dc.creatorMartinez Lobo, Danny Samuel
dc.date.accessioned2019-07-03T10:21:32Z
dc.date.available2019-07-03T10:21:32Z
dc.date.created2019-07-03T10:21:32Z
dc.date.issued2019-02-08
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/69311
dc.identifierhttp://bdigital.unal.edu.co/70973/
dc.description.abstractEl objetivo de esta investigación es la estimación e imputación de datos faltantes en modelos longitudinales con variable respuesta tipo Poisson y Binomial Negativa cero inflada. Para responder al objetivo de está investigación, se propone una metodología que se basa en el uso de la máxima verosimilitud. Se supone que los datos son faltantes de forma aleatoria (FFA), en cada uno de los tiempos se hace uso del algoritmo EM: en el paso E se realiza una regresión ponderada, condicionada a los tiempo anteriores que son tomados como covariables, utilizando la propuesta de Ibrahim (1990). En el paso M se realiza la estimación e imputación de los datos faltantes utilizando la propuesta de Ayala y Melo (2007). La metodología propuesta es aplicada para el caso Poisson cero inflado en el estudio relacionado con el crecimiento del maíz presentado en Da Costa (2003). En el caso Binomial Negativa cero inflada, se aplica a un estudio del forrajeo del polen presentado en Rodríguez (2014).
dc.description.abstractAbstract The objective of this research is the estimation and imputation of missing data in longitudinal models with variable response type Poisson and Negative Binomial Zero Inflated. In order to answer the objective of this study, a methodology is proposed base on the use of the maximum likelihood. The data is supposed to be missing at random (MAR) and in each time the algorithm EM is used. In step E a weighted regression is carried out, conditioned to the previous time that is taken as covariables using the proposal of Ibrahim’s (1990). In step M, the estimation and imputation of the missing data is carried out using the methodology of Ayala and Melo (2007). The proposed methodology is applied for the Poisson Zero Inflated Case in a study related to the growth of corn presented in Da Costa (2003). In the case Binomial Negative Zero Inflated, our strategy is applied to a study of the foraging of pollen presented in Rodriguez (2014).
dc.languagespa
dc.relationUniversidad Nacional de Colombia Sede Bogotá Facultad de Ciencias Departamento de Estadística
dc.relationDepartamento de Estadística
dc.relationMartinez Lobo, Danny Samuel (2019) Estimación e imputación de datos faltantes en modelos longitudinales con variable respuesta tipo Poisson y Binomial Negativa con exceso de ceros. Maestría thesis, Universidad Nacional de Colombia - Sede Bogotá.
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleEstimación e imputación de datos faltantes en modelos longitudinales con variable respuesta tipo Poisson y Binomial Negativa con exceso de ceros
dc.typeTrabajo de grado - Maestría


Este ítem pertenece a la siguiente institución