dc.contributor | Granada García, Sinar David | |
dc.contributor | Pérez Naranjo, Juan Carlos | |
dc.contributor | Fitosanidad y Control Biológico | |
dc.creator | Ocampo Cano, Daniela | |
dc.date.accessioned | 2021-10-01T14:49:56Z | |
dc.date.available | 2021-10-01T14:49:56Z | |
dc.date.created | 2021-10-01T14:49:56Z | |
dc.date.issued | 2021-09-29 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/80350 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.description.abstract | El aguacate (Persea americana Mill.) es una fruta nativa de las regiones tropicales y subtropicales de América Central y México, perteneciente a la familia Lauraceae. Es una fruta que posee valiosas propiedades nutricionales, por su alto contenido de ácidos grasos monoinsaturados, proteína, carbohidratos, vitaminas y minerales. Además, tiene un gran potencial de exportación, ya que, tiene múltiples usos en culinaria, y puede emplearse también en procesos agroindustriales y como insumo en la industria farmacéutica y cosmética. Sin embargo, en los últimos años, la productividad de este cultivo se ha visto limitada por diferentes factores entre los que se encuentra la pudrición radicular causada por Phytophthora cinnamomi. Algunos productos químicos han ofrecido una respuesta favorable frente a P. cinnamomi. No obstante, no generan supresión del fitopatógeno, sino un control temporal de síntomas. Por tanto, es importante tener información sobre el rango de sensibilidad que presenta P. cinnamomi frente a fungicidas de naturaleza sistémica y a protectantes, ya que el uso indiscriminado de estos productos puede causar perdida de sensibilidad en el microorganismo con la consecuente generación de aislamientos resistentes. De acuerdo a lo estipulado por el Comité de Acción frente a la Resistencia a los Fungicidas (FRAC, por sus siglas en inglés) es importante hacer un levantamiento de información sobre el rango de sensibilidad que presenta P. cinnamomi frente a fungicidas de naturaleza sistémica y protectante, ya que el uso continuo y poco racionalizado de estos productos pueden causar pérdida de sensibilidad en el microorganismo, generando poblaciones resistentes y por ende problemas sanitarios de grandes magnitudes. Adicionalmente, de acuerdo con el FRAC, es posible establecer el riesgo que implica el uso de ciertos principios activos frente a un patógeno por medio de la siembra consecutiva del microorganismo en niveles subletales de los compuestos hasta obtener un mutante resistente. La comparación entre el aislamiento silvestre y el obtenido luego del contacto con el fungicida arrojará un índice denominado “Factor de riesgo”, el cual dará una idea del riesgo futuro de la aplicación de dicho principio activo. Por lo anterior, el presente trabajo tuvo como objetivo establecer una línea base de sensibilidad de P. cinnamomi frente a tres (3) formulaciones comerciales, y determinar el factor de riesgo en la generación de resistencia en el patógeno frente a cada una de las formulaciones comerciales. (Texto tomado de la fuente) | |
dc.description.abstract | Avocado (Persea americana Mill.) is a tropical and subtropical fruit from Central America and Mexico, belonging to the Lauraceae family. It is a fruit with valuable nutritional properties, due to its high content of monounsaturated fatty acids, protein, carbohydrates, vitamins and minerals. In addition, it has great potential to be exported for its multiple uses in cooking, in agro-industrial processes and in the pharmaceutical and cosmetic industry. However, in recent years, productivity has been limited by different factors, including root rot caused by Phytophthora cinnamomi. Some products have offered a favorable response to P. cinnamomi. However, they do not generate suppression of the phytopathogen, but only a temporary symptom decrease. Therefore, it is important to have information on the range of sensitivity of P. cinnamomi to systemic fungicides, as well as protectants, since the indiscriminate use of these products can cause loss of sensitivity in the microorganism, generating resistant isolates. According to the Fungicide Resistance Action Committee (FRAC), it is important to collect information on the range of sensitivity of P. cinnamomi to systemic and protectant fungicides, since the continuous and not rationalized use of these products can cause loss of sensitivity in the microorganism, generating resistant populations and therefore large-scale sanitary problems. Additionally, according to the FRAC, it is possible to establish the risk involved in the use of certain active ingredients against a pathogen by consecutive culture of the microorganism at sublethal levels of the compounds until a resistant mutant is obtained. The comparison between the wild isolate and the one obtained after the treatments with the fungicide will yield an index called "risk factor", which will give an idea of future resistance risk of the application of that active ingredient. Therefore, the objective of this study was to establish a baseline sensitivity of P. cinnamomi to three (3) commercial fungicides, and to determine the resistance risk factor of the pathogen in front of these commercial formulations. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | |
dc.publisher | Escuela de biociencias | |
dc.publisher | Facultad de Ciencias | |
dc.publisher | Medellín | |
dc.publisher | Universidad Nacional de Colombia - Sede Medellín | |
dc.relation | Akinsanmi, O. A., & Drenth, A. (2013). Phosphite and metalaxyl rejuvenate macadamia trees in decline caused by Phytophthora cinnamomi. Crop Protection, 53 (10), 29–36. https://doi.org/10.1016/j.cropro.2013.06.007 | |
dc.relation | Alcaraz, M. L. (2009). Biología reproductiva del aguacate (Persea americana Mill.). Implicaciones para la optimización del cuajado. Tesis doctoral. Universidad de Malaga.http://www.avocadosource.com/international/spain_papers/alcarazml2009b.pdf | |
dc.relation | Araújo, R. G., Rodriguez, R. M., Ruiz, H. A., Pintado, M. M., & Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science and Technology, 80 (10), 51–60. https://doi.org/10.1016/j.tifs.2018.07.027 | |
dc.relation | Avenot, H. F., & Michailides, T. J. (2015). Detection of isolates of Alternaria alternata with multiple resistance to fludioxonil, cyprodinil, boscalid and pyraclostrobin in California pistachio orchards. Crop Protection, 78 (12), 214–221. https://doi.org/10.1016/j.cropro.2015.09.012 | |
dc.relation | Avenot, H. F., Luna, M., & Michailides, T. J. (2019). Phenotypic and molecular characterization of resistance to the SDHI fungicide fluopyram in populations of Alternaria alternata from pistachio orchards in California. Crop Protection, 124 (10), 2-8. https://doi.org/10.1016/j.cropro.2019.05.032 | |
dc.relation | Bardas, G. A., Myresiotis, C. K., & Karaoglanidis, G. S. (2008). Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea. Phytopathology, 98 (4), 443–450. https://doi.org/10.1094/PHYTO-98-4-0443 | |
dc.relation | Billard, A., Fillinger, S., Leroux, P., Lachaise, H., Beffa, R., & Debieu, D. (2012). Strong resistance to the fungicide fenhexamid entails a fitness cost in Botrytis cinerea, as shown by comparisons of isogenic strains. Pest Management Science, 68 (5), 684–691. https://doi.org/10.1002/ps.2312 | |
dc.relation | Bittner, R. J., Sweigard, J. A., & Mila, A. L. (2017). Assessing the resistance potential of Phytophthora nicotianae, the causal agent of black shank of tobacco, to oxathiopropalin with laboratory mutants. Crop Protection, 102 (8), 63–71. https://doi.org/10.1016/j.cropro.2017.08.002 | |
dc.relation | Brent, K. J., & Hollomon, D. W. (2007). Fungicidce Resistance in Plant Management: How can it be managed?. In Fungicide resistance action committee. 2° edición. https://www.frac.info/docs/defaultsource/publications/monographs/monograph-1.pdf?sfvrsn=8&sfvrsn=8 | |
dc.relation | Broth, P. E.-. (2005). FRAC_96-well plate fungicide sensitivity assay. 6–7. Documento pdf. http://www.frac.info/docs/default-source/monitoring-methods/approved-methods/phytin-microtiter-plate-method-dupont-2006-v1.pdf?sfvrsn=4 | |
dc.relation | Brown, S., Koike, S. T., Ochoa, O. E., Laemmlen, F., & Michelmore, R. W. (2004). Insensitivity to the fungicide fosetyl-aluminum in california isolates of the lettuce downy mildew pathogen, Bremia lactucae. Plant Disease, 88 (5), 502–508. https://doi.org/10.1094/PDIS.2004.88.5.502 | |
dc.relation | Brownbridge, M., Costa, S., & Jaronski, S. T. (2001). Effects of in vitro passage of Beauveria bassiana on virulence to Bemisia argentifolii. Journal of Invertebrate Pathology, 77 (4), 280–283. https://doi.org/10.1006/jipa.2001.5020 | |
dc.relation | Buckling, A., Craig MacLean, R., Brockhurst, M. A., & Colegrave, N. (2009). The Beagle in a bottle. Nature, 457 (2), 824–829. https://doi.org/10.1038/nature07892 | |
dc.relation | Butt, T. M., Wang, C., Shah, F. A., & Hall, R. (2006). Degeneration of entomogenous fungi. In: An Ecological and Societal Approach to Biological Control. Progress in Biological Control, vol 2. Springer, Dordrecht. https://doi-org.ezproxy.unal.edu.co/10.1007/978-1-4020-4401-4_10 | |
dc.relation | Calle, C., Gonzales, E. P., Arango, R. E., & Saldamando, C. I. (2020). Isolation and identification of Phytophthora cinnamomi collected in avocado (Persea americana) from Northeast Colombia. Tropical Plant Pathology, 45 (4), 402–414. https://doi.org/10.1007/s40858-020-00337-w | |
dc.relation | Cañas, G. P., Galindo, L. F., Arango, R., & Saldamando, C. I. (2015). Diversidad genética de cultivares de aguacate (Persea americana Mill) en Antioquia, Colombia. Agronomía Mesoamericana, 26 (1), 129-143. https://doi.org/10.15517/am.v26i1.16936 | |
dc.relation | Castañeda, E. L. (2009). Busqueda de portainjertos de aguacate tolerantes-resistentes a Phytophthora cinnamomi Rands . Tesis de maestria. Universidad autonoma de nuevo Leon | |
dc.relation | Castaño, P. (2013). Control Podredumbre radical causada por Phytophthora cinnamomi en dehesas mediante biofumigación con Brassica spp. Tesis doctoral. Universidad de Cordoba. | |
dc.relation | Chen, F., Tsuji, S. S., Li, Y., Hu, M., Bandeira, M. A., Câmara, M. P. S., Michereff, S. J., & Schnabel, G. (2020). Reduced sensitivity of azoxystrobin and thiophanate-methyl resistance in Lasiodiplodia theobromae from papaya. Pesticide Biochemistry and Physiology, 162 (6), 60–68. https://doi.org/10.1016/j.pestbp.2019.08.008 | |
dc.relation | Coffey, M. D. (1984). Variability in Sensitivity to Metalaxyl of Isolates of Phytophthora cinnamomi and Phytophthora citricola . In Phytopathology 74 (5), 1042-1046. https://doi.org/10.1094/phyto-74-417 | |
dc.relation | Coffey, M. D. (1987). Phytophthora root rot of avocado an integrated approach to Control in California. Plant Disease, 71 (11), 1046–1052. DOI: 10.1094/PD-71-1046. | |
dc.relation | Cohen, Y., & Coffey, M. D. (1986). Systemic Fungicides and the Control of Oomycetes. Annual Review of Phytopathology, 24 (1), 311–338. https://doi.org/10.1146/annurev.py.24.090186.001523 | |
dc.relation | Di, Y. L., Zhu, Z. Q., Lu, X. M., & Zhu, F. X. (2016). Baseline sensitivity and efficacy of trifloxystrobin against Sclerotinia sclerotiorum. Crop Protection, 87 (4), 31–36. https://doi.org/10.1016/j.cropro.2016.04.020 | |
dc.relation | Díaz, W. H. (2013). Efectos en las condiciones socioeconomicas y ambientales de la poblacion generados por el hongo Phytophthora que afecta los cultivos de aguacate del municipio de el carmen de bolivar, departamento de bolivar - colombia. Tesis de Maestría, Universidad de manizales. | |
dc.relation | Dobrowolski, M. P., Shearer, B. L., Colquhoun, I. J., O’Brien, P. A., & Hardy, G. E. S. J. (2008). Selection for decreased sensitivity to phosphite in Phytophthora cinnamomi with prolonged use of fungicide. Plant Pathology, 57 (5), 928–936. https://doi.org/10.1111/j.1365-3059.2008.01883.x | |
dc.relation | Dreher, M. L., & Davenport, A. J. (2013). Hass Avocado Composition and Potential Health Effects. Critical Reviews in Food Science and Nutrition, 53 (7), 738–750. https://doi.org/10.1080/10408398.2011.556759 | |
dc.relation | Duvenhage, J. A. (1994). Moonitoring the resistance of Phytophthora cinnamomi to Fosetyl-Al and H3PO3. South African Avocado Growers’ Association Yearbook, 17 (1) 35–37. | |
dc.relation | Elliott, M., Shamoun, S. F., & Sumampong, G. (2015). Effects of systemic and contact fungicides on life stages and symptom expression of Phytophthora ramorum in vitro and in planta. Crop Protection, 67 (1), 136–144. https://doi.org/10.1016/j.cropro.2014.10.008 | |
dc.relation | Fulgoni, V. L., Dreher, M., & Davenport, A. J. (2013). Avocado consumption is associated with better diet quality and nutrient intake, and lower metabolic syndrome risk in US adults: Results from the National Health and Nutrition Examination Survey (NHANES) 2001-2008. Nutrition Journal, 12 (1), 1-12-. https://doi.org/10.1186/1475-2891-12-1. | |
dc.relation | Galindo, M. E., Ogata, N., & Arzate, A. M. (2008). Some aspects of avocado (Persea americana Mill.) diversity and domestication in Mesoamerica. Genetic Resources and Crop Evolution, 55 (3), 441–450. https://doi.org/10.1007/s10722-007-9250-5 | |
dc.relation | García, S. D., Lorza, A. R., & Peláez, C. A. (2014). Atividad antimicrobiana de metabólitos extracelulares de bactérias antagonistas aisladas de cultivos de batata (solanum phureja). Summa Phytopathologica, 40 (3), 212–220. https://doi.org/10.1590/0100-5405/1953 | |
dc.relation | Gil, J. G. R., Sánchez, D. A., & Osorio, J. G. (2014). Estudios etiológicos de la marchitez del aguacate en Antioquia-Colombia. Revista Ceres, 61 (1), 50–61. https://doi.org/10.1590/S0034-737X2014000100007 | |
dc.relation | Gisi, U, Chin, K. M., Knapova, G., Ku, R., Mohr, U., Parisi, S., Sierotzki, H., & Steinfeld, U. (2000). Recent developments in elucidating modes of resistance to phenylamide , DMI and strobilurin fungicides. Crop protection, 19, (9) 863–872. https://doi.org/10.1016/S0261-2194(00)00114-9 | |
dc.relation | Gisi, U., Hermann, D., Ohl, L., & Steden, C. (1997). Sensitivit y Profiles of Mycosphaerella graminicola and Phytophthora infestans Populations to Different Classes of Fungicides. 290 (4), 290–298. https://doi.org/10.1002/(SICI)1096-9063(199711)51:3<290::AID | |
dc.relation | Graham, R. T. (1986). Plant disease reporter. In Biologia Centrali-Americaa (Vol. 2). | |
dc.relation | Granada, D., López, L., Ramírez, S., Morales, J., Peláez, C., Andrade, G., & Bedoya, J. C. (2020). Bacterial extracts and bioformulates as a promising control of fruit body rot and root rot in avocado cv. Hass. Journal of Integrative Agriculture, 19 (3), 748–758. https://doi.org/10.1016/S2095-3119(19)62720-6 | |
dc.relation | Granados, W., & Valencia, J. (2018). Cadena de aguacate: Indicadores e Instrumentos Generales. Minagricultura. Presentación en power point. https://sioc.minagricultura.gov.co/Aguacate/Documentos/2018-08-30 Cifras Sectoriales.pdf | |
dc.relation | Gresham, D., & Dunham, M. J. (2014). The enduring utility of continuous culturing in experimental evolution. Genomics, 104 (6), 399–405. https://doi.org/10.1016/j.ygeno.2014.09.015 | |
dc.relation | Grimmer, M. K., van den Bosch, F. k., Powers, S. J., & Paveley, N. D. (2015). Fungicide resistance risk assessment based on traits associated with the rate of pathogen evolution. Pest Management Science, 71 (2), 207–215. https://doi.org/10.1002/ps.3781 | |
dc.relation | Hardy, G. E. S. J., Barrett, S., & Shearer, B. L. (2001). The future of phosphite as a fungicide to control the soilborne plant pathogen Phytophthora cinnamomi in natural ecosystems. Australasian Plant Pathology, 30 (2), 133–139. https://doi.org/10.1071/AP01012 | |
dc.relation | Herring, C. D., Raghunathan, A., Honisch, C., Patel, T., Applebee, M. K., Joyce, A. R., Albert, T. J., Blattner, F. R., Van Den Boom, D., Cantor, C. R., & Palsson, B. (2006). Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nature Genetics, 38 (12), 1406–1412. https://doi.org/10.1038/ng1906 | |
dc.relation | Herrmann, H., & Bucksch, H. (2014). Fungicide resistance: the assessment of risk. Monogrsfia 2 FRAC. Edicion N°2. https://doi.org/10.1007/978-3-642-41714-6_62782 | |
dc.relation | Hu, J., Wu, J., Gu, M., Geng, J., Guo, C., Yang, Z., & Lamour, K. (2020). Baseline sensitivity and control efficacy of fluazinam against Clarireedia homoeocarpa. Crop Protection, 137(4) 1-7. https://doi.org/10.1016/j.cropro.2020.105290 | |
dc.relation | Hu, J., Zhou, Y., Gao, T., Geng, J., Dai, Y., Ren, H., Lamour, K., & Liu, X. (2019a). Resistance risk assessment for fludioxonil in Sclerotinia homoeocarpa in China. Pesticide Biochemistry and Physiology, 156 (2), 123–128. https://doi.org/10.1016/j.pestbp.2019.02.011 | |
dc.relation | Huang, X. ping, Song, Y. fei, Li, B. xing, Mu, W., & Liu, F. (2019). Baseline sensitivity of isopyrazam against Sclerotinia sclerotiorum and its efficacy for the control of Sclerotinia stem rot in vegetables. Crop Protection, 122 (2), 42–48. https://doi.org/10.1016/j.cropro.2019.04.010 | |
dc.relation | Instituto Colombiano Agropecuario ICA. (2009). Manual técnico cultivo de aguacate. Documento pdf. https://sioc.minagricultura.gov.co/Aguacate/Documentos/005 - Documentos Técnicos/005 - D.T - Paquete Tecnologico Aguacate.pdf | |
dc.relation | Jackson, T. J., Burgess, T., Colquhoun, I., & Hardy, G. E. S. J. (2000). Action of the fungicide phosphite on Eucalyptus marginata inoculated with Phytophthora cinnamomi. Plant Pathology, 49 (1), 147–154. https://doi.org/10.1046/j.1365-3059.2000.00422.x | |
dc.relation | King, M., Reeve, W., Van Der Hoek, M. B., Williams, N., McComb, J., O’Brien, P. A., & Hardy, G. E. S. J. (2010). Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Molecular Genetics and Genomics, 284 (6), 425–435. https://doi.org/10.1007/s00438-010-0579-7 | |
dc.relation | Liang, H. J., Di, Y. L., Li, J. L., You, H., & Zhu, F. X. (2015). Baseline sensitivity of pyraclostrobin and toxicity of SHAM to sclerotinia sclerotiorum. Plant Disease, 99 (2), 267–273. https://doi.org/10.1094/PDIS-06-14-0633-RE | |
dc.relation | Lu, X. H., Hausbeck, M. K., Liu, X. L., & Hao, J. J. (2011). Wild type sensitivity and mutation analysis for resistance risk to fluopicolide in Phytophthora capsici. Plant Disease, 95 (12), 1535–1541. https://doi.org/10.1094/PDIS-05-11-0372 | |
dc.relation | Lucas, J. (2017). Resistance Management: We know why but do we know how? Modern Fungicides and Antifungal Compounds. Vol. VIII, VIII, 3–14. | |
dc.relation | Lucas, J. A., Hawkins, N. J., & Fraaije, B. A. (2015). The Evolution of Fungicide Resistance. In Advances in Applied Microbiology (Vol. 90). Elsevier Ltd. https://doi.org/10.1016/bs.aambs.2014.09.001 | |
dc.relation | Ma, D., Jiang, J., He, L., Cui, K., Mu, W., & Liu, F. (2018). Detection and characterization of qoi-resistant phytophthora capsici causing pepper phytophthora blight in china. Plant Disease, 102 (9), 1725–1732. https://doi.org/10.1094/PDIS-01-18-0197-RE | |
dc.relation | Ma, J., & McLeod, A. (2014). In vitro sensitivity of South African Phytophthora cinnamomi to phosphite at different phosphate concentrations. South African Avocado Growers' Association Yearbook, 37, 79-84. http://hdl.handle.net/10019.1/98308 | |
dc.relation | Mao, X. W., Li, J. S., Chen, Y. L., Song, X. S., Duan, Y. B., Wang, J. X., Chen, C. J., Zhou, M. G., & Hou, Y. P. (2018). Resistance risk assessment for fluazinam in Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 144 (10), 27–35. https://doi.org/10.1016/j.pestbp.2017.10.010 | |
dc.relation | Masikane, S. L., Novela, P., Mohale, P., & McLeod, A. (2020). Effect of phosphonate application timing and -strategy on phosphite fruit and root residues of avocado. Crop Protection, 128 (2) 2-8. https://doi.org/10.1016/j.cropro.2019.105008 | |
dc.relation | Matheron, M. E., & Porchas, M. (2000). Impact of azoxystrobin, dimethomorph, fluazinam, fosetyl-Al, and metalaxyl on growth, sporulation, and zoospore cyst germination of three Phytophthora spp. Plant Disease, 84 (4), 454–458. https://doi.org/10.1094/PDIS.2000.84.4.454 | |
dc.relation | McCarren, K. L., McComb, J. A., Shearer, B. L., & Hardy, G. E. S. J. (2009). In vitro influence of phosphite on chlamydospore production and viability of Phytophthora cinnamomi. Forest Pathology, 39 (3), 210–216. https://doi.org/10.1111/j.1439-0329.2008.00576.x | |
dc.relation | Mei, X., Liu, Y., Huang, H., Du, F., Huang, L., Wu, J., Li, Y., Zhu, S., & Yang, M. (2019). Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. Pesticide Biochemistry and Physiology, 154 (12), 7–16. https://doi.org/10.1016/j.pestbp.2018.12.002 | |
dc.relation | Mei, X., Liu, Y., Huang, H., Du, F., Huang, L., Wu, J., Li, Y., Zhu, S., & Yang, M. (2019). Benzothiazole inhibits the growth of Phytophthora capsici through inducing apoptosis and suppressing stress responses and metabolic detoxification. Pesticide Biochemistry and Physiology, 154 (12), 7–16. https://doi.org/10.1016/j.pestbp.2018.12.002 | |
dc.relation | Ministerio de Agricultura y Desarrollo Rural. (2020). Cadena productiva Aguacate. Presentación power point. | |
dc.relation | Molaei, H., Abrinbana, M., & Ghosta, Y. (2020). Baseline sensitivities to azoxystrobin and tebuconazole in Sclerotinia sclerotiorum isolates from sunflower in Iran related to sensitivities to carbendazim and iprodione. Journal of Phytopathology, 168 (6), 353–362. https://doi.org/10.1111/jph.12899 | |
dc.relation | More, G. Mt. Fg. A. et al. (1963). Mancozeb: Past, present, and future. Disease, Plant, 94(9), 1076–1087. https://doi.org/10.1094/PDIS-94-9-1076 | |
dc.relation | O’Brien, C., Hiti-Bandaralage, J., Folgado, R., Lahmeyer, S., Hayward, A., Folsom, J., & Mitter, N. (2020). A method to increase regrowth of vitrified shoot tips of avocado (Persea americana Mill.): First critical step in developing a cryopreservation protocol. Scientia Horticulturae, 266 (2), 2-12. https://doi.org/10.1016/j.scienta.2020.109305 | |
dc.relation | Pérez, R. M. (2008). Significant avocado diseases caused by fungi and oomycetes. The European Journal of Plant Science and Biotechnology, 2 (1), 1–24. 7493fb70e621460a38cb74fceac347a2d238a4e5 | |
dc.relation | Qu, X. P., Li, J. S., Wang, J. X., Wu, L. Y., Wang, Y. F., Chen, C. J., Zhou, M. G., & Hou, Y. P. (2018). Effects of the dinitroaniline fungicide fluazinam on Fusarium fujikuroi and rice. Pesticide Biochemistry and Physiology, 152 (9), 98–105. https://doi.org/10.1016/j.pestbp.2018.09.010 | |
dc.relation | Ramírez-Gil, J. G., Castañeda-Sánchez, D. A., & Morales-Osorio, J. G. (2017). Production of avocado trees infected with Phytophthora cinnamomi under different management regimes. Plant Pathology, 66 (4), 623–632. https://doi.org/10.1111/ppa.12620 | |
dc.relation | Ramírez, J. G., Gilchrist, E., & Morales, J. G. (2017). Economic impact of the avocado (cv. Hass) wilt disease complex in Antioquia, Colombia, crops under different technological management levels. Crop Protection, 101 (11), 103–115. https://doi.org/10.1016/j.cropro.2017.07.023 | |
dc.relation | Ramirez Gil, J. G. (2013). Incidencia, diagnostico, comportamiento y alternativas de manejo de la marchitez del aguacate con enfasis en Phytophthora cinnamomi rands. 189. | |
dc.relation | Rios, D., & Tafur, R. (2003). Variedades De Aguacate Para El Trópico: Caso Colombia. Proceedings V World Avocado Congress (Actas V Congreso Mundial Del Aguacate), 143–147. | |
dc.relation | Rossi, V., Caffi, T., Legler, S. E., & Fedele, G. (2021). A method for scoring the risk of fungicide resistance in vineyards. Crop Protection, 143 (7), 2-10. https://doi.org/10.1016/j.cropro.2020.105477 | |
dc.relation | Russell, P. E. (2008). Sensitivity baselines in fungicide resistance research and management. Outlooks on Pest Management, 17 (3), 119–121. https://doi.org/10.1564/17jun07 | |
dc.relation | Rutherford, F. S. (1985). Variation in Virulence in Successive Single Zoospore propagations of Phytophthora megasperma f. sp. glycinea . In Phytopathology 75 (10) 371-374. https://doi.org/10.1094/phyto-75-371 | |
dc.relation | Samsinakova, A., & Kalalova, S. (1983). The influence of a single-spore isolate and repeated subculturing on the pathogenicity of conidia of the entomophagous fungus Beauveria bassiana. Journal of Invertebrate Pathology, 42 (2), 156–161. https://doi.org/10.1016/0022-2011(83)90057-5 | |
dc.relation | Sanchez, E. I. (2018). Selección de genotipos de aguacate raza mexicana con resistencia A Phytophthora cinnamomi Rands. Tesis de Maestria. Universidad autonoma de Nuevo Leon. http://dspace.unitru.edu.pe/handle/UNITRU/10525 | |
dc.relation | Sena, K., Crocker, E., Vincelli, P., & Barton, C. (2018). Phytophthora cinnamomi as a driver of forest change: Implications for conservation and management. Forest Ecology and Management, 409 (01), 799–807. https://doi.org/10.1016/j.foreco.2017.12.022 | |
dc.relation | Talavera, A., Soorni, A., Bombarely, A., Matas, A. J., & Hormaza, J. I. (2019). Genome-Wide SNP discovery and genomic characterization in avocado (Persea americana Mill.). Scientific Reports, 9 (1), 1–13. https://doi.org/10.1038/s41598-019-56526-4 | |
dc.relation | Tamayo, P. (2007). Enfermedades del Aguacate. Revista Politénica, 3 (4), 51–70. https://revistas.elpoli.edu.co/index.php/pol/article/view/62 | |
dc.relation | Thomidis, T. (2001). Effect of metalaxyl, fosetyl-al, dimethomorph, cymoxanil on development and control Phytophthora on peach tree in vitro. Phytopathology and Plant Protection, 34 (1), 33-43. https://doi.org/10.1080/03235400109383380 | |
dc.relation | Vitale, S., Scotton, M., Vettraino, A. M., Vannini, A., Haegi, A., Luongo, L., Scarpari, M., & Belisario, A. (2019). Characterization of Phytophthora cinnamomi from common walnut in Southern Europe environment. Forest Pathology, 49 (1), 1-10. https://doi.org/10.1111/efp.12477 | |
dc.relation | Walker, A. S., & Leroux, P. (2015). Grapevine Gray Mold in France. Fungicide Resistance in Plant Pathogens. 78 (4) 419-431. https://doi.org/10.1007/978-4-431-55642-8_26 | |
dc.relation | Wang, J. S., Wang, A. B., Zang, X. P., Tan, L., Xu, B. Y., Chen, H. H., Jin, Z. Q., & Ma, W. H. (2019). Physicochemical, functional and emulsion properties of edible protein from avocado (Persea americana Mill.) oil processing by-products. Food Chemistry, 288 (2), 146-153. https://doi.org/10.1016/j.foodchem.2019.02.098 | |
dc.relation | Wang, W., Zhang, P., Meng, R., Zhao, J., Huang, Q. liang, Han, X., Ma, Z., & Zhang, X. (2014). Fungitoxicity and synergism of mixtures of fluopicolide and pyraclostrobin against Phytophthora infestans. Crop Protection, 57, 48–56. https://doi.org/10.1016/j.cropro.2013.11.027 | |
dc.relation | Wu, J., Xue, Z., Miao, J., Zhang, F., Gao, X., & Liu, X. (2020). Sensitivity of Different developmental stages and resistance risk assessment of Phytophthora capsici to Fluopicolide in China. Frontiers in Microbiology, 11 (3), 1–10. https://doi.org/10.3389/fmicb.2020.00185 | |
dc.relation | Xu, X. F., Lin, T., Yuan, S. K., Dai, D. J., Shi, H. J., Zhang, C. Q., & Wang, H. D. (2014). Characterization of baseline sensitivity and resistance risk of Colletotrichum gloeosporioides complex isolates from strawberry and grape to two demethylation inhibitor fungicides, prochloraz and tebuconazole. Australasian Plant Pathology, 43 (6), 605–613. https://doi.org/10.1007/s13313-014-0321-8 | |
dc.relation | Zhang, J., Hu, S., Xu, Q., You, H., & Zhu, F. (2018). Baseline sensitivity and control efficacy of propiconazole against Sclerotinia sclerotiorum. Crop Protection, 114 (8), 208–214. https://doi.org/10.1016/j.cropro.2018.08.034 | |
dc.relation | Zhang, J., Zhang, B., Zhu, F., & Fu, Y. (2020). Baseline sensitivity and fungicidal action of propiconazole against Penicillium digitatum. Pesticide Biochemistry and Physiology, 172 (2) 2-12. https://doi.org/10.1016/j.pestbp.2020.104752 | |
dc.relation | Zhang, Y., Lu, J., Wang, J., Zhou, M. G., & Chen, C. (2015). Baseline sensitivity and resistance risk assessmemt of Rhizoctonia cerealis to thifluzamide, a succinate dehydrogenase inhibitor. Pesticide Biochemistry and Physiology, 124 (10), 97–102. https://doi.org/10.1016/j.pestbp.2015.05.004 | |
dc.relation | Zhou, Y., Yu, J., Pan, X., Yu, M., Du, Y., Qi, Z., Zhang, R., Song, T., Yin, X., & Liu, Y. (2019). Characterization of propiconazole field-resistant isolates of Ustilaginoidea virens. Pesticide Biochemistry and Physiology, 153 (11), 144–151. https://doi.org/10.1016/j.pestbp.2018.11.013 | |
dc.rights | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Generación de una línea base de sensibilidad y valoración del riesgo de resistencia en Phytophthora cinnamomi frente al uso de formulaciones comerciales. | |
dc.type | Trabajo de grado - Maestría | |