 43–55. DOI: 10.1016/j.jmps.2019.06.018.
dc.relationR. J. Pelham and Y.-l. Wang. “Cell Locomotion and Focal Adhesions Are Regulated by Substrate Flexibility”. In: Proceedings of the National Academy of Sciences 94.25 (Dec. 9, 1997), pp. 13661–13665. DOI: 10.1073/pnas.94.25.13661.
dc.relationEleonora Russo and Carla Villa. “Poloxamer Hydrogels for Biomedical Applications”. In: Pharmaceutics 11.12 (Dec. 10, 2019), p. 671. DOI: 10.3390/ pharmaceutics11120671.
dc.relationChien-Chi Lin and Kristi S. Anseth. “PEG Hydrogels for the Controlled Release of Biomolecules in Regenerative Medicine”. In: Pharmaceutical Research 26.3 (Mar. 2009), pp. 631–643. DOI: 10.1007/s11095-008-9801-2.
dc.relationCigdem Yesildag et al. “Micro-Patterning of PEG-Based Hydrogels With Gold Nanoparticles Using a Reactive Micro-Contact-Printing Approach”. In: Frontiers in Chemistry 6 (Jan. 17, 2019), p. 667. DOI: 10.3389/fchem.2018.00667.
dc.relationDaniela Hutanu. “Recent Applications of Polyethylene Glycols (PEGs) and PEG Derivatives”. In: Modern Chemistry & Applications 02.02 (2014). DOI: 10.4172/ 2329-6798.1000132.
dc.relationJae Hyung Park and You Han Bae. “Hydrogels Based on Poly(Ethylene Oxide) and Poly(Tetramethylene Oxide) or Poly(Dimethyl Siloxane): Synthesis, Characterization, in Vitro Protein Adsorption and Platelet Adhesion”. In: Biomaterials 23.8 (Apr. 2002), pp. 1797–1808. DOI: 10.1016/S0142-9612(01) 00306-4.
dc.relationHaryanto et al. “Fabrication of Poly(Ethylene Oxide) Hydrogels for Wound Dressing Application Using E-Beam”. In: Macromolecular Research 22.2 (Feb. 2014), pp. 131-138. DOI: 10.1007/s13233-014-2023-z.
dc.relationTania Sabnam Binta Monir et al. “pH-Sensitive Hydrogel from Polyethylene Oxide and Acrylic Acid by Gamma Radiation”. In: Journal of Composites Science 3.2 (June 3, 2019), p. 58. DOI: 10.3390/jcs3020058.
dc.relationShan Jiang, Sha Liu, and Wenhao Feng. “PVA Hydrogel Properties for Biomedical Application”. In: Journal of the Mechanical Behavior of Biomedical Materials 4.7 (Oct. 2011), pp. 1228–1233. DOI: 10.1016/j.jmbbm.2011.04.005.
dc.relationShuaijiang Ma et al. “A Novel Method for Preparing Poly(Vinyl Alcohol) Hydrogels: Preparation, Characterization, and Application”. In: Industrial & Engineering Chemistry Research 56.28 (July 19, 2017), pp. 7971–7976. DOI: 10. 1021/acs.iecr.7b01812.
dc.relationHongji Zhang, Hesheng Xia, and Yue Zhao. “Poly(Vinyl Alcohol) Hydrogel Can Autonomously Self-Heal”. In: ACS Macro Letters 1.11 (Nov. 20, 2012), pp. 1233– 1236. DOI: 10.1021/mz300451r.
dc.relationNeha Tomar et al. “pHEMA Hydrogels: Devices for Ocular Drug Delivery”. In: International Journal of Health & Allied Sciences 1.4 (2012), p. 224. DOI: 10.4103/ 2278-344X.107844.
dc.relationLi Zhang et al. “Preparation of Novel Biodegradable pHEMA Hydrogel for a Tissue Engineering Scaffold by Microwave-Assisted Polymerization”. In: Asian Pacific Journal of Tropical Medicine 7.2 (Feb. 2014), pp. 136–140. DOI: 10.1016/S1995- 7645(14)60009-2.
dc.relationK.W.M Boere. Hybrid Dual Cross-Linked Hydrogels: Injectable and 3D-Printable Biomaterials. Utrecht University, 2015.
dc.relationFabrico Vitor Camara and Leandro J. Ferreira. Hydrogels: Synthesis, Characterization and Applications. Ed. by Fabricio Vitor. Camara and Leandro J. Ferreira. New York: Nova Biomedical, 2012.
dc.relationJos Malda et al. “25th Anniversary Article: Engineering Hydrogels for Biofabrication”. In: Advanced Materials 25.36 (Sept. 2013), pp. 5011-5028. DOI: 10.1002/adma.201302042.
dc.relationJames K. Carrow et al. “Polymers for Bioprinting”. In: Essentials of 3D Biofabrication and Translation. Elsevier, 2015, pp. 229–248. DOI:10.1016/B978-0- 12-800972-7.00013-X;http://web.archive.org/web/ 20200629132628/https://linkinghub.elsevier.com/retrieve/pii/ B978012800972700013X.
dc.relationMatti Kesti et al. “A Versatile Bioink for Three-Dimensional Printing of Cellular Scaffolds Based on Thermally and Photo-Triggered Tandem Gelation”. In: Acta Biomaterialia 11 (Jan. 2015), pp. 162–172. DOI: 10.1016/j.actbio.2014.09. 033.
dc.relationJason A. Burdick et al. “Controlled Degradation and Mechanical Behavior of Photopolymerized Hyaluronic Acid Networks”. In: Biomacromolecules 6.1 (Jan. 2005), pp. 386–391. DOI: 10.1021/bm049508a.
dc.relationEnas M. Ahmed. “Hydrogel: Preparation, Characterization, and Applications: A Review”. In: Journal of Advanced Research 6.2 (Mar. 2015), pp. 105–121. DOI: 10. 1016/j.jare.2013.07.006.
dc.relationLenke Horváth et al. “Engineering an in Vitro Air-Blood Barrier by 3D Bioprinting”. In: Scientific Reports 5.1 (July 2015), p. 7974. DOI: 10.1038/srep07974.
dc.relationDavid B. Kolesky et al. “Three-Dimensional Bioprinting of Thick Vascularized Tissues”. In: Proceedings of the National Academy of Sciences 113.12 (Mar. 22, 2016), pp. 3179–3184. DOI: 10.1073/pnas.1521342113.
dc.relationBin Duan et al. “3D Bioprinting of Heterogeneous Aortic Valve Conduits with Alginate/Gelatin Hydrogels”. In: Journal of Biomedical Materials Research Part A 101A.5 (May 2013), pp. 1255–1264. DOI: 10.1002/jbm.a.34420.
dc.relationJoydip Kundu et al. “An Additive Manufacturing-Based PCL-Alginate-Chondrocyte Bioprinted Scaffold for Cartilage Tissue Engineering: PCL-Alginate-Chondrocyte Bioprinted Scaffold for Cartilage Tissue Engineering”. In: Journal of Tissue Engineering and Regenerative Medicine 9.11 (Nov. 2015), pp. 1286–1297. DOI: 10.1002/term.1682.
dc.relationKajsa Markstedt et al. “3D Bioprinting Human Chondrocytes with Nanocellulose– Alginate Bioink for Cartilage Tissue Engineering Applications”. In: Biomacromolecules 16.5 (May 11, 2015), pp. 1489–1496. DOI: 10.1021/acs.biomac.5b00188.
dc.relationGarret D. Nicodemus and Stephanie J. Bryant. “Cell Encapsulation in Biodegradable Hydrogels for Tissue Engineering Applications”. In: Tissue Engineering Part B: Reviews 14.2 (June 2008), pp. 149–165. DOI: 10.1089/ten. teb.2007.0332.
dc.relationMichelle T. Poldervaart et al. “Sustained Release of BMP-2 in Bioprinted Alginate for Osteogenicity in Mice and Rats”. In: PLoS ONE 8.8 (Aug. 19, 2013). Ed. by Pandit Abhay, e72610. DOI: 10.1371/journal.pone.0072610.
dc.relationMuhammad Faheem Akhtar, Muhammad Hanif, and Nazar Muhammad Ranjha. “Methods of synthesis of hydrogels ... A review”. In: Saudi Pharmaceutical Journal 24.5 (Sept. 2016), pp. 554–559. DOI: 10.1016/j.jsps.2015.03.022.
dc.relationZongjie Wang et al. “A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks”. In: Biofabrication 7.4 (Dec. 2015), p. 045009. DOI: 10.1088/1758-5090/7/4/045009.
dc.relationSoumen Jana and Amir Lerman. “Bioprinting a Cardiac Valve”. In: Biotechnology Advances 33.8 (Dec. 2015), pp. 1503–1521. DOI: 10.1016/j.biotechadv. 2015.07.006.
dc.relationKolin C. Hribar et al. “Light-Assisted Direct-Write of 3D Functional Biomaterials”. In: Lab Chip 14.2 (2014), pp. 268–275. DOI: 10.1039/C3LC50634G.
dc.relationRúben F. Pereira and Paulo J. Bártolo. “3D bioprinting of photocrosslinkable hydrogel constructs”. en. In: Journal of Applied Polymer Science 132.48 (Dec. 2015), n/a–n/a. DOI: 10.1002/app.42458.
dc.relationXiaohong Wang et al. “Gelatin-Based Hydrogels for Organ 3D Bioprinting”. In: Polymers 9.12 (Aug. 2017), p. 401. DOI: 10.3390/polym9090401.
dc.relationTamer A.E. Ahmed, Emma V. Dare, and Max Hincke. “Fibrin: A Versatile Scaffold for Tissue Engineering Applications”. In: Tissue Engineering Part B: Reviews 14.2 (June 2008), pp. 199–215. DOI: 10.1089/ten.teb.2007.0435.
dc.relationHyun-Wook Kang et al. “A 3D Bioprinting System to Produce Human-Scale Tissue Constructs with Structural Integrity”. In: Nature Biotechnology 34.3 (Mar. 2016), pp. 312–319. DOI: 10.1038/nbt.3413.
dc.relationXia Song and Jun Li. Functional Hydrogels as Biomaterials. Ed. by Jun Li, Yoshihito Osada, and Justin Cooper-White. Vol. 12. Springer Series in Biomaterials Science and Engineering. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018, pp. 141– 159. DOI: 10.1007/978-3-662-57511-6.
dc.relationP. Selcan Gungor-Ozkerim et al. “Bioinks for 3D bioprinting: an overview”. In: Biomaterials Science 6.5 (2018), pp. 915–946. DOI: 10.1039/C7BM00765E.
dc.relationC. Echalier et al. “Modular bioink for 3D printing of biocompatible hydrogels: sol–gel polymerization of hybrid peptides and polymers”. In: RSC Advances 7.20 (2017), pp. 12231–12235. DOI: 10.1039/C6RA28540F.
dc.relationChanyu Bai et al. “Flexible nanocellulose/poly(ethylene glycol) diacrylate hydrogels with tunable Poisson’s ratios by masking and photocuring”. In: BioResources 15.2 (2020), pp. 3307–3319. DOI: 10.15376/biores.15.2. 3307-3319.
dc.relationH. Holback, Y. Yeo, and K. Park. “Hydrogel Swelling Behavior and Its Biomedical Applications”. In: Biomedical Hydrogels. Elsevier, 2011, pp. 3–24. DOI: 10 . 1533/9780857091383.1.3;http://web.archive.org/web/ 20200921184559 / https://linkinghub.elsevier.com/retrieve /pii/B9781845695903500011.
dc.relationGrzegorz Kowalski et al. “Synthesis and Effect of Structure on Swelling Properties of Hydrogels Based on High Methylated Pectin and Acrylic Polymers”. In: Polymers 11.1 (Jan. 2019), p. 114. DOI: 10.3390/polym11010114.
dc.relationDeepa K. Baby. “Rheology of Hydrogels”. In: Rheology of Polymer Blends and Nanocomposites. Elsevier, 2020, pp. 193–204. DOI: 10.1016/B978-0-12- 816957-5.00009-4.
dc.relationJonathan M. Zuidema et al. “A protocol for rheological characterization of hydrogels for tissue engineering strategies”. In: Journal of Biomedical Materials Research Part B: Applied Biomaterials 102.5 (July 2014), pp. 1063–1073. DOI: 10. 1002/jbm.b.33088.
dc.relationFrancesca Cuomo, Martina Cofelice, and Francesco Lopez. “Rheological Characterization of Hydrogels from Alginate-Based Nanodispersion”. In: Polymers 11.2 (Feb. 3, 2019), p. 259. DOI: 10.3390/polym11020259.
dc.relationH. Montazerian et al. “Permeability and Mechanical Properties of Gradient Porous PDMS Scaffolds Fabricated by 3D-Printed Sacrificial Templates Designed with Minimal Surfaces”. In: Acta Biomaterialia 96 (Sept. 2019), pp. 149–160. DOI: 10.1016/j.actbio.2019.06.040.
dc.relationStevin H. Gehrke et al. “Factors Determining Hydrogel Permeability”. In: Annals of the New York Academy of Sciences 831.1 (Dec. 17, 2006), pp. 179–184. DOI: 10. 1111/j.1749-6632.1997.tb52194.x.
dc.relationGavin Hoch, Anuj Chauhan, and C.J. Radke. “Permeability and Diffusivity for Water Transport through Hydrogel Membranes”. In: Journal of Membrane Science 214.2 (Apr. 2003), pp. 199–209. DOI: 10.1016/S0376-7388(02)00546-X.
dc.relationG. S. Offeddu et al. “Relationship between Permeability and Diffusivity in Polyethylene Glycol Hydrogels”. In: AIP Advances 8.10 (Oct. 2018), p. 105006. DOI: 10.1063/1.5036999.
dc.relationMin Kyung Lee et al. “Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture”. In: Scientific Reports 5.1 (Aug. 2015), p. 8948. DOI: 10.1038/srep08948.
dc.relationSudhir Khetan et al. “Degradation-Mediated Cellular Traction Directs Stem Cell Fate in Covalently Crosslinked Three-Dimensional Hydrogels”. In: Nature Materials 12.5 (May 2013), pp. 458–465. DOI: 10.1038/nmat3586.
dc.relationAlexander D. Augst, Hyun Joon Kong, and David J. Mooney. “Alginate Hydrogels as Biomaterials”. In: Macromolecular Bioscience 6.8 (Aug. 2006), pp. 623–633. DOI: 10.1002/mabi.200600069.
dc.relationThomas A. Davis et al. “H-NMR Study of Na Alginates Extracted from Sargassum spp. in Relation to Metal Biosorption”. In: Applied Biochemistry and Biotechnology 110.2 (2003), pp. 75–90. DOI: 10.1385/ABAB:110:2:75.
dc.relationJinchen Sun and Huaping Tan. “Alginate-Based Biomaterials for Regenerative Medicine Applications”. In: Materials 6.4 (Mar. 2013), pp. 1285–1309. DOI: 10. 3390/ma6041285.
dc.relationKuen Yong Lee and David J. Mooney. “Alginate: Properties and biomedical applications”. In: Progress in Polymer Science 37.1 (Jan. 2012), pp. 106–126. DOI: 10.1016/j.progpolymsci.2011.06.003.
dc.relationHuey Ying Lee et al. “Influence of viscosity and uronic acid composition of alginates on the properties of alginate films and microspheres produced by emulsification”. In: Journal of Microencapsulation 23.8 (2008), pp. 912–927. DOI: 10.1080/02652040601058368.
dc.relationH. Kakita and H. Kamishima. “Some properties of alginate gels derived from algal sodium alginate”. In: Journal of Applied Phycology 20.5 (2008), pp. 543–549. DOI: 10.1007/s10811-008-9317-5.
dc.relationBegonya Marcos et al. “Influence of processing conditions on the properties of alginate solutions and wet edible calcium alginate coatings”. In: LWT - Food Science and Technology 74 (2016), pp. 271–279. DOI: 10.1016/j.lwt.2016.07. 054.
dc.relationE. Nishide et al. “Isolation of water-soluble alginate from brown algae”. In: Hydrobiologia 116-117.1 (1984), pp. 557–562. DOI: 10.1007/bf00027746.
dc.relationBenjamin Endré Larsen et al. “Rheological characterization of an injectable alginate gel system”. In: BMC Biotechnology 15.1 (2015), p. 29. DOI: 10.1186/ s12896-015-0147-7.
dc.relationS. M. Clegg. “Thickeners, Gels and Gelling”. In: Physico-Chemical Aspects of Food Processing. Ed. by S. T. Beckett. Boston, MA: Springer US, 1995, pp. 117–141. DOI: 10.1007/978-1-4613-1227-7_6.
dc.relationMasakuni Tako. “The Principle of Polysaccharide Gels”. In: Advances in Bioscience and Biotechnology 06.01 (2015), pp. 22–36. DOI: 10.4236/abb.2015.61004.
dc.relationMasakuni Tako and Yoshihiro Kohda. “Calcium Induced Association Characteristics of Alginates”. In: Journal of Applied Glycoscience 44.2 (1997), pp. 153–159. DOI: 10.11541/jag1994.44.153.
dc.relationGuillermo Simó et al. “Research progress in coating techniques of alginate gel polymer for cell encapsulation”. In: Carbohydrate Polymers 170 (2017), pp. 1–14. DOI: 10.1016/j.carbpol.2017.04.013.
dc.relationGregor T. Grant et al. “Biological Interactions between Polysaccharides and Divalent Cations: The Egg-Box Model”. In: FEBS Letters 32.1 (May 15, 1973), pp. 195–198. DOI: 10.1016/0014-5793(73)80770-7.
dc.relationAlmoatazbellah Youssef, Scott J Hollister, and Paul D Dalton. “Additive manufacturing of polymer melts for implantable medical devices and scaffolds”. In: Biofabrication 9.1 (2017), p. 012002. DOI: 10.1088/1758-5090/aa5766.
dc.relationDaniel Howard et al. “Tissue engineering: strategies, stem cells and scaffolds”. In: Journal of Anatomy 213.1 (2008), pp. 66–72. DOI: 10.1111/j.1469-7580. 2008.00878.x.
dc.relationAnhVu Do et al. “3D Printing of Scaffolds for Tissue Regeneration Applications”. In: Advanced Healthcare Materials 4.12 (2015), pp. 1742–1762. DOI: 10.1002/ adhm.201500168.
dc.relationNatalie DeWitt. “Regenerative medicine”. In: Nature 453.7193 (2008), pp. 301– 301. DOI: 10.1038/453301a.
dc.relationTheodore G Papaioannou et al. “3D Bioprinting Methods and Techniques: Applications on Artificial Blood Vessel Fabrication.” In: Acta Cardiologica Sinica 35.3 (2019), pp. 284–289. DOI: 10.6515/acs.201905\_35(3).20181115a.
dc.relationZelong Xie et al. “3D Bioprinting in Tissue Engineering for Medical Applications: The Classic and the Hybrid”. In: Polymers 12.8 (2020), p. 1717. DOI: 10.3390/ polym12081717.
dc.relationLarry L. Hench. “The story of Bioglass”. In: Journal of Materials Science: Materials in Medicine 17.11 (2006), pp. 967–978. DOI: 10.1007/s10856-006-0432-z.
dc.relationElisa Fiume et al. “Bioactive Glasses: From Parent 45S5 Composition to Scaffold- Assisted Tissue-Healing Therapies”. In: Journal of Functional Biomaterials 9.1 (2018), p. 24. DOI: 10.3390/jfb9010024.
dc.relationL. L. Hench and H. A. Paschall. “Direct chemical bond of bioactive glass ceramic materials to bone and muscle”. In: Journal of Biomedical Materials Research 7.3 (1973), pp. 25–42. DOI: 10.1002/jbm.820070304.
dc.relationC. Loty et al. “Bioactive Glass Stimulates In Vitro Osteoblast Differentiation and Creates a Favorable Template for Bone Tissue Formation”. In: Journal of Bone and Mineral Research 16.2 (2001), pp. 231–239. DOI: 10.1359/jbmr.2001.16.2. 231.
dc.relationO. Tsigkou et al. “Enhanced differentiation and mineralization of human fetal osteoblasts on PDLLA containing Bioglass composite films in the absence of osteogenic supplements”. In: Journal of Biomedical Materials Research Part A 80A.4 (2007), pp. 837–851. DOI: 10.1002/jbm.a.30910.
dc.relationQi-Zhi Chen and George A. Thouas. “Fabrication and characterization of sol–gel derived 45S5 Bioglass–ceramic scaffolds”. In: Acta Biomaterialia 7.10 (2011), pp. 3616–3626. DOI: 10.1016/j.actbio.2011.06.005.
dc.relationKai Zheng and Aldo R. Boccaccini. “Sol-gel processing of bioactive glass nanoparticles: A review”. In: Advances in Colloid and Interface Science 249 (2017), pp. 363–373. DOI: 10.1016/j.cis.2017.03.008.
dc.relationFakhraddin Akbari Dourbash et al. “A highly bioactive poly (amido amine)/70S30C bioactive glass hybrid with photoluminescent and antimicrobial properties for bone regeneration”. In: Materials Science and Engineering: C 78 (2017), pp. 1135– 1146. DOI: 10.1016/j.msec.2017.04.142.
dc.relationYasmine Elhamouly et al. “Tailored 70S30C Bioactive glass induces severe inflammation as pulpotomy agent in primary teeth: an interim analysis of a randomised controlled trial”. In: Clinical Oral Investigations (2021), pp. 1–13. DOI: 10.1007/s00784-020-03707-5.
dc.relationSergey V. Dorozhkin. “Handbook of Bioceramics and Biocomposites”. In: (2016), pp. 91–118. DOI: 10.1007/978-3-319-12460-5\_9.
dc.relationA Cats et al. “Calcium phosphate”. In: European Journal of Cancer Prevention 2.5 (1993), pp. 409–416. DOI: 10.1097/00008469-199309000-00008.
dc.relationRacquel Zapanta LeGeros. “Properties of Osteoconductive Biomaterials: Calcium Phosphates”. In: Clinical Orthopaedics and Related Research 395.&NA; (2002), pp. 81–98. DOI: 10.1097/00003086-200202000-00009.
dc.relationVladislav V. Kostov-Kytin et al. “Powder X-ray diffraction studies of hydroxyapatite and B-TCP mixtures processed by high energy dry milling”. In: Ceramics International 44.7 (2018), pp. 8664–8671. DOI: 10.1016/j.ceramint. 2018.02.094.
dc.relationIhsan UIIah et al. “Stereolithography printing of bone scaffolds using biofunctional calcium phosphate nanoparticles”. In: Journal of Materials Science & Technology 88 (2021), pp. 99–108. DOI: 10.1016/j.jmst.2021.01.062.
dc.relationA.Cüneyt Tas. “Combustion synthesis of calcium phosphate bioceramic powders”. In: Journal of the European Ceramic Society 20.14-15 (2000), pp. 2389–2394. DOI: 10.1016/s0955-2219(00)00129-1.
dc.relationReed Ayers et al. “Osteoblast-like cell mineralization induced by multiphasic calcium phosphate ceramic”. In: Materials Science and Engineering: C 26.8 (2006), pp. 1333–1337. DOI: 10.1016/j.msec.2005.08.028.
dc.relationSergey V. Dorozhkin. “Calcium orthophosphates (CaPO4): occurrence and properties”. In: Progress in Biomaterials 5.1 (2016), pp. 9–70. DOI: 10.1007/ s40204-015-0045-z.
dc.relationJ.R.J. Delben et al. “Bioactive glass prepared by sol–gel emulsion”. In: Journal of Non-Crystalline Solids 361 (2013), pp. 119–123. DOI: 10.1016/j.jnoncrysol. 2012.10.025.
dc.relationKrzysztof Łukowicz et al. “The role of CaO/SiO2 ratio and P2O5 content in gel- derived bioactive glass-polymer composites in the modulation of their bioactivity and osteoinductivity in human BMSCs”. In: Materials Science and Engineering: C 109 (2020), p. 110535. DOI: 10.1016/j.msec.2019.110535.
dc.relationCarlos Trujillo, Pablo Piedrahita-Quintero, and Jorge Garcia-Sucerquia. “Digital lensless holographic microscopy: numerical simulation and reconstruction with ImageJ”. In: Applied Optics 59.19 (2020), p. 5788. DOI: 10.1364/ao.395672.
dc.relationBrayan Patiño-Jurado, Juan F. Botero-Cadavid, and Jorge Garcia-Sucerquia. “Optical Fiber Point-Source for Digital Lensless Holographic Microscopy”. In: Journal of Lightwave Technology 37.22 (2019), pp. 5660–5666. DOI: 10.1109/ jlt.2019.2921307.
dc.relationHeberley Tobon-Maya et al. “Open-source, cost-effective, portable, 3D-printed digital lensless holographic microscope”. In: Applied Optics 60.4 (2020), A205. DOI: 10.1364/ao.405605.
dc.relationQingzong Tseng et al. “Spatial organization of the extracellular matrix regulates cell–cell junction positioning”. In: Proceedings of the National Academy of Sciences 109.5 (2012), pp. 1506–1511. DOI: 10.1073/pnas.1106377109.
dc.relationR. Michel et al. “Mathematical Framework for Traction Force Microscopy”. In: ESAIM: Proceedings 42 (Dec. 2013). Ed. by Francis Filbet, Arnaud Heibig, and Liviu Iulian Palade, pp. 61–83. DOI: 10.1051/proc/201342005.
dc.relationAnkur H. Kulkarni et al. “Traction cytometry: regularization in the Fourier approach and comparisons with finite element method”. In: Soft Matter 14.23 (2018), pp. 4687–4695. DOI: 10.1039/c7sm02214j.
dc.relationS Restrepo et al. “Mechanical properties of ceramic structures based on Triply Periodic Minimal Surface (TPMS) processed by 3D printing”. In: Journal of Physics: Conference Series 935.1 (2017), p. 012036. DOI: 10.1088/1742-6596/935/1/ 012036.
dc.relationK. Momma and F. Izumi. “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data”. In: Journal of Applied Crystallography 44.6 (2011), pp. 1272–1276. DOI: 10.1107/s0021889811038970.
dc.relationM. Rajkumar, N. Meenakshisundaram, and V. Rajendran. “Development of nanocomposites based on hydroxyapatite/sodium alginate: Synthesis and characterisation”. In: Materials Characterization 62.5 (May 2011), pp. 469–479. DOI: 10.1016/j.matchar.2011.02.008.
dc.relationMasahiko Kobayashi et al. “Adhesion and Proliferation of Osteoblastic Cells on Hydroxyapatite-dispersed Ti-based Composite Plate”. In: In Vivo 33.4 (2019), pp. 1067–1079. DOI: 10.21873/invivo.11575.
dc.relationYurong Cai et al. “Role of hydroxyapatite nanoparticle size in bone cell proliferation”. In: J. Mater. Chem. 17.36 (2007), pp. 3780–3787. DOI: 10.1039/ b705129h.
dc.relationClaudia P García García. “Bioactivación de Metales de Uso Ortopédico Mediante Recubrimientos Producidos Por Sol-Gel”. Facultad de Ciencias: Universidad Autónoma de Madrid, 2004.
dc.rightsAtribución-NoComercial-CompartirIgual 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleCaracterización computacional de la fuerza ejercida sobre un sustrato de hidrogel optimizado para manufactura aditiva de scaffolds.
dc.typeTesis


Este ítem pertenece a la siguiente institución