dc.contributorBeebe, Steve
dc.contributorLópez Diana Carolina
dc.creatorCruz Ruiz, Sergio Andres
dc.date.accessioned2022-03-23T21:34:35Z
dc.date.accessioned2022-09-21T16:26:26Z
dc.date.available2022-03-23T21:34:35Z
dc.date.available2022-09-21T16:26:26Z
dc.date.created2022-03-23T21:34:35Z
dc.date.issued2022-03-17
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/81344
dc.identifierUniversidad Nacional de Colombia
dc.identifierRepositorio Institucional Universidad Nacional de Colombia
dc.identifierhttps://repositorio.unal.edu.co/
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3392789
dc.description.abstractVarios estudios han demostrado que Phaseolus acutifolius A. Gray es una fuente potencial de genes asociados a la tolerancia al calor que pueden ser utilizados para mejorar la adaptación del fríjol común (P. vulgaris L.) a las condiciones de alta temperatura, sin embargo, hasta ahora la base genética de esta resistencia es desconocida por ello se construyó una población de mapeo genético interespecífica entre P. acutifolius A. Gray y P. vulgaris L. con la cual se evaluaron componentes de rendimiento bajo condiciones controladas de alta temperatura (/25°C dia/noche, respectivamente). La población de mapeo genético se secuenció mediante el método de genotipado por secuenciación (Genotyping By sequencing, GBS), posteriormente se realizó un análisis de asociación genética con dos modelos de asociación genética para delimitar las regiones genómicas candidatas asociadas con la resistencia al estrés por calor encontrándose 31 asociaciones significativas para las variables: número de vainas, número de semillas por planta, peso promedio de semillas, índice de cosecha de vaina, número de vainas vanas por planta y rendimiento por planta. Se encontraron asociaciones que presentaron un efecto positivo y provinieron de los parentales silvestres de P. acutifolius A. Gray. Los genes presentes en las asociaciones significativas se relacionaron con la respuesta canónica al estrés por calor y a la señalización con fitohormonas como las auxinas y el etileno. (Texto tomado de la fuente)
dc.description.abstractSeveral studies have shown that Phaseolus actifolius A. Gray is a potential source of genes associated with heat tolerance that can be used to improve the adaptation of common bean (P. vulgaris L.) to high temperature conditions, however, so far the genetic basis of this resistance is still unknown, therefore an interspecific genetic mapping population was constructed between P. acutifolius A. Gray and P. vulgaris L. to evaluate yield components under high temperature conditions. The genetic mapping population was sequenced using the Genotyping By sequencing (GBS) method, then a genetic association analysis was performed with the mixed linear models to delimit candidate genomic regions associated with resistance to heat stress, finding significant associations for the variables: number of pods and yield per plant that were associated with a positive effect came from the wild parents of P. acutifolius A. Gray. The genes present in the significant associations were related to the canonical response to heat stress and to the signaling that may be involved in the expression of these genes.
dc.languagespa
dc.publisherUniversidad Nacional de Colombia
dc.publisherPalmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias
dc.publisherFacultad de Ciencias Agrarias
dc.publisherPalmira
dc.publisherUniversidad Nacional de Colombia - Sede Palmira
dc.relationAlqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. In Journal of Advanced Research (Vol. 22, pp. 119–135). Elsevier B.V. https://doi.org/10.1016/j.jare.2019.10.013
dc.relationAmbawat, S., Sharma, P., Yadav, N. R., & Yadav, R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3), 307. https://doi.org/10.1007/S12298-013-0179-1
dc.relationAndrade‐Aguilar, J. A., & Jackson, M. T. (1988). Attempts at Interspecific Hybridization Between Phaseolus vulgaris L. and P. acutifolius A. Gray‐Using Embryo Rescue. Plant Breeding, 101(3), 173–180. https://doi.org/10.1111/j.1439-0523.1988.tb00285.x
dc.relationBaird, L. M., & Caruso, K. J. (1994). Development of root nodules in Phaseolus vulgaris inoculated with rhizobium and mycorrhizal fungi. International Journal of Plant Sciences, 55(6), 633–639. https://doi.org/10.1086/297203
dc.relationBarrera, S., Escobar, R., & Beebe, S. E. (2018). ADVANCED INTERSPECIFIC HYBRIDS OF COMMON BEAN & TEPARY BEAN WITHOUT EMBRYO RESCUE. BEAN IMPROVEMENT COOPERATIVE, 43–44. https://www.researchgate.net/profile/Ana-Kawashima/publication/333965285_PREDADOR_AND_PARASITOID_ARTROPOD’S_OCCURRENCE_IN_COMMON_BEAN_Phaseolus_vulgaris_L_CULTIVATED_IN_THE_STATE_OF_PARANA_BRAZIL/links/5d0eed89299bf1547c77309c/PREDADOR-AND-PARASITOID-ARTR
dc.relationBarrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. https://doi.org/10.1093/BIOINFORMATICS/BTH457
dc.relationBeebe, Stephen, Rao, I., Blair, M., & Acosta, J. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 0, 35. https://doi.org/10.3389/FPHYS.2013.00035
dc.relationBeebe, Steven. (2012). Common Bean Breeding in the Tropics. Plant Breeding Reviews, 36, 357–426. https://doi.org/10.1002/9781118358566.ch5
dc.relationBeebe, Steven, & Villegas, J. (2013). Potential benefits from heat-tolerant common beans under climate change.
dc.relationBitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Frontiers in Plant Science, 8(May), 1–21. https://doi.org/10.3389/fpls.2017.00722
dc.relationBolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170
dc.relationCajiao, C., Kornegay, J., & Ramirez, H. F. (1998). Cruzamiento dentro y entre acervos genéticos y hábitos de crecimiento para incrementar la tolerancia al calor en fríjoles andinos volubles. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina.
dc.relationChacón S, M. I., Pickersgill, B., & Debouck, D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110(3), 432–444. https://doi.org/10.1007/s00122-004-1842-2
dc.relationChaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076
dc.relationCoyne, D. P., Schuster, M. L., & Al-Yasiri, S. (1963). Reaction studies of bean species and varieties to common blight and bacterial wilt. Plant Disease Reporter, 47(6), 534–537.
dc.relationDebouck, D. G. (1979). Algunos aspectos morfologicos y agronomicos de otras especies de Phaseolus. Posibilidades para hibridacion interespecifica. https://hdl.handle.net/10568/71390
dc.relationDebouck, D., & Hida, R. (1998). Introducción MORFOLOGIA DE LA PLANTA DE FRIJOL COMUN. https://cgspace.cgiar.org/bitstream/handle/10568/81884/morfologia-7eba331e.pdf?sequence=1
dc.relationDelfini, J., Moda-Cirino, V., dos Santos Neto, J., Zeffa, D. M., Nogueira, A. F., Ribeiro, L. A. B., Ruas, P. M., Gepts, P., & Gonçalves, L. S. A. (2021). Genome-Wide Association Study Identifies Genomic Regions for Important Morpho-Agronomic Traits in Mesoamerican Common Bean. Frontiers in Plant Science, 12, 2249. https://doi.org/10.3389/FPLS.2021.748829/BIBTEX
dc.relationDoyle, J. J., & Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. 11–15.
dc.relationElshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011a). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6(5), 1–10. https://doi.org/10.1371/journal.pone.0019379
dc.relationFarooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H., & Siddique, K. H. M. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 68(10–11), 985–1005. https://doi.org/10.1071/CP17012
dc.relationFaure, B., Benitez, R., & Carballo, R. M. (1996). Mejoramiento del Fríjol común para la tolerancia a altas temperaturas. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina (pp. 79–86). CIAT.
dc.relationFeller, V. C., Bleiholder, H., Buhr, L., Hack, H., Heẞ, M., Klose, R., Meier, U., Stauẞ, R., van den Boom, T., & Webe, E. (1995). II . Fruchtgemuse und Hulsenfruchte. 47(9).
dc.relationFernandez, F., Gepts, P., & López, M. (1986). Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L.). CIAT.
dc.relationFreytag, G. F., & Debouck, D. G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. BRIT.
dc.relationGao, X., Becker, L. C., Becker, D. M., Starmer, J. D., & Province, M. A. (2010). Avoiding the high Bonferroni penalty in genome-wide association studies. Genetic Epidemiology, 34(1), 100. https://doi.org/10.1002/GEPI.20430
dc.relationGao, X., Starmer, J., & Martin, E. R. (2008). A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32(4), 361–369. https://doi.org/10.1002/gepi.20310
dc.relationGarcía-Fernández, C., Campa, A., Garzón, A. S., Miklas, P., & Ferreira, J. J. (2021). GWAS of pod morphological and color characters in common bean. BMC Plant Biology, 21(1), 184. https://doi.org/10.1186/s12870-021-02967-x
dc.relationGarvin, D. F., Federici, C. T., Stockinger, E. J., & Waines, J. G. (1997). Genetic marker transmission in early generation common x tepary bean hybrids. Journal of Heredity, 88(6), 537–540. https://doi.org/10.1093/oxfordjournals.jhered.a023153
dc.relationGaut, B. S. (2014). The complex domestication history of the common bean. In Nature Genetics (Vol. 46, Issue 7, pp. 663–664). Nature Publishing Group. https://doi.org/10.1038/ng.3017
dc.relationGe, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628. https://doi.org/10.1093/BIOINFORMATICS/BTZ931
dc.relationGepts, P. (1981). Introducción a las hibridacioenes interespecíficas con el fríjol común. CIAT.
dc.relationGepts, P. (1988). Genetic Resources of Phaseolus Beans (P. Gepts (ed.); Vol. 6, Issue x). Springer Netherlands. https://doi.org/10.1007/978-94-009-2786-5
dc.relationGil, A. M. (2011). La selección asistida por marcadores (MAS, “Markerassisted selection”) en el mejoramiento genético del tomate (Solanum lycopersicum L.). http://www.sgn.cornell.edu/about/solanum
dc.relationGross, Y., & Kigel, J. (1991). The Effect of Temperature on the Production and Abscission of Flowers and Pods in Snap Bean (Phaseolus vulgaris L.). Annals of Botany, 67(5), 391–399. https://doi.org/10.1093/oxfordjournals.aob.a088173
dc.relationGross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36(3), 201–212. https://doi.org/10.1016/0378-4290(94)90112-0
dc.relationHuang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2018). BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2), 1–12. https://doi.org/10.1093/gigascience/giy154
dc.relationJanni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., Marmiroli, N., & Foyer, C. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. https://doi.org/10.1093/jxb/eraa034
dc.relationJones, A. L. (1999). PHASEOLUS BEAN: Post-harvest Operations. In Lexicon of Pulse Crops. https://doi.org/10.1201/b22282-13
dc.relationKaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. Frontiers in Plant Science, 10(February), 1–13. https://doi.org/10.3389/fpls.2019.01794
dc.relationLangmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
dc.relationLê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/JSS.V025.I01
dc.relationLipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444
dc.relationLobaton, J. D., Miller, T., Gil, J., Ariza, D., de la Hoz, J. F., Soler, A., Beebe, S., Duitama, J., Gepts, P., & Raatz, B. (2018). Resequencing of common bean identifies regions of inter–gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome, 11(2), 1–21. https://doi.org/10.3835/plantgenome2017.08.0068
dc.relationMacQueen, A. H., White, J. W., Lee, R., Osorno, J. M., Schmutz, J., Miklas, P. N., Myers, J., McClean, P. E., & Juenger, T. E. (2019). Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait Evolution in Common Bean. BioRxiv, 215(May), 267–284. https://doi.org/10.1101/734087
dc.relationMartinez Rojo, J. (2010). Tolerance to sub-zero temperatures in Phaseolus acutifolius and development of interspecies hybrids with P. vulgaris. University of Saskatchewan.
dc.relationMartins, L., Knuesting, J., Bariat, L., Dard, A., Freibert, S. A., Marchand, C. H., Young, D., Dung, N. H. T., Voth, W., Debures, A., Saez-Vasquez, J., Lemaire, S. D., Lill, R., Messens, J., Scheibe, R., Reichheld, J. P., & Riondet, C. (2020). Redox Modification of the Iron-Sulfur Glutaredoxin GRXS17 Activates Holdase Activity and Protects Plants from Heat Stress. Plant Physiology, 184(2), 676. https://doi.org/10.1104/PP.20.00906
dc.relationMejía-Jiménez, A., Muñoz, C., Jacobsen, H. J., Roca, W. M., & Singh, S. P. (1994). Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theoretical and Applied Genetics, 88(3–4), 324–331. https://doi.org/10.1007/BF00223640
dc.relationMoehring, J., Williams, E. R., & Piepho, H. P. (2014). Efficiency of augmented p‑rep designs in multi‑environmental trials. Theoretical and Applied Genetics, 127(5), 1049–1060. https://doi.org/10.1007/s00122-014-2278-y
dc.relationMoghaddam, S. M., Mamidi, S., Osorno, J. M., Lee, R., Brick, M., Kelly, J., Miklas, P., Urrea, C., Song, Q., Cregan, P., Grimwood, J., Schmutz, J., & McClean, P. E. (2016). Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. The Plant Genome, 9(3), plantgenome2016.02.0012. https://doi.org/10.3835/PLANTGENOME2016.02.0012
dc.relationMohammadi, V., Peyghambari, S. A., Bai, G., Alipour, H., Zhang, G., & Bihamta, M. R. (2019). Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. Plos One, 14(1), e0208614. https://doi.org/10.1371/journal.pone.0208614
dc.relationMurube, E., Campa, A., Song, Q., McClean, P., & Ferreira, J. J. (2020). Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Molecular Breeding, 40(1), 7. https://doi.org/10.1007/s11032-019-1085-1
dc.relationNakano, H., & Kobayashi, M. (1998). Sensitive Stages to Heat Stress in Pod Setting of Common Bean (Phaseolus vulgaris L.). In Jpn. J. Trop. Agr (Vol. 42, Issue 2).
dc.relationNguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300
dc.relationOakey, H., Verbyla, A., Pitchford, W., Cullis, B., & Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113(5), 809–819. https://doi.org/10.1007/s00122-006-0333-z
dc.relationOmae, H., Kumar, A., & Shono, M. (2012). Adaptation to High Temperature and Water Deficit in the Common Bean ( Phaseolus vulgaris L.) during the Reproductive Period . Journal of Botany, 2012, 1–6. https://doi.org/10.1155/2012/803413
dc.relationOsmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Decey, J. W. H., Nobel, P. S., Smith, S. D., & Winner, W. E. (1987). Stress and the Physiology of Plants Distribution. The survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 37(1), 37–48. http://www.jstor.org/stable/1310176%0Ahttp://www.jstor.org/stable/1310176?seq=1&cid=pdf-reference#references_tab_contents%0Ahttp://about.jstor.org/terms
dc.relationParker, J. P., & Michaels, T. E. (1986). Simple Genetic Control of Hybrid Plant Development in Interspecific Crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Plant Breeding, 97(4), 315–323. https://doi.org/10.1111/J.1439-0523.1986.TB01072.X
dc.relationPolania, J., Chaves, N., Lobaton, J., Cajiao, C., Rao, I., Raatz, B., & Beebe, S. (2017). Heat tolerance in common bean derived from interspecific crosses Leveraging legumes to combat poverty, hunger, malnutrition and environmental degradation.
dc.relationPorch, T., Bernsten, R., Rosas, J. C., & Jahn, M. (2017). Climate change and the potential economic benefits of heat-tolerant bean varieties for farmers in Atlántida, Honduras.
dc.relationPorch, T. G., & Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell and Environment, 24(7), 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.x
dc.relationPuechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512
dc.relationRainey, K. M., & Griffiths, P. D. (2005). Differential response of common bean genotypes to high temperature. Journal of the American Society for Horticultural Science, 130(1), 18–23.
dc.relationRaj, A., Stephens, M., & Pritchard, J. K. (2014). FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589. https://doi.org/10.1534/genetics.114.164350
dc.relationRao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., Garcia, R., & Rivera, M. (2013). Can Tepary Bean Be a Model for Improvement of Drought Resistance in Common Bean. African Crop Science Journal, 21(4), 265–281. https://doi.org/10.4314/acsj.v21i4
dc.relationRawlik, K., Canela-Xandri, O., Woolliams, J., & Tenesa, A. (2020). SNP heritability: What are we estimating? BioRxiv, 2020.09.15.276121. https://doi.org/10.1101/2020.09.15.276121
dc.relationRochette, N. C., Rivera‐Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28(21), 4737–4754. https://doi.org/10.1111/mec.15253
dc.relationRomán-Aviles, B., & Beaver, J. S. (2003). Inheritance of heat tolerance in common bean of Andean origin 1. In J. Agrie. Univ. P.R (Vol. 87, Issue 4).
dc.relationSantiago, J. P., Soltani, A., Bresson, M. M., Preiser, A. L., Lowry, D. B., & Sharkey, T. D. (2021). Contrasting anther glucose‐6‐phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant, Cell & Environment, 44(7), 2185. https://doi.org/10.1111/PCE.14057
dc.relationSantiago, J. P., Ward, J. M., & Sharkey, T. D. (2020). Phaseolus vulgaris SUT1.1 is a high affinity sucrose‐proton co‐transporter. Plant Direct, 4(8). https://doi.org/10.1002/PLD3.260
dc.relationSchmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S. M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M. A., Chovatia, M., … Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008
dc.relationSchoonhove, A., & Pastor-Corrales, M. (1987). Sistema Estándar para la Evaluación de Germoplasma de Frijol. 56.
dc.relationScott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., Clark, M., Dell’Acqua, M., Dixon, L. E., Filippi, C. V., Fradgley, N., Gardner, K. A., Mackay, I. J., O’Sullivan, D., Percival-Alwyn, L., Roorkiwal, M., Singh, R. K., Thudi, M., Varshney, R. K., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. In Heredity (Vol. 125, Issue 6, pp. 396–416). Springer Nature. https://doi.org/10.1038/s41437-020-0336-6
dc.relationShonnard, G. C., & Gepts, P. (1994). Genetics of Heat Tolerance during Reproductive Development in Common Bean. Crop Science, 34(5), 1168–1175. https://doi.org/10.2135/cropsci1994.0011183X003400050005x
dc.relationSingh, S. P., & Voysest, O. (1996). Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina. In Taller de Mejoramiento de Frijol para el siglo XXI. Bases para una Estrategia para América Latina.
dc.relationSoltani, A., Weraduwage, S. M., Sharkey, T. D., & Lowry, D. B. (2019). Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 2019 20:1, 20(1), 1–18. https://doi.org/10.1186/S12864-019-5669-2
dc.relationSouter, J. R., Gurusamy, V., Porch, T. G., & Bett, K. E. (2017). Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Science, 57(3), 1160–1171. https://doi.org/10.2135/cropsci2016.10.0851
dc.relationSuárez, J. C., Polanía, J. A., Contreras, A. T., Rodríguez, L., Machado, L., Ordoñez, C., Beebe, S., & Rao, I. M. (2020). Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance. Euphytica, 216(2). https://doi.org/10.1007/s10681-020-2565-4
dc.relationTavaré, S. (1986). Some Probabilistic and Statistical Problems in the Analysisi of DNA Sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.
dc.relationTello, D., Gil, J., Loaiza, C. D., Riascos, J. J., Cardozo, N., & Duitama, J. (2019). NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. https://doi.org/10.1093/bioinformatics/btz275
dc.relationTibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome-wide association studies in plants. In Plant Genome (Vol. 14, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/tpg2.20077
dc.relationToro, O., Tohme, J., & Debouck, D. (1990). Wild bean (Phaseolus vulgaris L.):Descriptión and distribution.
dc.relationVargas, Y., Manuel, V., ¤a, M.-D., Buendia, H. F., Ruiz-Guzman, H., & Raatzid, B. (2021). Physiological and genetic characterization of heat stress effects in a common bean RIL population. https://doi.org/10.1371/journal.pone.0249859
dc.relationVaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H. J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. Critical Reviews in Plant Sciences, 34, 105–143. https://doi.org/10.1080/07352689.2014.897907
dc.relationWahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011
dc.relationWray, N. R., & Maier, R. (2014). Genetic Basis of Complex Genetic Disease: The Contribution of Disease Heterogeneity to Missing Heritability. Current Epidemiology Reports, 1(4), 220–227. https://doi.org/10.1007/s40471-014-0023-3
dc.relationYu, G. (2020). Using ggtree to Visualize Data on Tree-Like Structures. Current Protocols in Bioinformatics, 69(1), e96. https://doi.org/10.1002/cpbi.96
dc.relationZheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606
dc.rightsAtribución-NoComercial 4.0 Internacional
dc.rightshttp://creativecommons.org/licenses/by-nc/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.titleIdentificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius
dc.typeTesis


Este ítem pertenece a la siguiente institución