dc.contributor | Rozo Albarracín, Edwin Edwuardo | |
dc.contributor | Plazas, María Cristina | |
dc.contributor | Muñoz Perez, Alvaro Alfonso | |
dc.creator | Quintero Quintero, Alfonso | |
dc.date.accessioned | 2020-08-24T23:56:57Z | |
dc.date.available | 2020-08-24T23:56:57Z | |
dc.date.created | 2020-08-24T23:56:57Z | |
dc.date.issued | 2020-01-24 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/78206 | |
dc.description.abstract | Radiotherapy treatment plans are normally evaluated from the dose-volume histogram. However, it is advisable to consider other evaluation criteria based on radiobiological indices to compare treatment schemes. In this study, advantages and disadvantages of a conventional scheme of 2 Gy per fraction (Con2) and moderate hypofractionation of 2.5 Gy (Hip - m2.5) and 3 Gy (Hip - m3) per fraction were determined in terms of radiobiological indices and dosimetric measurements for prostate cancer plans with the volumetric modulated arc therapy (VMAT) technique.
A set of 10 intermediate-risk prostate cancer cases were selected and planned in the EclipseTM treatment planning system using two arcs. Nimierko's radiobiological model was used to calculate the generalized equivalent uniform dose (gEUD) and consequently the tumor control probability (TCP) and the normal tissue complication probability (NTCP). The dose distributions of all cases for each treatment scheme were measured with the ArcCHECK® detector and compared quantitatively with those calculated using γ index analysis with 3 mm / 3% criteria.
For the prostate tumor, the average gEUD was higher for the Hip-m2.5 scheme, 85.52 Gy, versus 83.24 Gy for the Hip-m3 scheme and 81.86 Gy for the Hip-m2 scheme; while the TCP for the three schemes were comparable: 98.81%, 98.67% and 98.58% respectively. In organs at risk such as the rectum, the smallest average value of gEUD and NTCP was obtained for the Hip - m3 scheme (53.56 Gy; 0.19%), in femoral heads and bladder the values of gEUD and NTCP were equivalent for the three fractionation schemes; However, for bladders with small volumes, the Hip − m3 scheme decreased the NTCP up to an order of magnitude with respect to the Con2 scheme. Furthermore, it was determined that the gEUD is inversely proportional to the square root of the bladder volume. Finally, with the γ analysis of each of the plans, it was found that there are no differences in the administration of the treatment with the VMAT technique for the three fractionation schemes studied.
The results indicated that the change in the fractionation scheme has no impact on the administration of the treatment with the VMAT technique. TCP for prostate tumor and NTCP for femoral heads and bladder were comparable for the three schemes, however it was found that the hypofractionated scheme of 3 Gy per fraction has advantages in reducing the risk of complication in the rectum and decrease the NTCP for bladders with small volumes. The results obtained are in agreement with those reported in the CHHiP 2016 and PROFIT 2017 clinical trials. | |
dc.description.abstract | Los planes de tratamiento en radioterapia son evaluados normalmente a partir del histograma dosis-volumen. Sin embargo, es recomendable considerar otros criterios de evaluación basados en índices radiobiológicos para comparar esquemas de tratamiento. En este estudio se determinaron ventajas y desventajas de un esquema convencional de 2 Gy por fracción (Con2) y de hipofraccionamiento moderado de 2.5 Gy (Hip − m2.5) y 3 Gy (Hip − m3) por fracción en términos de índices radiobiológicos y medidas dosimétricas para planes de cáncer de próstata con la técnica de arcoterapia volumétrica modulada (VMAT).
Se seleccionaron 10 casos de cáncer de próstata de riesgo intermedio, los cuales se planearon en el sistema de planeación de tratamiento EclipseTM empleando dos arcos. El modelo radiobiólogico de Nimierko fue utilizado para calcular la dosis uniforme equivalente generalizada (gEUD) y consecuentemente la probabilidad de control tumoral (TCP) y la probabilidad de complicación del tejido sano (NTCP). Las distribuciones de dosis de todos los casos para cada esquema de tratamiento se midieron con el detector ArcCHECK® y compararon cuantitativamente con las calculadas usando el análisis del índice γ con criterios de 3 mm/3%.
Para el tumor de próstata la gEUD promedio fue más alta para el esquema de Hip − m2.5 85.52 Gy contra 83.24 Gy para el esquema Hip−m3 y 81.86 Gy para el esquema de Hip−m2; mientras la TCP para los tres esquemas fueron comparables: 98.81%, 98.67% y 98.58% respectivamente. En los órganos a riesgo como el recto, el valor promedio más pequeño de gEUD y NTCP se obtuvo para el esquema de Hip − m3 (53.56 Gy; 0.19%), en cabezas femorales y vejiga los valores de la gEUD y NTCP fueron equivalentes para los tres esquemas de fraccionamiento; sin embargo para vejigas con volúmenes pequeños el esquema de Hip−m3 disminuyó hasta un orden de magnitud la NTCP con respecto al esquema Con2 . Además, se determinó que la gEUD es inversamente proporcional a la raíz cuadrada del volumen de la vejiga. Finalmente con el análisis γ de cada uno de los planes, se encontró que no hay diferencias en la administración del tratamiento con la técnica VMAT para los tres esquemas de fraccionamiento estudiados.
Los resultados indicaron que el cambio de esquema de fraccionamiento, no tiene impacto en la administración del tratamiento con la técnica VMAT. La TCP para el tumor de próstata y NTCP para cabezas femorales y vejiga fueron comparables para los tres esquemas, sin embargo se encontró que el esquema hipofraccionado de 3 Gy por fracción tiene ventajas en la reducción del riesgo de complicación en el recto y disminución en la NTCP para vejigas con volúmenes pequeños. Los resultados obtenidos están en concordancia con los reportados en los estudios clínicos CHHiP 2016 y PROFIT 2017. | |
dc.language | spa | |
dc.publisher | Bogotá - Ciencias - Maestría en Física Médica | |
dc.publisher | Departamento de Física | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | [1] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394–424. | |
dc.relation | [2] International Agency for Research on Cancer. Colombia - Global Cancer Observatory 2018;. [Online], disponible en: https://bit.ly/2qSUkiV. [Consultado el 11 de Noviembre de 2019]. | |
dc.relation | [3] Baskar R, Lee KA, Yeo R, Yeoh KW. Cancer and radiation therapy: current advances
and future directions. International journal of medical sciences. 2012;9(3):193. | |
dc.relation | [4] Bolla M, Henry A, Mason M, Wiegel T. The role of radiotherapy in localised and locally
advanced prostate cancer. Asian Journal of Urology. 2019;6(2):153 – 161. | |
dc.relation | [5] Mangoni M, Desideri I, Detti B, Bonomo P, Greto D, Paiar F, et al. Hypofractionation in prostate cancer: radiobiological basis and clinical appliance. BioMed research international. 2014;2014:1–8. | |
dc.relation | [6] Benjamin LC, Tree AC, Dearnaley DP. The role of hypofractionated radiotherapy in prostate cancer. Current oncology reports. 2017;19(4):30. | |
dc.relation | [7] Musunuru HB, Cheung P, Loblaw A. Evolution of Hypofractionated Accelerated Radiotherapy for Prostate Cancer – The Sunnybrook Experience. Frontiers in Oncology. 2014;4(313):1–6. | |
dc.relation | [8] Nahum AE. The radiobiology of hypofractionation. Clinical oncology. 2015;27(5):260–269. | |
dc.relation | [9] Pryor DI, Turner SL, Tai KH, Tang C, Sasso G, Dreosti M, et al. Moderate hypofractionation for prostate cancer: A user’s guide. Journal of Medical Imaging and Radiation Oncology. 2018;62(2):232–239. | |
dc.relation | [10] Niemierko A. A generalized concept of equivalent uniform dose (EUD). Medical Physics. 1999;26(6):1100 [abstract]. | |
dc.relation | [11] Gay HA, Niemierko A. A free program for calculating EUD-based NTCP and TCP in external beam radiotherapy. Physica Medica. 2007;23(3):115 – 125. | |
dc.relation | [12] Rana S, Cheng C. Radiobiological impact of planning techniques for prostate cancer in terms of tumor control probability and normal tissue complication probability. Annals of medical and health sciences research. 2014;4(2):167–172. | |
dc.relation | [13] ICRU Report 83: Prescribing, Recording, and Reporting Photon-Beam Intensity-Modulated Therapy (IMRT). Journal of the International Commission on Radiation Units and Measurements. 2010;10(1). | |
dc.relation | [14] Li XA, Alber M, Deasy JO, Jackson A, Jee KWK, Marks LB, et al. The use and QA of biologically related models for treatment planning: Short report of the TG-166 of the therapy physics committee of the AAPM. Medical physics. 2012;39(3):1386–1409. | |
dc.relation | [15] Fowler JF, Toma-Dasu I, Dasu A. Is the α/β ratio for prostate tumours really low and does it vary with the level of risk at diagnosis? Anticancer research. 2013;33(3):1009-1011. | |
dc.relation | [16] Hegemann NS, Guckenberger M, Belka C, Ganswindt U, Manapov F, Li M. Hypofractionated radiotherapy for prostate cancer. Radiation oncology. 2014;9(1):275. | |
dc.relation | [17] Dearnaley D, Syndikus I, Mossop H, Khoo V, Birtle A, Bloomfield D, et al. Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. The Lancet Oncology. 2016;17(8):1047–1060. | |
dc.relation | [18] Catton CN, Lukka H, Gu CS, Martin JM, Supiot S, Chung PW, et al. Randomized trial of a hypofractionated radiation regimen for the treatment of localized prostate cancer. Journal of Clinical Oncology. 2017;35(17):1884–1890. | |
dc.relation | [19] Lee WR, Koontz BF. Moderate hypofractionation for prostate cancer. Translational andrology and urology. 2018;7(3):321. | |
dc.relation | [20] Mesbahi A, Rasouli N, Mohammadzadeh M, Nasiri Motlagh B, Ozan Tekin H. Comparison of Radiobiological Models for Radiation Therapy Plans of Prostate Cancer: Three-dimensional Conformal versus Intensity Modulated Radiation Therapy. Journal of Biomedical Physics & Engineering. 2019;9(3):267. | |
dc.relation | [21] Kang SW, Chung JB, Kim JS, Kim IA, Eom KY, Song C, et al. Optimal planning strategy among various arc arrangements for prostate stereotactic body radiotherapy with volumetric modulated arc therapy technique. Radiology and Oncology. 2017;51(1):112–120. | |
dc.relation | [22] Niemierko A. Reporting and analyzing dose distributions: A concept of equivalent uniform dose. Medical Physics. 1997;24(1):103–110. | |
dc.relation | [23] Niemierko A. Biological Optimization. In: Bortfeld T, Schmidt-Ullrich R, De Neve W, Wazer DE, editors. Image-Guided IMRT. Berlin, Heidelberg: Springer; 2006. p. 199–216. | |
dc.relation | [24] Wu Q, Mohan R, Niemierko A, Schmidt-Ullrich R. Optimization of intensity-modulated radiotherapy plans based on the equivalent uniform dose. International Journal of Radiation Oncology Biology Physics. 2002;52(1):224–235. | |
dc.relation | [25] Sanchez-Nieto B, Nahum AE. Bioplan: Software for the biological evaluation of radiotherapy treatment plans. Medical Dosimetry;25(2):71–76. | |
dc.relation | [26] Chang JH, Gehrke C, Prabhakar R, Gill S, Wada M, Lim Joon D, et al. RADBIOMOD: A simple program for utilising biological modelling in radiotherapy plan evaluation. Physica Medica;32(1):248–254. | |
dc.relation | [27] Sureka CS, Armpilia C. Radiation Biology for Medical Physicists. Boca Raton: CRC Press; 2017. | |
dc.relation | [28] Warters R, Hofer K. Radionuclide toxicity in cultured mammalian cells: Elucidation of the primary site for radiation-induced division delay. Radiation research. 1977;69(2):348–358. | |
dc.relation | [29] Joiner MC, van der Kogel AJ, editors. Basic Clinical Radiobiology. 5th ed. Boca Raton: CRC Press; 2018. | |
dc.relation | [30] K SACHS PH, DJ BRENNER R. The link between low-LET dose-response relations and the underlying kinetics of damage production/repair/misrepair. International journal of radiation biology. 1997;72(4):351–374. | |
dc.relation | [31] Bodgi L, Canet A, Pujo-Menjouet L, Lesne A, Victor JM, Foray N. Mathematical models of radiation action on living cells: From the target theory to the modern approaches. A historical and critical review. Journal of theoretical biology. 2016;394:93–101. | |
dc.relation | [32] Cox R, Thacker J, Goodhead D, Masson W, Wilkinson R. Inactivation and mutation of cultured mammalian cells by aluminium characteristic ultrasoft x-rays: II. Dose responses of Chinese hamster and human diploid cells to aluminium x-rays and radiations of different LET. International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine. 1977;31(6):561–576. | |
dc.relation | [33] Sinclair W. The shape of radiation survival curves of mammalian cells cultured in vitro. Biophysical aspects of radiation quality. 1966;p. 21–43. | |
dc.relation | [34] McMahon SJ. The linear quadratic model: Usage, interpretation and challenges. Physicsin Medicine and Biology. 2019;64(1). | |
dc.relation | [35] Sachs RK, Brenner DJ. The mechanistic basis of the linear-quadratic formalism. Medical physics. 1998;25(10):2071–2073. | |
dc.relation | [36] Platero JC, Guirado Llorente D. Radiobiología clínica. Madrid: Sociedad Española de Física Médica; 2003. | |
dc.relation | [37] Fowler JF. The linear-quadratic formula and progress in fractionated radiotherapy. The British journal of radiology. 1989;62(740):679–694. | |
dc.relation | [38] Barendsen G. Dose fractionation, dose rate and iso-effect relationships for normal tissue responses. International Journal of Radiation Oncology* Biology* Physics. 1982;8(11):1981–1997. | |
dc.relation | [39] Willers H, Held KD. Introduction to clinical radiation biology. Hematology/Oncology Clinics. 2006;20(1):1–24. | |
dc.relation | [40] Munro T, Gilbert C. The relation between tumour lethal doses and the radiosensitivity of tumour cells. The British journal of radiology. 1961;34(400):246–251. | |
dc.relation | [41] Lyman JT. Complication probability as assessed from dose-volume histograms. Radiation Research. 1985;104(2s):S13–S19. | |
dc.relation | 42] Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method. International Journal of Radiation Oncology* Biology* Physics. 1989;16(6):1623–1630. | |
dc.relation | [42] Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: The effective volume method. International Journal of Radiation Oncology* Biology* Physics. 1989;16(6):1623–1630. | |
dc.relation | [43] Emami B, Lyman J, Brown A, Cola L, Goitein M, Munzenrider J, et al. Tolerance of normal tissue to therapeutic irradiation. International Journal of Radiation Oncology* Biology* Physics. 1991;21(1):109–122. | |
dc.relation | [44] Burman C, Kutcher G, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. International Journal of Radiation Oncology* Biology* Physics. 1991;21(1):123–135. | |
dc.relation | [45] Niemierko A. A unified model of tissue response to radiation. In: Proceedings of the 41th AAPM annual meeting. vol. 1100. Nashville, Tennessee; 1999. . | |
dc.relation | [46] Barton M. Tables of equivalent dose in 2 Gy fractions: a simple application of the linear quadratic formula. International Journal of Radiation Oncology• Biology• Physics. 1995;31(2):371–378. | |
dc.relation | [47] Fowler JF. 21 years of biologically effective dose. The British journal of radiology. 2010;83(991):554–568. | |
dc.relation | [48] Otto K. Volumetric modulated arc therapy: IMRT in a single gantry arc. Medical physics. 2008;35(1):310–317. | |
dc.relation | [49] Bortfeld T. Optimized planning using physical objectives and constraints. In: Seminars in radiation oncology. vol. 9. Elsevier; 1999. p. 20–34. | |
dc.relation | [50] Varian Medical Systems. Eclipse Photon and Electron Algorithms Reference Guide. Inc Palo Alto, CA, USA. 2014;. | |
dc.relation | [51] Liu H, Sintay B, Pearman K, Shang Q, Hayes L, Maurer J, et al. Comparison of the progressive resolution optimizer and photon optimizer in VMAT optimization for stereotactic treatments. Journal of applied clinical medical physics. 2018;19(4):155–162. | |
dc.relation | [52] Vanetti E, Nicolini G, Nord J, Peltola J, Clivio A, Fogliata A, et al. On the role of the optimization algorithm of RapidArc® volumetric modulated arc therapy on plan quality and efficiency. Medical physics. 2011;38(11):5844–5856. | |
dc.relation | [53] Sievinen J, Ulmer W, Kaissl W. AAA photon dose calculation model in EclipseTM. Palo Alto (CA): Varian Medical Systems. 2005;118:2894. | |
dc.relation | [54] Ulmer W, Harder D. A Triple Gaussian Pencil beam Model for Photon beam Treatment Planning. Zeitschrift für Medizinische Physik. 1995;5(1):25 – 30. | |
dc.relation | [55] Fogliata A, Thompson S, Stravato A, Tomatis S, Scorsetti M, Cozzi L. On the gEUD biological optimization objective for organs at risk in photon optimizer of eclipse treatment planning system. Journal of applied clinical medical physics. 2018;19(1):106–114. | |
dc.relation | [56] Low DA, Harms WB, Mutic S, Purdy JA. A technique for the quantitative evaluation of dose distributions. Medical physics. 1998;25(5):656–661. | |
dc.relation | [57] Miften M, Olch A, Mihailidis D, Moran J, Pawlicki T, Molineu A, et al. Tolerance limits and methodologies for IMRT measurement-based verification QA: recommendations of AAPM Task Group No. 218. Medical physics. 2018;45(4):e53–e83. | |
dc.relation | [58] Létourneau D, Publicover J, Kozelka J, Moseley DJ, Jaffray DA. Novel dosimetric phantom for quality assurance of volumetric modulated arc therapy. Medical physics. 2009;36(5):1813–1821. | |
dc.relation | [59] Kozelka J, Robinson J, Nelms B, Zhang G, Savitskij D, Feygelman V. Optimizing the accuracy of a helical diode array dosimeter: a comprehensive calibration methodology coupled with a novel virtual inclinometer. Medical physics. 2011;38(9):5021–5032. | |
dc.relation | [60] Sun Nuclear Corporation. SNC Patient SoftwareTM Reference Guide 8.2. Suntree Boulevard, Melbourne, FL,USA. 2019;. | |
dc.relation | [61] Rana SB, Pokharel S. A dosimetric study of volumetric modulated arc therapy planning techniques for treatment of low-risk prostate cancer in patients with bilateral hip prostheses. South Asian journal of cancer. 2014;3(1):18. | |
dc.relation | [62] Gay HA, Barthold HJ, O’Meara E, Bosch WR, El Naqa I, Al-Lozi R, et al. Pelvic normal tissue contouring guidelines for radiation therapy: a Radiation Therapy Oncology Group consensus panel atlas. International Journal of Radiation Oncology* Biology* Physics. 2012;83(3):e353–e362. | |
dc.relation | [63] Ezzell GA, Burmeister JW, Dogan N, LoSasso TJ, Mechalakos JG, Mihailidis D, et al. IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Medical physics. 2009;36(11):5359–5373. | |
dc.relation | [64] Kupelian PA, Willoughby TR, Reddy CA, Klein EA, Mahadevan A. Hypofractionated intensity-modulated radiotherapy (70 Gy at 2.5 Gy per fraction) for localized prostate cancer: Cleveland Clinic experience. International Journal of Radiation Oncology* Biology* Physics. 2007;68(5):1424–1430. | |
dc.relation | [65] Thames HD, Kuban D, Levy LB, Horwitz EM, Kupelian P, Martinez A, et al. The role of overall treatment time in the outcome of radiotherapy of prostate cancer: an analysis of biochemical failure in 4839 men treated between 1987 and 1995. Radiotherapy and Oncology. 2010;96(1):6–12. | |
dc.relation | [66] Venselaar J, Welleweerd H, Mijnheer B. Tolerances for the accuracy of photon beam dose calculations of treatment planning systems. Radiotherapy and oncology. 2001;60(2):191–201. | |
dc.relation | [67] Marks LB, Yorke ED, Jackson A, Ten Haken RK, Constine LS, Eisbruch A, et al. Use of normal tissue complication probability models in the clinic. International Journal of Radiation Oncology* Biology* Physics. 2010;76(3):S10–S19. | |
dc.relation | [68] National Comprehensive Cancer Network® (NCCN®);. https://www.nccn.org/professionals/physician_gls/default.aspx. | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | Acceso abierto | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.rights | Derechos reservados - Universidad Nacional de Colombia | |
dc.title | Comparación radiobiológica y dosimétrica con VMAT en cáncer de próstata para esquema convencional vs hipofraccionamiento moderado | |
dc.type | Otro | |