dc.contributorMartínez Martínez, Roberto Enrique
dc.creatorDíaz Jaramillo, Carlos Eduardo
dc.date.accessioned2021-07-07T17:56:52Z
dc.date.available2021-07-07T17:56:52Z
dc.date.created2021-07-07T17:56:52Z
dc.date.issued2021-05-11
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/79766
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.description.abstractThe project consider a U(1)x non-universal extension to the Minimal Supersymetric Standard Model for explaining more naturally the fermion mass hierarchy, in the sense that Yukawa couplings with the scalar background are at the same order of magnitude. The hierarchy feature relies on a more complex scalar potential than in the Minimal Supersymmetric Standard Model, involving more scalar fields with different vacuum expectation values. The model also predicts the 125 GeV Higgs boson with no need of large radiative corrections, if the set of parameters of the model is constrained. The scalar spectrum is increased compared to the Minimal Supersymmetric Standard Model. These hypothetical particles are explained in the model to be arbitrarily heavy, escaping the experimental detection so far. (Text taken from source)
dc.description.abstractEl proyecto considera una extensión no universal U(1)x al modelo estándar supersimétrico para explicar de forma más natural la jerarquía de masa de fermiones, en el sentido que los acoples de Yukawa con el sector escalar son todos aproximadamente del mismo orden de magnitud. La característica de jerarquía yace en un potencial escalar más complejo que en el modelo estándar supersimétrico, conteniendo más campos escalares con diferentes valores de expectación de vacío. El modelo también predice el bosón de Higgs de 125 GeV sin necesidad de grandes correcciones radiativas, si el conjunto de parámetros es restringido. El espectro escalar se incrementa a comparación con el modelo estándar supersimétrico. Aquellas partículas hipotéticas son en el modelo arbitrariamente pesadas, escapando a la detección experimental. (Texto tomado de la fuente)
dc.languageeng
dc.publisherUniversidad Nacional de Colombia
dc.publisherBogotá - Ciencias - Maestría en Ciencias - Física
dc.publisherDepartamento de Física
dc.publisherFacultad de Ciencias
dc.publisherBogotá, Colombia
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relationJ. S. Alvarado, Carlos E. Diaz, and R. Martinez. Non universal u(1)X extension tothe mssm with three families. Phys. Rev. D, 100:055037, Sep 2019
dc.relationJ. S. Alvarado, Carlos E. Diaz, and R. Martinez. A U(1)X extension to the MSSM with three families. In Meeting of the Division of Particles and Fields of the American Physical Society, 9 2019
dc.relationSheldon L Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579–588, 1961
dc.relationA Salam. Elementary particle theory: Relativistic groups and analyticity (nobelsymposium no. 8), edited by n. svartholm, 1968
dc.relationSteven Weinberg. A model of leptons. Physical review letters, 19(21):1264, 1967
dc.relationParticle Data Group. Review of Particle Physics. Progress of Theoretical and Exper-imental Physics, 2020(8), 08 2020. 083C01
dc.relationATLAS-collaboration. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1–29, 2012
dc.relationCMS-collaboration. Observation of a new boson at a mass of 125 gev with the cms experiment at the lhc. Physics Letters B, 716(1):30–71, 2012.
dc.relationCsaba Cs ́aki and Philip Tanedo. Beyond the Standard Model. Lectures at the 2013European School of High Energy Physics, (8), 2013
dc.relationJ. Wess and B. Zumino. Supergauge transformations in four dimensions. NuclearPhysics B, 70(1):39 – 50, 1974.
dc.relationSavas Dimopoulos and Howard Georgi. Softly broken supersymmetry and su(5). Nuclear Physics B, 193(1):150 – 162, 1981
dc.relationR. Barbieri, S. Ferrara, and C.A. Savoy. Gauge models with spontaneously broken local supersymmetry. Physics Letters B, 119(4):343 – 347, 1982
dc.relationK. Abe et al. Search for proton decay viap→e+π0andp→μ+π 0 in 0.31 megaton· years exposure of the super-kamiokande water cherenkov detector.Phys. Rev. D,95:012004, Jan 2017
dc.relationAnupama Atre, Vernon Barger, and Tao Han. Upper bounds on lepton-number violating processes. Phys. Rev. D, 71:113014, Jun 2005.
dc.relationPierre Fayet. Supergauge invariant extension of the higgs mechanism and a model for the electron and its neutrino. Nuclear Physics B, 90:104 – 124, 1975
dc.relationP. Fayet. Supersymmetry and weak, electromagnetic and strong interactions. PhysicsLetters B, 64(2):159 – 162, 1976
dc.relationGlennys R. Farrar and Pierre Fayet. Phenomenology of the production, decay, and detection of new hadronic states associated with supersymmetry. Physics Letters B,76(5):575 – 579, 1978
dc.relationR-parity-violating supersymmetry. Physics Reports, 420(1):1 – 195, 2005
dc.relationJihn E. Kim and H.P. Nilles. The mu-problem and the strong cp-problem. PhysicsLetters B, 138(1):150 – 154, 198
dc.relationNir Polonsky. The Mu parameter of supersymmetry. In International Symposium on Supersymmetry, Supergravity and Superstring, pages 100–124, 6 1999
dc.relationAbdelhak Djouadi. The anatomy of electroweak symmetry breaking tome ii: The higgs bosons in the minimal supersymmetric model. Physics Reports, 459(1):1 – 241, 2008
dc.relationM. Carena, J.R. Espinosa, M. Quir ́os, and C.E.M. Wagner. Analytical expressions for radiatively corrected higgs masses and couplings in the mssm. Physics Letters B,355(1):209 – 221, 1995
dc.relationJ. Ellis, J. F. Gunion, H. E. Haber, L. Roszkowski, and F. Zwirner. Higgs bosons ina non minimal supersymmetric model. Phys. Rev. D, 39:844–869, Feb 1989
dc.relationT. Elliott, S. F. King, and P. L. White. Radiative corrections to higgs boson masses in the next-to-minimal supersymmetric standard model. Phys. Rev. D, 49:2435–2456, Mar 1994
dc.relationManuel Drees. Supersymmetric Models with Extended Higgs Sector. Int. J. Mod.Phys., A4:3635, 1989.
dc.relationD.J. Miller, R. Nevzorov, and P.M. Zerwas. The higgs sector of the next-to-minimal supersymmetric standard model. Nuclear Physics B, 681(1):3 – 30, 2004.
dc.relationS.F. King, M. Mahlleitner, and R. Nevzorov. Nmssm higgs benchmarks near 125gev. Nuclear Physics B, 860(2):207 – 244, 2012
dc.relationRiccardo Barbieri, Dario Buttazzo, Kristjan Kannike, Filippo Sala, and Andrea Tesi. Exploring the higgs sector of a most natural nmssm. Phys. Rev. D, 87:115018, Jun 2013
dc.relationKatri Huitu and Harri Waltari. Higgs sector in NMSSM with right-handed neutrinos and spontaneous R-parity violation. JHEP, 11:053, 2014.
dc.relationHsin-Chia Cheng, Bogdan A. Dobrescu, and Konstantin T. Matchev. A chiral supersymmetric standard model. Physics Letters B, 439(3):301 – 308, 1998
dc.relationErnest Ma. New u(1) gauge extension of the supersymmetric standard model. Phys.Rev. Lett., 89:041801, Jul 2002
dc.relationErnest Ma. Exceeding the mssm higgs mass bound in a special class of u(1) gauge models. Physics Letters B, 705(4):320 – 323, 2011
dc.relationVíctor Martín-Lozano and Santiago Oviedo-Casado. The non-Universal U(1) gauge extended μνSSM: anomalies cancellation and singular phenomenology. JHEP, 09:102,2018
dc.relationQ. R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the sudbury neutrino observatory. Phys. Rev. Lett., 89:011301,Jun 2002
dc.relationK. Abe et al. Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam. Phys. Rev. Lett., 107:041801, Jul 2011
dc.relationPeter Minkowski. μ→eγat a rate of one out of 109 muon decays? Physics LettersB, 67(4):421 – 428, 1977
dc.relationEvgeny K. Akhmedov, G.C. Branco, and M.N. Rebelo. Seesaw mechanism and structure of neutrino mass matrix. Phys. Lett. B, 478:215–223, 2000
dc.relationCarlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astro-physics. Wiley, 2007
dc.relationRabindra N. Mohapatra. Mechanism for understanding small neutrino mass in superstring theories. Phys. Rev. Lett., 56:561–563, Feb 1986
dc.relationRabindra N Mohapatra and Jos ́e WF Valle. Neutrino mass and baryon-number non conservation in superstring models. Physical Review D, 34(5):1642, 1986
dc.relationA.G. Dias, C.A. de S.Pires, P.S. Rodrigues da Silva, and A. Sampieri. A Simple Realization of the Inverse Seesaw Mechanism. Phys. Rev. D, 86:035007, 2012
dc.relationArthur Loureiro et al, Upper bound of neutrino massesfrom combined cosmological observations and particle physics experiments. Phys.Rev. Lett., 123:081301, Aug 2019
dc.relationGiorgio Cortiana. Top-quark mass measurements: Review and perspectives. Reviews in Physics, 1:60 – 76, 2016
dc.relationGauhar Abbas. Solving the fermionic mass hierarchy of the standard model. Int. J.Mod. Phys. A, 34(20):1950104, 2019
dc.relationNicola Cabibbo. Unitary symmetry and leptonic decays. Phys. Rev. Lett., 10:531–533, Jun 1963
dc.relationMakoto Kobayashi and Toshihide Maskawa. Cp-violation in the renormalizable theory of weak interaction. Progress of Theoretical Physics, 49(2):652–657, 1973
dc.relationZiro Maki, Masami Nakagawa, and Shoichi Sakata. Remarks on the unified model ofelementary particles. Progress of Theoretical Physics, 28(5):870–880, 1962.
dc.relationB. Pontecorvo. Neutrino Experiments and the Problem of Conservation of Leptonic Charge. Sov. Phys. JETP, 26:984–988, 1968. [Zh. Eksp. Teor. Fiz.53,1717(1967)].
dc.relationHoward Georgi. The flavor problem. Physics Letters B, 169(2):231 – 233, 1986
dc.relationHoward Georgi. Towards a grand unified theory of flavor. Nuclear Physics B,156(1):126 – 134, 1979
dc.relationStephen M. Barr. Light-fermion mass hierarchy and grand unification. Phys. Rev.D, 21:1424–1427, Mar 1980
dc.relationR. Barbieri and D.V. Nanopoulos. An exceptional model for grand unification. Physics Letters B, 91(3):369 – 375, 1980
dc.relationH. Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436 – 440, 1977
dc.relationH. Fritzsch. Weak-interaction mixing in the six-quark theory. Physics Letters B,73(3):317 – 322, 1978
dc.relationErnest Ma, Hideyuki Sawanaka, and Morimitsu Tanimoto. Quark masses and mixing with a4 family symmetry. Physics Letters B, 641(3):301 – 304, 2006
dc.relationR. Martínez, J. Nisperuza, F. Ochoa, and J. P. Rubio. Some phenomenologicalaspects of a new u(1)′model. Phys. Rev. D, 89:056008, Mar 2014.
dc.relationS. F. Mantilla and R. Martinez. Nonuniversal anomaly-free u(1) model with three higgs doublets and one singlet scalar field. Phys. Rev. D, 96:095027, Nov 2017
dc.relationCarlos E. Diaz, S. F. Mantilla, and R. Martinez. Fermion mass hierarchy from nonuniversal abelian extensions of the standard model. Phys. Rev. D, 98:015038, Jul 2018
dc.relationR. Martinez, F. Ochoa, and J. M. Quimbayo. bmeson decay anomaly with a nonuniversal u(1)′ extension. Phys. Rev. D, 98:035036, Aug 2018.
dc.relationR. Aaij et al. Measurement of form-factor-independent observables in the decay B0→K∗0μ+μ−. Phys. Rev. Lett., 111:191801, Nov 2013
dc.relationSearch for massive resonances decaying into WW, WZ, ZZ, qW and qZ in the di-jet final state at√s= 13 TeV. Technical Report CMS-PAS-B2G-17-001, CERN, Geneva, 2017
dc.relationAtlas searches for resonances decaying to boson pairs. Technical Report ATLAS-CONF-2017-051, CERN, Geneva, 2017
dc.relationATLAS Collaboration. Search for high-mass dilepton resonances using 139fb−1 of pp collision data collected at s=13 tev with the atlas detector. Physics Letters B,796:68 – 87, 2019
dc.relationS. F. Mantilla, R. Martinez, and F. Ochoa. Neutrino andcp-even higgs boson masses in a nonuniversal u(1)′ extension. Phys. Rev. D, 95:095037, May 2017
dc.relationHoward Georgi. Lie Algebras in Particle Physics 2nd ed - From Isospin to UnifiedTheories. Westview Press, USA, 1999
dc.relationMichelle Maggiore. A modern introduction to quantum field theory. Oxford University Press, Great Clarendon Street, Oxford OX2 6DP, 2005
dc.relationLewis H. Ryder. Quantum Field Theory. Cambridge University Press, 2 edition,1996
dc.relationHiggs: The Higgs particle, https://physicsmasterclasses.org/exercises/hands-on-cern/ hocv21en/mainframe/smhiggs2.html, 2014 (accessed November 4, 2020)
dc.relationIan Low and Aneesh V. Manohar. Spontaneously broken spacetime symmetries and goldstone’s theorem. Phys. Rev. Lett., 88:101602, Feb 2002
dc.relationCarlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astrophysics. 4 2007
dc.relationGulsheen Ahuja, Sanjeev Kumar, Monika Randhawa, Manmohan Gupta, and S. Dev. Texture 4 zero fritzsch-like lepton mass matrices. Phys. Rev. D, 76:013006, Jul 2007
dc.relationSidney Coleman and Jeffrey Mandula. All possible symmetries of the s matrix. Phys. Rev., 159:1251–1256, Jul 1967
dc.relationPran Nath. Supersymmetry, supergravity and unification. Cambridge, London, 2017
dc.relationRudolf Haag, Jan T. Lopuszánski, and Martin Sohnius. All possible generators of supersymmetries of the s-matrix. Nuclear Physics B, 88(2):257 – 274, 1975
dc.relationPorter Williams. Naturalness, the autonomy of scales, and the 125gev higgs. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 51:82 – 96, 2015
dc.relationHarald Muller and Armin Wiedermann. Introduction To Supersymmetry. World Scientific, Kaiserlauten, Germany, 2010
dc.relationRoger Penrose. The road to reality. Alfred A. Knopf, Random House, 20 Vauxhall Bridge Road, London, 2004
dc.relationHoratiu Nastashe. String theory and condensed matter. Cambridge University Press, 2017
dc.relationStephen P. Martin. A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys., 21:1–153, 2010
dc.relationH. Baer and X. Tata. Weak scale supersymmetry: From superfields to scattering events. Cambridge University Press, 5 2006
dc.relationM. C. Rodriguez. The Minimal Supersymmetric Standard Model (MSSM) and General Singlet Extensions of the MSSM (GSEMSSM), a short review. 11 2019
dc.relationHoward E. Haber and Ralf Hempfling. Can the mass of the lightest higgs boson of the minimal supersymmetric model be larger than mz? Phys. Rev. Lett., 66:1815–1818, Apr 1991
dc.relationHoward E. Haber and M. Schmitt. Supersymmetry. Eur. Phys. J. C, 15(1-4):817–844, 2000
dc.relationJ. S. Alvarado and R. Martinez. PMNS matrix in a non-universal U(1)X extension to the MSSM with one massless neutrino. 7 2020
dc.relationJ. S. Alvarado, M. A. Bulla, D. G. Martinez, and R. Martinez. Explaining muon g−2 anomaly in a non-universal U(1)X extended SUSY theory. 10 2020.
dc.relationYan Wang, Fa Peng Huang, Chong Sheng Li, Bo Hua Li, Ding Yu Shao, and JianWang. Constraints on flavor-changing neutral-current htq couplings from the signal of th associated production with qcd next-to-leading order accuracy at the lhc. Phys.Rev. D, 86:094014, Nov 2012
dc.relationG.C. Branco, P.M. Ferreira, L. Lavoura, M.N. Rebelo, Marc Sher, and Jo ̃ao P.Silva. Theory and phenomenology of two-higgs-doublet models. Physics Reports,516(1):1–102, 2012. Theory and phenomenology of two-Higgs-doublet models
dc.relationFerrari method, http://encyclopediaofmath.org/index.php?title=Ferrarimethod&oldid=35675, 2010 (accessed December 6, 2020)
dc.relationLaura Lopez Honorez and Carlos E. Yaguna. The inert doublet model of dark matter revisited. JHEP, 09:046, 2010.
dc.relationWalter Grimus and Luis Lavoura. The seesaw mechanism at arbitrary order: dis-entangling the small scale from the large scale. Journal of High Energy Physics,2000(11):042–042, nov 2000
dc.relationMurray Spiegel. Mathematical Handbook of Formulas and Tables. Shaum, 1968
dc.rightsReconocimiento 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos Reservados al Autor, 2021
dc.titleHiggs sector from a non-universal U(1)x supersymmetric model
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución