dc.creatorVega Castro, Nohora Angélica
dc.creatorReyes Montaño, Edgar Antonio
dc.date.accessioned2022-03-06T05:11:21Z
dc.date.available2022-03-06T05:11:21Z
dc.date.created2022-03-06T05:11:21Z
dc.date.issued2020-05
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81133
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier9789587944006
dc.description.abstractLos seres vivos están conformados por gran diversidad de proteínas con diferentes características físicas, químicas, estructurales y funcionales. Para entender la función de una proteína se necesita conocer su secuencia y, mejor aún, su estructura tridimensional. Hoy en día es significativo el incremento en el número de secuencias reportadas, al igual que el aumento en la determinación del número de estructuras tridimensionales por métodos experimentales e in silico. Todo este conjunto de estudios ha sido de gran importancia en la formulación de los conceptos modernos de la bioquímica y ha permitido entender la relación que se da entre estructura y función de las proteínas, esto es una premisa fundamental que guía el quehacer bioquímico. En el presente texto brindamos una descripción general de algunos de los aspectos más relevantes sobre los componentes estructurales de proteínas y glicoproteínas, así como algunas técnicas que se han usado para estudiar cada uno de los niveles estructurales que se encuentran en ellas.
dc.languagespa
dc.publisherSede Bogotá
dc.publisherBogotá, Colombia
dc.relationColección textos;
dc.relationSanger F, Thompson eOp. The amino-acid sequence in the glycyl chain of insulin. 1. The identification of lower peptides from partial hydrolysates. Biochemical Journal. 1953;53(3): 353.
dc.relationCreigthon TE. Disulphide bonds between cysteine residues. Creighton TE. (Ed.) Protein structure. A practical approach. Oxford, UK: irl Press; 1995.
dc.relationKoingsberg aWH y Steiman HM. Strategy and methods of sequence analysis. The Proteins. Vol. iii. New York: Academic Press; 1977.
dc.relationBio-rad. Glycoprotein and oligosaccharide analysis. P. 149-155, 1997
dc.relationDubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. Colorimetric method for determination of sugars and related substances. Analytical chemistry. 1956;28(3):350-356.
dc.relationEdge AS, Faltynek CR, Hof L, Reichert Jle, Weber P. Deglycosylation of glycoproteins by trifluoromethanesulfonic acid. Analytical biochemistry. 1981;118(1):131-137.
dc.relationJ, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. “Glycoproteins” in Carbohydrate Analysis. A practical approach. Chaplin MF, Kennedy JF. irl Oxford University Press, 1994.
dc.relationEllman GL. Tissue sulfhydryl groups. Archives of biochemistry and biophysics. 1959; 82(1): 70-77.
dc.relationSpies JR, Chambers D. Determination of Tryptophan. Anal. Chem. 1948;20:30-39.
dc.relationHirs cHW, Moore S, Stein WH. The sequence of the amino acid residues in performic acid-oxidized ribonuclease. J Biol. Chem. 1960;235:633-647.
dc.relationHirs cHW, Moore S, Stein WH. Volatile buffers exchange columns; use of chromatography on asolation of amino acids. J. Biol. Chem. 1952;195:669-683.
dc.relationAitken E, Geisow MJ, Findlay Jbc, Holmes C, Yawoord A. Peptide preparation and characterization. Findlay Jbc, Geisow MM. Protein Sequencing. A Practical Approach. Oxford, UK: irl Press, Oxford University Press; 1989. P.43-68.
dc.relationRen J, Zhao M, Wang J, Cui C, Yang B. Spectrophotometric method for determination of tryptophan in protein hydrolysates. Food Technology and Biotechnology. 2007;45(4):360-366.
dc.relationVega N, Pérez G. Isolation and characterization of a lectin from Salvia bogotensis seeds that recognizes Tn Antigen. Phytochemistry. 2006;67:347-355.
dc.relationKhan AS, Faiz F. Amino acids analysis using ion exchange resins. Coden Jnsmac. 2008;48:1-17.
dc.relationSong C, Zhang SH, Ji Z, Li You J. Accurate determination of amino acids in serum samples by liquid chromatography tandem mass spectrometry using a stable isotope labeling strategy. Journal of Chromatographic Science. 2015; 53:1536-1541. dOi:10.1093/chromsci/bmv049.
dc.relationWalker JM. The Dansyl-Edman method for peptide sequencing. Walker JM. (ed.). Proteins. Methods in Molecular Biology. Vol I. Clifton, N. J.: Humana Press; 1984. 203-219.
dc.relationKlemm P. Manual Edman degradation of proteins and peptides. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press, 1984. 243-254.
dc.relationMatsudaira P. Sequence from picomole quantities of proteins electroblotted onto polyvinylidene diflouride membranes. J. Biol. Chem. 1987;262:10035-10038.
dc.relationTaylor A. Aminopeptidases: Structure and Function. Faseb J. 1993;7(2):290-298.
dc.relationWittmann-Liebold B, Kimura M. Microsequencing of peptides and proteins with 4-N, N, Dimethylazobenzene 4 ́Isothiocyanate. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press; 1984.
dc.relationDeng J, Zhang G y Huang NT. Identification of protein N-termini Using tmpp or dimethyl labeling and mass spectrometry. Methods Mol Biol. 2015;1295:249-258. dOi:10.1007/978-1-4939-2550-6_19.
dc.relationShen PT, Hsu JL, Chen SH. dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using lc-ms/ms. Anal. Chem. 2007;79(24):9520-9530.
dc.relationHsu JL, Huang SY, Shiea JT, Huang WY, Chen SH. Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J. Proteome Res. 2005;4(1):101-108.
dc.relationShiveley JE (ed). Methods in microcharacterization. Clifton, N.J.: Human Press; 1986. Chapter 13, 338
dc.relationAvilés F y Vendrell J. Carboxypeptidase B in handbook of proteolytic enzymes (Third Edition). Ciudad: London. Academic Press; 2013.
dc.relationGreenblatt HM, Feinberg H, Tucker PA, Shoham G. Carboxypeptidase A: Native, Zinc-Removed and Mercury-Replaced Forms. Acta Crystallogr D Biol Crystallogr. 1. 1998; 54(Pt 3):289-305.
dc.relationRemington SJ, Breddam K. Carboxypeptidases C and D. Methods in Enzimology. 1994;244:231-248.
dc.relationKlemm P. Carboxy-terminal sequence determination of proteins and peptides with carboxypeptidase Y. Walker JM (ed.). Methods in Molecular Biology. Proteins. Vol I. Clifton, N. J.: Humana Press, 1984. 255-259.
dc.relationJung G, Ueno H, Hayashi R. Carboxypeptidase Y: Structural Basis for Protein Sorting and Catalytic Triad. J Biochem. 1999;126(1):1-6.
dc.relationShiveley JE. Methods in Microcharacterization. Clifton, N.J.: Human Press; 1986. Chapter 13, 338-346.
dc.relationNika H, Nieves E, Hawke D, Angeletti R. C-Terminal protein characterization by mass spectrometry using combined micro scale liquid and solid-phase derivatization. Journal of Biomolecular Techniques. 2013;24:17-31.
dc.relationThiede B, Wittmann-Liebold B, Bienert M, Krause e. Maldi-ms for C-terminal Sequence determination of peptides and proteins degraded by carboxypeptidase Y and P. febs Letters. 1995;357:65-69.
dc.relationMontreuil J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. “Glycoproteins” in Carbohydrate Analysis. A practical approach. Oxford University Press; 1994. Chapter 5, 193
dc.relationKoingsberg WH, Steiman HM. Strategy and methods of sequence analysis. The Proteins. Vol. iii. New York: Academic Press; 1977.
dc.relationHustoft HK, Malerod H, Wilson SR, Reubsaet L, Lundanes E, Greibrokk T. A critical review of trypsin digestion for lc-ms based proteomics. Integrative Proteomics. 2012;(1):73-82.
dc.relationLewis WG, Basford JM, Walton PL. Specificity and inhibition studies of Armillaria mellea protease. Biochimica et Biophysica Acta (bba) – Enzymology.1978; 522(2): 551–560. dOi:10.1016/0005-2744(78)90087-6
dc.relationDrapeau GR. Protease from Staphyloccus aureus. Methods in Enzymology. 1976:469-475. dOi:10.1016/s0076-6879(76)45041-3
dc.relationOlsen JV, Ong SE, Mann M. Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Molecular & Cellular Proteomics. 2004;3(6):608-614.
dc.relationPauling L, Itano HA, Singer SJ, Wells IC. Sickle Cell Anemia, a Molecular Disease. Science. 1949;110(2865): 543–548. dOi:10.1126/ science.110.2865.543
dc.relationIngram VM. A specific chemical difference between the globins of normal human and sickle-cell anemia hemoglobin. Nature. 1956;178:792. dOi: 10.1038/178792a0
dc.relationCatsimpoolas N, Wood JL. Cleavage of the peptide bond at the cystine amino group by the action of cyanide. J Biol Chem. 1963;238:2887-2888.
dc.relationCatsimpoolas N, Wood JL. Specific Cleavage of Cystine Peptides by Cyanide. J. Biol. Chem. 1966;241:1790-1796.
dc.relationElashal HE, Raj M. Site-selective chemical cleavage of peptide bonds. Chemical Communications. 2016;52(37):6304-6307.
dc.relationLehninger AL, Nelson DL, Cox MM. Lehninger principles of biochemistry. New York: Macmillan; 2005.
dc.relationBandeira N, Victoria P, Pevzner P, Arnott D, y Lill J. Beyond Edman degradation: Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology. 2008;26(12): 1336-1338. Disponible en: http://doi. org/10.1038/nbt1208-1336 (19 de febrero de 2020).
dc.relationPerez G, Perez C, Sousa-Cavada B, Moreira R, Richardson M. Comparison of the amino acid sequences of the lectins from seeds of Dioclea lehmanni and Canavalia maritima. Phytochemistry. 1991;30(8):2619-2621.
dc.relationBrown JR, Hartley BS. Location of disulfide bridges by diagonal paper electrophoresis. Biochem J. 1966;101: 241-228.
dc.relationWeeds AG, Hartley BS. Selective purification of the thiol peptides of myosin. Biochemical Journal, 1968; 107(4), 531-548.
dc.relationWeeds AG. Small sub-units of myosin. Biochemical Journal. 1967;105(2):25.
dc.relationTang J, Hartley BS. A diagonal electrophoretic method for selective purification of methionine peptides. Biochemical Journal. 1967;102(2):593.
dc.relationDixon HB, Perham RN. Reversible blocking of amino groups with citraconic anhydride. Biochemical Journal. 1968; 109(2): 312.
dc.relationPerham RN, Jones gmt. The determination of the order of lysine- containing: tryptic peptides of proteins by diagonal paper electrophoresis a carboxyl-terminal sequence for pepsin. European journal of biochemistry. 1967;2(1):84-89.
dc.relationPerham RN. A diagonal paper-electrophoretic technique for studying amino acid sequences around the cysteine and cystine residues of proteins. Biochemical Journal. 1967;105(3):1203-1207.
dc.relationButler pJg, Hartley BS. Maleylation of amino groups. In Methods in enzymology. Vol. 25. Academic Press. 1972.
dc.relationMilstein C. A simple procedure for the fractionation of the tryptic peptides of the c-terminal half of immunoglobulin lambda-chains. Biochemical Journal. 1968;110(4):652.
dc.relationMilstein C. Linked groups of of residues in immunoglobulin κ chains. Nature,
dc.relationWinger AM, Taylor NL, Heazlewood JL, Day DA, Millar AH. identification of intra- and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis. Proteomics. 2007;7:4158-4170. dOi:10.1002/pmic.200700209
dc.relationMcDonagh B. Diagonal electrophoresis for the detection of protein disulfides. In Protein Electrophoresis Humana Press; Totowa, NJ: 2012.
dc.relationWojcik R, Vannatta M, Dovichi N. Automated enzyme-based diagonal capillary electrophoresis: application to phosphopeptide characterization. Anal. Chem. 2010;82(4):1564-1567. dOi: 10.1021/ac100029u
dc.relationMann M, Hendrickson RC, Pandey A. Analysis of Proteins and Proteomes by Mass Spectrometry. Annu. Rev. Biochem. 2001;70:437-473.
dc.relationGriffiths WJ, Jonsson AP, Liu S, Rai DK, Wang Y. Electrospray and Tandem Mass Spectrometry in Biochemistry. Biochemical Journal. 2001;355(Pt 3):545-561.
dc.relationMano N, Goto J. Biomedical and Biological Mass Spectrometry. Analytical Sciences. 2003; 19(1): 3–14. dOi:10.2116/analsci.19.3.
dc.relationGibson D, Costello C. Mass Spectrometry of Biomolecules. Ahuja S (ed). Handbook of bioseparations. San Diego: Academic Press; 2000. 299-327.
dc.relationVega N. Caracterización bioquímica, funcional y biológica de la lectina de Salvia bogotensis y evaluación de su aplicación para la detección del antígeno Tn [Tesis de Doctorado]. Bogotá: Universidad Nacional de Colombia, 2004.
dc.relationSeattle Proteome Center (spc). Proteomics Tools. Disponible en: http://tools. proteomecenter.org/software.php. [4 de febrero de 2015].
dc.relationBandeira N, Pham V, Pevzner P, Arnott D, y Lill JR. Automated de novo protein sequencing of monoclonal antibodies. Nature Biotechnology. 2008;26(12):1336-1338. dOi:10.1038/nbt1208-1336
dc.relationBiemann K. Sequencing of Peptides by Tandem Spectrometry and High Energy Collision-Induced Dissociation. Methods in enzimology. 1990;193:455-479. dOi:10.1016/0076-6879(90)93433-l
dc.relationElviri L. etd and ecd Mass Spectrometry Fragmentation for the Characterization of Protein Post Translational Modifications. Jeevan KP. Tandem Mass Spectrometry-Applications and Principles. Croatia:InTech. 2012;7:161-178. Disponible en www.intechopen.com. dOi: 10.5772/35277. 2012
dc.relationChang E, Pourmal S, Zhou C, Kumar R, Teplova M, Pavletich NP, et al. N-terminal amino acid sequence determination of proteins by N-terminal dimethyl labeling: pitfalls and advantages when compared with Edman degradation sequence analysis. J Biomol. Tech. 2016;27(2):61-74. dOi: 10.7171/jbt.16-2702-002.
dc.relationDeng J, Zhang G, Huang F, Neubert T. Identification of protein N-termini using tmpp or dimethyl labeling and mass spectrometry. Methods Mol. Biol. 2015;1295:249-258. dOi: 10.1007/978-1-4939-2550-6_19
dc.relationShen PT, Hsu JL, Chen SH. Dimethyl isotope-coded affinity selection for the analysis of free and blocked N-termini of proteins using lc-ms/ms. Anal. Chem. 2007;79(24):9520-9530.
dc.relationLi L, Wu R, Yan G, Gao M, Deng C, Zhang X. A novel method to isolate protein N-terminal peptides from proteome samples using sulfydryl tagging and gold nanoparticle-based depletion. Anal Bioanal Chem. 2016;408(2):441-448. dOi: 10.1007/s00216-015-9136-x.
dc.relationTwyman RM. Strategies for protein quantitation. In Principles of Proteomics, 2nd ed. New York, NY, usa: Garland Science, Taylor & Francis Group, llc; 2014.
dc.relationKonerman L, Collings BA, Douglas DJ. Cytochrome C folding kinetics studied by time resolved electrospray ionization mass spectrometry. Biochemistry. 1997;36:5554-5559.
dc.relationKonermann L, Douglas D. Unfolding of proteins monitored by electrospray ionization mass spectrometry: A comparison of positive and negative ion modes. J. Am. Soc. Mass Spectrom. 1998;9(12):1248-1254.
dc.relationKonermann L, Pan J, Wilson D. Protein folding mechanisms studied by time-resolved electrospray mass spectrometry. BioTechniques. 2006;40(2):135-141.
dc.relationLoo JA. Studying noncovalent protein complexes by electrospray ionization mass spectrometry. Mass Spectrom. Rev. 1997;16:1-23. dOi:10.1016/j. jasms.2005.02.017
dc.relationM, Vega N, Pérez G. Isolating and characterising a lectin from Galactia lindenii seeds that recognise blood group H determinants. Arch.Biochem. Biophys. 2004;492:180-190.
dc.relationSharon M, Robinson C. The role of mass spectrometry in structure elucidation of dynamic protein complexes. Annu. Rev. Biochem. 2007;76:167-193.
dc.relationHeck AJ. Native Mass Spectrometry: A bridge between interactomics and structural biology. Nature Methods. 2008;5:927-933.
dc.relationDrew K, Lee C, Huizar RL, Tu F, Borgeson B, McWhite CD, et al. Integration of over 9000 mass spectrometry experiments builds a global map of human protein complexes. Molecular Systems Biology. 2017;13(6):932. dOi:10.15252/msb.20167490
dc.relationDickerson RE, Geis I. The structure and action of proteins. Londres: Harper & Row publishers, 1969.
dc.relationMultiple Sequence Alignment. Clustal. Disponible en: http:/www.ebi.ac.uk/ clustalw/. [Consultado 4 febrero 2020].
dc.relationExpasy. Bioinformatics Resource Portal. Disponible en: https://web.expasy. org/docs/relnotes/relstat.htm. [Consultado 4 febrero 2020].
dc.relationUniProtKB/Swiss-Prot UniProt release 2019. Disponible en: https://www. uniprot.org/statistics/Swiss-Prot. [Consultado 3 febrero 2020].
dc.relationChavali S, Chavali P, Chalacu G, Sanchez de Groot N, Gemayel R, Latysheva N, et al. Constraints and Consequences of the Emergence of Amino Acid Repeats. Eukaryotic Proteins Nature Structural & Molecular Biology. 2017;24:765-777. dOi:10.1038/nsmb.3441
dc.relationMularoni L, Ledda A, Toll Riera M, Alba M., Natural Selection Drives the Accumulation of Amino Acid Tandem Repeats in Human Proteins. Genome Res. 2010;20(6):745-754. dOi: 10.1101/gr.101261.109
dc.relationEisenberg D. The discovery of the α-helix and β-sheet, the principal structural features of proteins. Proceedings of the National Academy of Sciences. 2003;100(20):11207–11210. dOi:10.1073/pnas.2034522100
dc.relationWikimedia Commons. Peptide bond cis trans miguelferig. Disponible en: https://commons.wikimedia.org/wiki/File:Peptide_bond_cis_trans_ miguelferig.jpg. [04 de febrero de 2020].
dc.relationSchiffer M, Edmundson AB. Use of helical wheels to represent the structures of proteins and to identify segments with helical potential. Biophysical Journal. 1967;7(2):121–135. dOi:10.1016/s0006-3495(67)86579-2
dc.relationWikimedia commons. Helical Wheel 2nrl 77-92 KaelFischer Disponible en: https://commons.wikimedia.org/wiki/File:Helical_Wheel_2nrl_77-92_ KaelFischer.jpg. [04 de febrero de 2020].
dc.relationDunnill P. The use of helical net-diagrams to represent protein structures. Biophysical Journal. 1968;8(7): 865–875. dOi:10.1016/ s0006-3495(68)86525-7
dc.relationBerndt KD. Types of Secondary Structure. Protein Secondary Structure. Helices. Estocolmo: Karolinska Institute, 1996. Disponible en: http://www. cryst.bbk.ac.uk/pps2/course/section8/ss-960531_5.html [20 de febrero de 2020].
dc.relationSancho P. Tema 4a. Estructura tridimensional de las proteínas. Segundo curso de farmacia 2012-2013 [Presentación]. Universidad de Alcalá. Disponible en: http://www3.uah.es/bioquimica/Sancho/farmacia/temas/ tema-4a_proteinas-estructura.pdf [20 de febrero de 2020].
dc.relationCostantini S, Colonna G, Facchiano AM. Amino acid propensities for secondary structures are influenced by the protein structural class. Biochemical and Biophysical Research Communications. 2006; 342(2): 441–451. dOi:10.1016/j.bbrc.2006.01.159
dc.relationAshok KT. cfssp: Chou and Fasman Secondary Structure Prediction server. Wide spectrum: Research Journal. 2013; 1(9):15-19.
dc.relationKoehl P, Levitt M. Structure-based conformational preferences of amino acids. Proceedings of the National Academy of Sciences. 1999; 96(22): 12524–12529. dOi:10.1073/pnas.96.22.12524
dc.relationBranden C, Tooze J. Introduction to Protein Structure. Segunda edición. New York: Garland Pub; 1999.
dc.relationClothia C. Principles that Determine the Structure of Proteins. Ann. Rev. Biochem. 1984;53:537-572.
dc.relationEfimov AV. Super-secondary Structures and Modeling of Protein Folds. Methods Mol Biol. 2013;932:177-189. Disponible en dOi: 10.1007/978-1-62703-065-6_11.
dc.relationCraig L. Tertiary Structure Chapter 3, 4, & 5 [Presentación]. Slide Player. Disponible en: https://slideplayer.com/slide/6407321/ [20 de febrero de 2020].
dc.relationSheriff S, Hendrickson WA, Smith JL. Structure of myohemerythrin in the azidomet state at 1.7/1.3 A resolution. J. Mol. Biol. 1987;197:273-296. Disponible en: https://www.ebi.ac.uk/pdbe/entry/pdb/2mhr/ [20 de febrero de 2020].
dc.relationWilches tma. Aproximación a la estructura primaria de lectinas específicas para el antígeno tn e identificación de nuevas lectinas específicas para glucosa/manosa en semillas de Salvia bogotensis y Lepechinia bullata [Tesis de doctorado]. Universidad Nacional de Colombia; 2017.
dc.relationHidalgo D.J. Detección, purificación y caracterización parcial de lectinas presentes en algas marinas colombianas [Tesis de Maestría]. Universidad Nacional de Colombia; 2017.
dc.relationBranden CI, Tooze J. Introduction to protein structure. New York: Garland Science; 2012.
dc.relationWalshaw J, Mills A. Alpha/Beta Topologies. Protein Folds. Birkbeck College, Londres; 1995. Disponible en http://www.cryst.bbk.ac.uk/pps95/course/8_ folds/alph_bet_wnd.html [20 de febrero de 2020].
dc.relationBranden C, Tooze J. Introduction to Protein Structure. Segunda edición. New York: Garland Pub; 1999.
dc.relationWikimedia Commons. tim barrel. Disponible en: https://commons. wikimedia.org/wiki/File:tim_barrel.tif [20 de febrero de 2020].
dc.relationComputationally designed tim-barrel protein, Halfflr. dOi: 10.2210/ pdb3tdm/pdb. Disponible en: https://www.rcsb.org/structure/3tdm [05 de febrero de 2020].
dc.relation3qvO. Structure of a Rossmann-fold nad(p)-binding family protein from Shigella flexneri. dOi: 10.2210/pdb3qvO/pdb. Disponible en: https://www.rcsb. org/structure/3qvO [05 de febrero de 2020].
dc.relationrcsb pdb.The crystal structure of class I Major histocompatibility complex, H-2Kd at 2.0 A resolution. dOi: 10.2210/pdb1vgK/pdb. Disponible en: https://www.rcsb.org/structure/1vgK [05 de febrero de 2020].
dc.relationGeorgia State University.Polarización lineal. Hyperphysics. Disponible en: http://hyperphysics.phy-astr.gsu.edu/hbasees/phyopt/polclas.html. [05 de febrero de 2020].
dc.relationMancho C. Luz polarizada. El rincon de la Ciencia. 2008;48. Disponible en: http://rincondelaciencia.educa.madrid.org/Curiosid2/rc-114/rc-114.html. [05 de febrero de 2020].
dc.relationCortazar A, Silva EP. Métodos Físico-Químicos en Biotecnología pcr. México: Universidad Nacional Autónoma de México, Instituto de Biotecnología; 2004. Disponible en: http://www.ibt.unam.mx/computo/pdfs/ met/dicroismocircular2013.pdf. [05 de febrero de 2020].
dc.relationVan Holde KE. Circular Dichroism and Optical Rotatory Dispersion. Physical Biochemistry. New York: Prentice Hall; 1971. 202-220.
dc.relationMata E. Métodos fisco-químicos en biotecnología. Disponible en: http://www. ibt.unam.mx/computo/pdfs/met/dicroismocircular2013.pdf [05 de febrero de 2020].
dc.relationGreenfield NJ. Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols. 2007;1(6):2876-2890. dOi:10.1038/ nprot.2006.202
dc.relationMicsonai A, Wien F, Kernya L, Lee YH, Goto Y, Réfrégiers M, Kardos J. Accurate Secondary Structure Prediction and Fold Recognition for Circular Dichroism Spectroscopy. Proc. Natl. Acad. Sci. 2015;112(24):E3095-E3103. Disponible en: dOi: 10.1073/pnas.1500851112.
dc.relationKelly M, Price N. The Application of Circular Dichroism to Studies of Protein Folding and Unfolding. Biochimica et Biophysica Acta. 1997;1338:161-185.
dc.relationPontificia Universidad Católica de Chile. Difracción de Bragg. Laboratorio de Difracción de Rayos X. Disponible en: http://servicios.fis.puc.cl/rayosx/teoria. html. [05 de febrero de 2020].
dc.relationMatthews BW. X-ray Structure of Proteins Structure. Neurath H, Hill R. The Proteins. Vol. iii. Tercera edición. Nueva York: Academic Press; 1977. 404-590.
dc.relationDickerson RE. X-Ray Analisys and Protein Structure. Hans N. The Proteins. Vol. II. Segunda edición. New York: Academic Press; 1964. 603-778.
dc.relationHendrickson WA. Anomalous diffraction in crystallographic phase evaluation. Quarterly Reviews of Biophysics. 2014;47(01):49-93. dOi:10.1017/ s0033583514000018
dc.relationWuthrich K. Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science. 1989;243(4887):45-50. dOi:10.1126/ science.2911719
dc.relationWüthrich K, Wider G, Wagner G, Braun W. Sequential resonance assignments as a basis for determination of spatial protein structures by high resolution proton nuclear magnetic resonance. Journal of Molecular Biology. 1982;155(3):311–319. dOi:10.1016/0022-2836(82)90007-9
dc.relationSchirra HJ. Analysis of nmr spectra. Structure Determination of Proteins with nmr Spectroscopy. Disponible en: http://www.cryst.bbk.ac.uk/pps2/ projects/schirra/html/assign.htm [20 de febrero de 2020].
dc.relationBangerter BW. Nuclear magnetic resonance. Glasel J, Deutscher M. Introduction to Biophysycal Methods for Protein and Nucleic Acid Research. San Diego, California: Academic Press; 1995. 317-379.
dc.relationBilleter M. Comparison of Protein Structures Determined by nmr in Solution and by X-Ray Diffraction in Single Crystals. Quart. Rev Biophys. 1992;25:325-377.
dc.relationDubochet J, Adrian M, Chang J, Homo J, Lepault J, McDowall M. Cryo-Electron Microscopy of Vitrified Specimens. Q. Rev. Biophys. 1988;21:129-228, Disponible en: http://dx.doi.org/10.1017/ S0033583500004297
dc.relationCheng Y, Grigorieff N, Penczek P, Walz T. A Primer to Single-Particle Cryoelectron Microscopy. Cell. 2015;161:438-449. Disponible en: http:// dx.doi.org/10.1016/j.cell.2015.03.050
dc.relationKühlbrandt, W. Cryo-em enters a new era. eLife, 3. 2014. dOi:10.7554/ elife.03678
dc.relationOrlova E, Saibil H. Structural Analysis of Macromolecular Assemblies by Electron Microscopy. Chem. Rev. 2011;111:7710-7748.
dc.relationEgelman E. Three-Dimensional Reconstruction of Helical Polymers. Arch. Biochem. Biophys. 2015;581:54-58. dOi:10.1016/j.abb.2015.04.004
dc.relationBriggs J. Structural Biology in situ. The potential of Subtomogram Averaging, Curr. Opin. Struct. Biol. 2013;23:261–267. Disponible en: http://dx.doi. org/10.1016/j.sbi.2013.02.003
dc.relationLucic V, Forster F, Baumeister W. Structural Studies By Electron Tomography: from Cells to Molecules. Annu. Rev. Biochem. 2005;74:833-865.
dc.relationSchenk A, Castaño-Diez D, Gipson B, Arheit M, Zeng X, Stahlberg H. 3D Reconstruction from 2D Crystal Image and Diffraction Data. Meth. Enzymol. 2010;482(2010):101–129. Disponible en: http://dx.doi.org/10.1016/ S0076-6879(10)82004-X.
dc.relationBooth D, Avila-Sakar A, Cheng Y. Visualizing Proteins and Macromolecular Complexes by Negative Stain em: from Grid Preparation to Image Acquisition. J. Vis. Exp. 2011;(58):e3227. dOi: 10.3791/3227
dc.relationLau WcY, Rubinstein JL. Single Particle Electron Microscopy. Electron Crystallography of Soluble and Membrane Proteins. 2012;401-426. dOi:10.1007/978-1-62703-176-9_22
dc.relationThompson R, Walker M, Siebert A, Muench S, Ranson N. An Introduction to sample preparation and imaging by Cryo-Electron Microscopy for structural biology. Methods. 2016;100:3-15.
dc.relationStark H. GraFix: Stabilization of fragile macromolecular complexes for single particle Cryo-em. Meth. Enzymol. 2010;481:109-126. Disponible en: http:// dx.doi.org/10.1016/S0076-6879(10)81005-5
dc.relationMcMullan G, Faruqi A, Clare D, Henderson R. Comparison of Optimal Performance at 300 Kev of Three Direct Electron Detectors for Use in Low Dose Electron Microscopy. Ultramicroscopy. 2014;147:156-163. Disponible en: http://dx.doi.org/10.1010/j.ultramic.2014.08.002.
dc.relationShriver Z, Raguram S, Sasisekharan R. Glycomics: a pathway to a class of new and improved therapeutics. Nature Reviews. 2004;3:863-873.
dc.relationBertozzi CR, Sasisekharan R. Glycomics. Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzi CR, Hart GW, Etzler ME (eds). Essentials of Glycobiology. Second Edition. Cold Spring Harbor, NY: ColdSpring Harbor Laboratory Press; 2009.
dc.relationHart G, Copeland R. Glycomics hits the big time. Cell. 2010;143:672-676.
dc.relationBucior I, Burguer MM. Carbohydrate-carbohydrate interactions in cell recognition. Curr. Opinion Struc. Biol.2004;14:631-637.
dc.relationWormald MR, Sharon N. Carbohydrates and Glycoconjugates. Progress in non-mammalian glycosylation, glycosyltransferases, invertebrate lectins and carbohydrate-carbohydrate interactions. Curr. Opinion Struc. Biol. 2004;14:591-592.
dc.relationLaine RA. The information potential in the sugar code. Gabius HJ, Gabius S (eds). Glycosciences. Status and perspectives. London: Chapman and Hall; 1997. 1-14.
dc.relationGabius HJ, Andre S, Kaltner H, Siebert HC. The sugar code: functional lectinomics. Biochim.Biophys. Acta. 2002;1572:165-177.
dc.relationVon der Lieth CW. Bioinformatics for glycomics: Status, methods, requirements and perspectives. Briefings in bioinformatics. 2004;5(2):164– 178. dOi:10.1093/bib/5.2.164
dc.relationBaycin Hizal D, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS et al. Glycoproteomic and glycomic databases. Clinical Proteomics. 2014;11(1):15. dOi:10.1186/1559-0275-11-15
dc.relationBöhm M, Bohne-Lang A, Frank M, Loss A, Rojas-Macías MA, Lütteke T. Glycosciences. db: an annotated data collection linking glycomics and proteomics data (2018 update). Nucleic Acids Disponible en; doi:10.1093/ nar/gky994. [6 de febrero de 2020].
dc.relationYan A, Lennarz W. Unraveling the mechanism of protein N-glycosylation. J.Biol. Chem. 2005;280:3121-3124. dOi:10.1074/jbc.R400036200
dc.relationMedeiros A, Bianchi S, Calvete JJ, Balter H, Bay S, Robles A, et al. Biochemical and functional characterization of the Tn-specific lectin from Salvia sclarea seeds. Eur. J. Biochem. 2000;267(5):1434-1440
dc.relationWilson I. Glycosylation of proteins in plants and invertebrates. Current Opinion in Structural Biology. 2002;12(5):569–577. dOi:10.1016/ s0959-440x(02)00367-6.
dc.relationHang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg. Medicinal Chem. 2005;13:5021-5034.
dc.relationCaset A, Bobowski M, Burchell J, Delannoy P. Tumour-associated carbohydrate antigens in breast cancer. Breast Cancer Research. 2010;12:204-217.
dc.relationJu T, Aryal R, Kudelka M, Wang Y, Cummings R. The Cosmc connection to the Tn antigen in cancer. Cancer Biomarkers. 2014;14:63–81.
dc.relationJu T, Otto V, Cummings R. The Tn Antigen—Structural Simplicity and Biological Complexity. Angew. Chem. Int. Ed. 50: 1770 – 1791.2011
dc.relationKailemia MJ, Park D1, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395-410. dOi: 10.1007/s00216-016-9880-6.
dc.relationJu T, Wang Y, Aryal RP, Lehoux SD, Ding X, Kudelka MR et al. Tn and sialyl-Tn antigens, aberrant O-glycomics as human disease markers. Proteomics Clin Appl. 2013;(9-10):618-31. dOi: 10.1002/prca.201300024.
dc.relationLisowska E. Tn Antigens and their significance in Oncology. Acta Biochim. Pol. 1995;42:11-17.
dc.relationFreire T, Osinaga E. A Immunological and biomedical relevance of the Tn antigen. Inmunología. 2003;22(1):27-38.
dc.relationVan den steen P, Rudd P, Wormald M, Dwek, Opdenakker G. O-Linked glycosylation. Trends in Glycosc. Glycotech. 2000;12:35-49.
dc.relationMarth JD, Grewal PK. Mammalian glycosylation in immunity. Nature Reviews Immunology. 2008; 8(11), 874–887. dOi:10.1038/nri2417
dc.relationFukuda M. Roles of mucin-type O-glycans in cell adhesion. Biochim. Biophys. Acta. 2002;1573:194-405.
dc.relationTaylor-Papadimitriou J, Burchell J, Miles DW, Dalziel M. muc1 and cancer. Biochimica et Biophysica Acta (bba) - Molecular Basis of Disease. 1999;1455(2-3):301–313. dOi:10.1016/s0925-4439(99)00055-1
dc.relationLairson LL, Henrissat B, Davies GJ, Withers SG. Glycosyltransferases: Structures, functions, and mechanisms. Annual Review of Biochemistry. 2008;77(1):521–555. dOi:10.1146/annurev.biochem.76.061005.092322
dc.relationDrickamer K, Taylor ME. Glycan arrays for functional glycomics. Genome Biol. 2002;3: 1034.1-1034.4.
dc.relationDisney MD, Seeberger PH. Carbohydrate arrays as tools for the glycomics revolution. ddt:Targets. 2004;3:151-158.
dc.relationLiang PH, Wu CY, Greenberg WA, Wong CH. Glycan arrays: biological and medical applications. Curr.Opinion. Chem.Biol. 2008;12:86-92.
dc.relationPurohit S, Li T, Guan W, Song X, Song J, Tian Y, Li L, Sharma A, Dun B, Mysona D, Ghamande S, Rungruang B, Cummings RD, Wang PG, She JX. Multiplex glycan bead array for high throughput and high content analyses of glycan binding proteins. Nat Commun. 2018;9(1):258. dOi: 10.1038/ s41467-017-02747-y.
dc.relationTateno H, Mori A, Uchiyama N, Yabe R, Iwaki J, Shikanai TT et al. Glycoconjugate microarray based on an evanescent–field fluorescence-assisted detection principle for investigation of glycan-binding proteins. Glycobiology. 2008:18:789-798.
dc.relationOyelaran O, Gildersleeve JC. Application of carbohydrate array technology to antigen discovery and vaccine development. Expert Review of Vaccines. 2007;6(6):957–969. dOi:10.1586/14760584.6.6.957
dc.relationBedair M, El Rassi Z. Affinity chromatography with monolithic capillary columns II. Polymethacrylate monoliths with immobilized lectins for the separation of glycoconjugates by nano-liquid affinity chromatography J. Chromat. 2005;1079: 236-245.
dc.relationHajba L, Csanky E, Guttman A. Liquid phase separation methods for N-glycosylation analysis of glycoproteins of biomedical and biopharmaceutical interest. A critical review. Anal Chim Acta. 2016; 943:8- 16. dOi: 10.1016/j.aca.2016.08.035.
dc.relationHaojie Lu, Ying Zhang, Pengyuan Yang. Advancements in mass spectrometry-based glycoproteomics and glycomics, National Science Review. Disponible en: https://doi.org/10.1093/nsr/nww019. [06 de febrero de 2020].
dc.relationHirabayashi J, Kasai K. Separation technologies for glycomics. J. Chromat. B. 2002;771:67-87.
dc.relationKhajehpour M, Dashnau JL, Vanderkooi JM. Infrared spectroscopy used to evaluate glycosylation of proteins. Anal.Biochem. 2005; 348:40-48.
dc.relationDuverger E, Frison N, Roche AC, Monsigny M. Carbohydrate- lectin interactions assessed by surface plasmon resonance. Biochimie. 2003;85:167-179.
dc.relationReynolds M, Pérez S. Thermodynamics and chemical characterization of protein–carbohydrate interactions: The multivalency issue. Comptes Rendus Chimie. 2011;14(1):74-95.
dc.relationShimomura O, Oda T, Tateno H, Ozawa Y, Kimura S, Sakashita S, ... Ohkohchi N. A novel therapeutic strategy for pancreatic cancer: Targeting cell surface glycan using rBC2LC-N Lectin–Drug Conjugate (ldc). Molecular Cancer Therapeutics. 2017;17(1): 183–195. dOi:10.1158/1535-7163. mct-17-0232
dc.relationHirabayashi J. Oligosaccharide microarrays for glycomics. Trends Biotech. 2003;21:141-143.
dc.relationHirabayashi J, Tateno H, Shikanai T, Aoki-kinoshita KFf, Narimatsu H. The Lectin Frontier Database (lfdb), and data generation based on frontal affinity chromatography. Molecules. 2015;20(1):951-73. dOi: 10.3390/ molecules20010951.
dc.relationNakamura-Tsuruta S, Uchiyama N, Kominami J. Hirabayashi J. Frontal affinity chromatography: Systematization for quantitative interaction analysis between lectins and glycans. Nilsson CL (ed.) Lectins: Analytical technologies. Amsterdam: Elsevier, 2007. 239-266
dc.relationResearch Center for Medical Glycoscience. DataBase for glycan structure analysis and synthetic technology. Lectin Frontier Database. Disponible en: http://riodb.ibase.aist.go.jp/rcmg/glycodb/. [06 de febrero de 2020].
dc.relationNarimatsu H, Sawaki H, Kuno A, Kaji H, Ito H, Ikehara Y: A strategy for discovery of cancer glyco-biomarkers in serum using newly developed technologies for glycoproteomics. Febs Journal. 2010; 277:95–105.
dc.relationHizal DB, Wolozny D, Colao J, Jacobson E, Tian Y, Krag SS et al. Glycoproteomic and glycomic databases. Clinical proteomics. 2014;11(1):15.
dc.relationCermav (cnrs). Cermav. Disponible en: www.cermav.cnrs.fr. [06 de febrero de 2020].
dc.relationBrockhausen I. Pathways of O-glycan biosynthesis in cancer cells. Biochim. Biophys.Acta 1999;1473:67-95.
dc.relationFreeze HH. Update and perspectives on congenital disorders of glycosylation. Glycobiology. 2001;11:129R-143R.
dc.relationMadsen CB, Petersen C, Lavrsen K, Harndahl M, Buus S, Clausen H, Wandall HH. Cancer associated aberrant protein O-Glycosylation can modify antigen processing and immune response. PLoS One, 2012;7(11). e50139. http://doi.org/10.1371/journal.pone.0050139
dc.relationKailemia MJ, Park D1, Lebrilla CB. Glycans and glycoproteins as specific biomarkers for cancer. Anal Bioanal Chem. 2017;409(2):395-410.doi: 10.1007/s00216-016-9880-6.
dc.relationKuno A, Uchiyama N, Koseki-kuno S, Ebe Y, Takashima S, Yamada M, Hirabayashi J. Evanescent–field fluorescence-assisted lectin microarray: a new strategy for glycan profiling. Nature Methods. 2005;2:851-856.
dc.relationMatsuda A, Kuno A, Ishida H, Kawamoto T, Shoda J, Hirabayashi J. Development of an all-in-one technology for glycan profiling targeting formalin-embedded tissue sections. Biochem. Biophys. Res. Comm. 2008;370:259-263.
dc.relationHu S, Wong DT. Lectin microarray. Proteomics - Clinical Applications. 2009;3(2):148–154. dOi:10.1002/prca.200800153
dc.relationEdgea Faltynek C, Hof L, Reichert L, Weber P. Deglycosilation of glycoprotenis by trifuoromethane sulfonic acid. Analytical Biochemistry. 1981;118: 131-137.
dc.relationMontreuil J, Bouquelet S, Debray H, Lemoine J, Michalski JC, Spik G, Strecker G. Glycoproteins in Carbohydrate Analysis. A practical approach 7. Chaplin MF, Kennedy J.F (eds). United Kingdom: irl Press, Oxford; 1994.
dc.relationWells L, Vosseller K, Cole RN, Cronshaw JM, Matunis MJ, Hart GW. Mapping sites of O-GlcNAc modification using affinity tags for serine and threonine post-translational modifications. Mol Cell
dc.relationProteomics. 2002;1:791–804.
dc.relationShajahan A, Heiss C, Ishihara M, Azadi P. Glycomic and glycoproteomic analysis of glycoproteins—a tutorial. Analytical and Bioanalytical Chemistry. 2017;409(19):4483–4505. dOi:10.1007/s00216-017-0406-7
dc.relationQuian Fan J, Namiky J, Matsuoka K, Lee YC. Comparison of acid hydrolitic conditions for asn linked oligosaccharides. Analytical Biochemistry. 1994;219: 375-378.
dc.relationBiorad. Glycoprotein and Oligosaccharide Analysis. 1997;149-155.
dc.relationChaplin MF. Monosacarides. Chaplin MF, Kennedy J.F (eds.) Carbohydrate Analysis. A practical approach. United Kingdom: irl Press, Oxford; 1994.
dc.relationPatel TP y Parekh RB. Release of oligosaccharides from glyco¬proteins by hydrazinolysis. Meth. Enzymol., 230, 57-66 (1994)
dc.relationOxford Glyco Systems. Tools for Glycobiology. Oxford: Oxford Glyco Systems; 1994. Pp. 152.
dc.relationLi SY, Höltje JV, Young KD. Comparison of high-performance liquid chromatography and fluorophore-assisted carbohydrate electrophoresis methods for analyzing peptidoglycan composition of Escherichia coli. Analytical Biochemistry. 2004; 326(1): 1–12. dOi:10.1016/j.ab.2003.11.007
dc.relationBigge J, Patel T, Bruce J, Goulding P, Cahrles S y Parekh R. Non selective and efficient fluorescent labeling of glycans using 2-amino benzamide and antranilic acid.Anal.Biochem. 1995;230:229-238.
dc.relationKenedy J, Pagliuca G. Oligosaccharides in Carbohydrate Analysis. A practical approach. Chaplin MF, Kennedy JF (eds) United Kingdom: irl Press, Oxford; 1994. Pp 64-67.
dc.relationCummings R, Pierce M. The challenge and promise of glycomics. Chem Biol. 2014;21(1): 1–15. dOi: 10.1016/j.chembiol.2013.12.010.
dc.relationBrocke C, Kunz H. Synthesis of tumor-associated glycopeptide antigens. Bioorg. Medicinal Chem. 2002;10: 3085-3112.
dc.relationHemmerich S. Glycomics: coming of age across the globe. ddt. 2005; 10:307-309.
dc.relationGouyer V, Leteurtre E, Zanetta J, Lesuffleur T, Delannoy P, Huer G. Inhibition of the glycosylation and alteration in the intracellular trafficking of mucins and other glycoproteins by GalNacαα-o-bn in muosal cell lines: an effect mediated through the intracellular synthesis of complex GalNacαα-o- bn oligosaccharides. Front. Biosc. 2001;6: 1235-1244.
dc.relationHirabayashi J, Kuno A, Tateno H. Lectin-based structural glycomics: A practical approach to complex glycans. Electrophoresis. 2011;32(10):1118– 1128. dOi:10.1002/elps.201000650
dc.relationHiono T, Matsuda A, Wagatsuma T, Okamatsu M, Sakoda Y, Kuno A. Lectin microarray analyses reveal host cell-specific glycan profiles of the hemagglutinins of influenza A viruses. Virology. 2019; 527:132–140. dOi:10.1016/j.virol.2018.11.010
dc.relationWang, YC, Nakagawa M, Garitaonandia I, Slavin I, Altun G, Lacharite RM, et al. Specific lectin biomarkers for isolation of human pluripotent stem cells identified through array-based glycomic analysis. Cell Research. 2011; 21(11): 1551–1563. doi:10.1038/cr.2011.148
dc.relationPomin V, Mulloy B. Glycosaminoglycans and Proteoglycans. Pharmaceuticals. 2018; 11(1):27. dOi:10.3390/ph11010027
dc.relationSasisekharan R, Raman R y Prabhakar V. Glycomics approach to structure-function relationships of glycosaminoglycans. Annual Review of Biomedical Engineering. 2006; 8(1): 181–231. dOi:10.1146/annurev. bioeng.8.061505.095745
dc.relationRicardo S, Marcos-Silva L, Pereira D, Pinto R, Almeida R, Söderberg O, Mandel U, Clausen H, Felix A, Lunet N, David L. Detection of glyco-mucin profiles improves specificity of muc16 and muc1 biomarkers in ovarian serous tumours. Mol Oncol. 2015; 9(2):503-12. dOi: 10.1016/j.molonc.2014.10.005.
dc.relationStorr SJ, Royle L, Chapman CJ, Hamid uma, Robertson JF, Murray A, ... y Rudd PM. The O-linked glycosylation of secretory/shed muc1 from an advanced breast cancer patient’s serum. Glycobiology.2008; 18: 456-462.
dc.relationRevoredo L, Wang SH, Bennett E, Clausen H, Moremen K, Jarvis D, Ten Hagen K, Tabak L y Gerken T. Mucin-type O-glycosylation is controlled by short- and long-range glycopeptide substrate recognition that varies among members of the polypeptide GalNAc transferase family Glycobiology. 2016; 4:360-376. dOi: 10.1093/glycob/cwv108.
dc.relationKishikawa T, Ghazizadeh M, Sasaki Y, Springer GF. Specific role of T and Tn tumor-associated antigens in adhesion between a human breast carcinoma cell line and normal human breast epithelial cell line. Jpn. J. Cancer Res.1999; 90: 326-332.
dc.relationLisowska E. Tn Antigens and their significance in Oncology. Acta Biochim. Pol. 1995;42: 11-17.
dc.relationDotan N. Anti-glycan antibodies as biomarkers for diagnosis and prognosis. Lupus. 2006;15:442-450.
dc.relationArnoudse CA, García JJ, Saeland E, Van Kooyk Y. Recognition of tumor glycans by antigen-presenting cells. Curr. Opinion Immunol. 2005; 17: 1-7.
dc.relationPrendergasT JM, Galvao Da Silva AP, Eavarone DA, Ghaderi D, Zhang M, Brady D, Wicks J, Desander J, Behrens J, Rueda BR. Novel anti-Sialyl- Tn monoclonal antibodies and antibody-drug conjugates demonstrate tumor specificity and anti-tumor activity. MAbs. 2017;9(4):615-627. dOi: 10.1080/19420862.2017.1290752
dc.relationBonomelli C, Crispin M, Scanlan CN, Doores KJ. Hiv Glycomics and Glycoproteomics. In: Pantophlet R. (eds). Hiv glycans in infection and immunity. New York, NY: Springer; 2014.
dc.relationWang D. Glyco-epitope diversity: An evolving area of glycomics research and biomarker discovery. Journal of Proteomics & Bioinformatics, 2014; 07(02). dOi:10.4172/jpb.10000e24
dc.relationLo-man R, Vichier-Guerre S, Bay S, Deriaud E, Cantacuzene D, Leclerc C. Anti-tumor immunity provided by synthetic multiple antigen glycopeptide displaying a tri-Tn glycotope. J. Immunol. 16: 2829-2854.2001
dc.relationVichier–Guerre S, Lo-man R, Huteau V, Deriaud E, Leclerc C, Bay S. Synthesis and immunological evaluation of an antitumor neoglycopeptide vaccine bearing a novel homoserine Tn antigen. Bioorg. Medicinal Chem Letters. 2004; 14: 3567-3570.
dc.relationMiyajima K, Takahiro N, Kiyoshi I, Kazuo A. Synthesis of Tn and sialil Tn antigen-lipid and analog conjugates for synthetic vaccines. Chem. Pharm. Bull. Tokyo. 1997;45: 1544-1546.
dc.relationBay S, Loman R, Osinaga E, Nakada H, Leclerc C, Cantacuzene D. Preparation of a multiple antigen glycopeptide (mag) carrying the Tn antigen-A possible approach to a synthetic carbohydrate vaccine. J. Peptide Res. 1997;49: 620-625.
dc.relationChan HS, Dill KA. The protein folding problem. Physics today. 1993;46(2):24-32.
dc.relationVoet D, Voet JG. Techniques of protein purification. Biochemistry. New York, NY: John Wiley and Sons Inc., 1990.75.
dc.relationRoy A, Zhang Y. Recognizing protein-ligand binding sites by global structural alignment and local geometry refinement. Structure. 2012;20(6):987-997.
dc.relationFloudas CA, Fung HK, McAllister SR, Mönnigmann M, Rajgaria R. Advances in protein structure prediction and de novo protein design: A review. Chemical Engineering Science. 2006;61(3):966-988.
dc.relationSingh M, Kim PS. Towards predicting coiled-coil protein interactions. recOmb01: The Fifth Annual International Conference on Computational Molecular Biology. Association for Computing Machinery: Quebec, Montreal, Canada; 2001. 279-286.
dc.relationChou PY, Fasman GD. Prediction of protein conformation. Biochemistry. 1974;13(2):222-245.
dc.relationGarnier J, Osguthorpe DJ, Robson B. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. Journal of molecular biology. 1978;120(1):97-120.
dc.relationGarnier J, Robson B. The gOr method for predicting secondary structures in proteins. Prediction of protein structure and the principles of protein conformation: Springer; 1989. 417-465.
dc.relationGibrat JF, Garnier J, Robson B. Further developments of protein secondary structure prediction using information theory: new parameters and consideration of residue pairs. Journal of molecular biology. 1987;198(3):425-443.
dc.relationGarnier J, Gibrat JF, Robson B. gOr method for predicting protein secondary structure from amino acid sequence. Methods in enzymology. 266: Elsevier; 1996. 540-553.
dc.relationKloczkowski A, Ting KL, Jernigan RL, Garnier J. Combining the gOr v algorithm with evolutionary information for protein secondary structure prediction from amino acid sequence. Proteins: Structure, Function and Bioinformatics. 2002;49(2):154-166.
dc.relationQian N, Sejnowski TJ. Predicting the secondary structure of globular proteins using neural network models. Journal of molecular biology. 1988;202(4):865-884.
dc.relationHolley LH, Karplus M. Protein secondary structure prediction with a neural network. Proceedings of the National Academy of Sciences. 1989;86(1):152-156.
dc.relationMaclin R, Shavlik JW. Using knowledge-based neural networks to improve algorithms: Refining the Chou-Fasman algorithm for protein folding. Machine Learning. 1994;11(2-3):195-215.
dc.relationRost B, Sander C. Prediction of protein secondary structure at better than 70 % accuracy. Journal of molecular biology. 1993;232(2):584-599.
dc.relationPollastri G, Przybylski D, Rost B, Baldi P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Structure, Function, and Bioinformatics. 2002;47(2):228-235.
dc.relationAnfinsen CB. Principles that govern the folding of protein chains. Science. 1973;181(4096):223-230.
dc.relationSimons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. Journal of molecular biology. 1997;268(1):209-225.
dc.relationXu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledge‐based force field. Proteins: Structure, Function and Bioinformatics. 2012;80(7):1715-1735.
dc.relationMoult J, Fidelis K, Kryshtafovych A, Rost B, Tramontano A. Critical assessment of methods of protein structure prediction—Round viii. Proteins: Structure, Function and Bioinformatics. 2009;77(S9):1-4.
dc.relationJauch R, Yeo HC, Kolatkar PR, Clarke ND. Assessment of casp7 structure predictions for template free targets. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):57-67.
dc.relationMartí-Renom MA, Stuart AC, Fiser A, Sánchez R, Melo F, Šali A. Comparative protein structure modeling of genes and genomes. Annual review of biophysics and biomolecular structure. 2000;29(1):291-325.
dc.relationRead RJ, Chavali G. Assessment of casp7 predictions in the high accuracy template‐based modeling category. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):27-37.
dc.relationBowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known three-dimensional structure. Science. 1991;253(5016):164-170.
dc.relationRychlewski L, Jaroszewski L, Li W, Godzik A. Comparison of sequence profiles. Strategies for structural predictions using sequence information. Protein Science. 2000;9(2):232-241.
dc.relationSöding J. Protein homology detection by Hmm–Hmm comparison. Bioinformatics. 2005;21(7):951-960.
dc.relationSkolnick J, Kihara D, Zhang Y. Development and large scale benchmark testing of the prOspectOr_3 threading algorithm. Proteins: Structure, Function, and Bioinformatics. 2004;56(3):502-518.
dc.relationXu Y, Xu D, Crawford OH, Einstein JR, Larimer F, Uberbacher E, et al. Protein threading by prOspect: a prediction experiment in casp3. Protein engineering. 1999;12(11):899-907.
dc.relationNeedleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of molecular biology. 1970;48(3):443-453.
dc.relationEddy SR. Profile hidden Markov models. Bioinformatics (Oxford, England). 1998;14(9):755-63.
dc.relationWu S, Zhang Y. muster: improving protein sequence profile–profile alignments by using multiple sources of structure information. Proteins: Structure, Function and Bioinformatics. 2008;72(2):547-556.
dc.relationYang Y, Faraggi E, Zhao H, Zhou Y. Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates. Bioinformatics. 2011;27(15):2076-2082
dc.relationGinalski K, Elofsson A, Fischer D, Rychlewski L. 3d-Jury: a simple approach to improve protein structure predictions. Bioinformatics. 2003;19(8):1015-1018.
dc.relationWu S, Zhang Y. lOmets: a local meta-threading-server for protein structure prediction. Nucleic acids research. 2007;35(10):3375-3382.
dc.relationMacCallum JL, Hua L, Schnieders MJ, Pande VS, Jacobson MP, Dill KA. Assessment of the protein‐structure refinement category in casp8. Proteins: Structure, Function, and Bioinformatics. 2009;77(S9):66-80.
dc.relationSumma CM, Levitt M. Near-native structure refinement using in vacuo energy minimization. Proceedings of the National Academy of Sciences. 2007;104(9):3177-3182.
dc.relationSkolnick J. In quest of an empirical potential for protein structure prediction. Current opinion in structural biology. 2006;16(2):166-171.
dc.relationZhang Y, Kihara D, Skolnick J. Local energy landscape flattening: parallel hyperbolic Monte Carlo sampling of protein folding. Proteins: Structure, Function, and Bioinformatics. 2002;48(2):192-201.
dc.relationZhang Y. Template‐based modeling and free modeling by i‐tasser in casp7. Proteins: Structure, Function, and Bioinformatics. 2007;69(S8):108-117.
dc.relationLiwo A, Khalili M, Czaplewski C, Kalinowski S, Ołdziej S, Wachucik K, et al. Modification and optimization of the united-residue (unres) potential energy function for canonical simulations. I. Temperature dependence of the effective energy function and tests of the optimization method with single training proteins. The Journal of Physical Chemistry B. 2007;111(1):260-285.
dc.relationHolm L, Sander C. Database algorithm for generating protein backbone and side-chain co-ordinates from a C? trace. Journal of molecular biology. 1991;218(1):183-194.
dc.relationRotkiewicz P, Skolnick J. Fast procedure for reconstruction of full‐atom protein models from reduced representations. Journal of computational chemistry. 2008;29(9):1460-1465.
dc.relationLi Y, Zhang Y. remO: A new protocol to refine full atomic protein models from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins:from C‐alpha traces by optimizing hydrogen‐bonding networks. Proteins: Structure, Function, and Bioinformatics. 2009;76(3):665-676.
dc.relationZhang J, Liang Y, Zhang Y. Atomic-level protein structure refinement using fragment-guided molecular dynamics conformation sampling. Structure. 2011;19(12):1784-1795.
dc.relationZhang L, Skolnick J. What should the Z‐score of native protein structures be? Protein science. 1998;7(5):1201-1207.
dc.relationCozzetto D, Kryshtafovych A, Tramontano A. Evaluation of casp8 model quality predictions. Proteins: Structure, Function, and Bioinformatics. 2009;77(S9):157-166.
dc.relationFischer D. Servers for protein structure prediction. Current opinion in structural biology. 2006;16(2):178-182.
dc.relationKryshtafovych A, Fidelis K, Tramontano A. Evaluation of model quality predictions in casp9. Proteins: Structure, Function, and Bioinformatics. 2011;79(S10):91-106.
dc.relationZhang Y. Protein structure prediction: when is it useful? Current opinion in structural biology. 2009;19(2):145-155.
dc.relationSchlessinger A, Geier E, Fan H, Irwin JJ, Shoichet BK, Giacomini KM, et al. Structure-based discovery of prescription drugs that interact with the norepinephrine transporter, net. Proceedings of the National Academy of Sciences. 2011;108(38):15810-5.
dc.relationGiorgetti A, Raimondo D, Miele AE, Tramontano A. Evaluating the usefulness of protein structure models for molecular replacement. Bioinformatics. 2005;21(suppl_2):ii72-ii76.
dc.relationArakaki AK, Zhang Y, Skolnick J. Large-scale assessment of the utility of low-resolution protein structures for biochemical function assignment. Bioinformatics. 2004;20(7):1087-1096.
dc.relationMalmström L, Riffle M, Strauss cem, Chivian D, Davis TN, Bonneau R, et al. Superfamily assignments for the yeast proteome through integration of structure prediction with the gene ontology. plos biology. 2007;5(4). Disponible en: https://doi.org/10.1371/journal.pbio.0050076
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsUniversidad Nacional de Colombia, 2020
dc.titleIntroducción al análisis estructural de proteínas y glicoproteínas
dc.typeLibro


Este ítem pertenece a la siguiente institución