dc.contributor | Beebe, Steve | |
dc.contributor | López Diana Carolina | |
dc.creator | Cruz Ruiz, Sergio Andres | |
dc.date.accessioned | 2022-03-23T21:34:35Z | |
dc.date.accessioned | 2022-09-21T16:26:26Z | |
dc.date.available | 2022-03-23T21:34:35Z | |
dc.date.available | 2022-09-21T16:26:26Z | |
dc.date.created | 2022-03-23T21:34:35Z | |
dc.date.issued | 2022-03-17 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81344 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3392789 | |
dc.description.abstract | Varios estudios han demostrado que Phaseolus acutifolius A. Gray es una fuente potencial
de genes asociados a la tolerancia al calor que pueden ser utilizados para mejorar la
adaptación del fríjol común (P. vulgaris L.) a las condiciones de alta temperatura, sin
embargo, hasta ahora la base genética de esta resistencia es desconocida por ello se
construyó una población de mapeo genético interespecífica entre P. acutifolius A. Gray y P.
vulgaris L. con la cual se evaluaron componentes de rendimiento bajo condiciones
controladas de alta temperatura (/25°C dia/noche, respectivamente). La población de mapeo
genético se secuenció mediante el método de genotipado por secuenciación (Genotyping By
sequencing, GBS), posteriormente se realizó un análisis de asociación genética con dos
modelos de asociación genética para delimitar las regiones genómicas candidatas asociadas
con la resistencia al estrés por calor encontrándose 31 asociaciones significativas para las
variables: número de vainas, número de semillas por planta, peso promedio de semillas,
índice de cosecha de vaina, número de vainas vanas por planta y rendimiento por planta. Se
encontraron asociaciones que presentaron un efecto positivo y provinieron de los parentales
silvestres de P. acutifolius A. Gray. Los genes presentes en las asociaciones significativas
se relacionaron con la respuesta canónica al estrés por calor y a la señalización con
fitohormonas como las auxinas y el etileno. (Texto tomado de la fuente) | |
dc.description.abstract | Several studies have shown that Phaseolus actifolius A. Gray is a potential source of genes
associated with heat tolerance that can be used to improve the adaptation of common bean
(P. vulgaris L.) to high temperature conditions, however, so far the genetic basis of this
resistance is still unknown, therefore an interspecific genetic mapping population was
constructed between P. acutifolius A. Gray and P. vulgaris L. to evaluate yield components
under high temperature conditions. The genetic mapping population was sequenced using
the Genotyping By sequencing (GBS) method, then a genetic association analysis was
performed with the mixed linear models to delimit candidate genomic regions associated
with resistance to heat stress, finding significant associations for the variables: number of
pods and yield per plant that were associated with a positive effect came from the wild
parents of P. acutifolius A. Gray. The genes present in the significant associations were
related to the canonical response to heat stress and to the signaling that may be involved in
the expression of these genes. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Palmira - Ciencias Agropecuarias - Maestría en Ciencias Agrarias | |
dc.publisher | Facultad de Ciencias Agrarias | |
dc.publisher | Palmira | |
dc.publisher | Universidad Nacional de Colombia - Sede Palmira | |
dc.relation | Alqudah, A. M., Sallam, A., Stephen Baenziger, P., & Börner, A. (2020). GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley – A review. In Journal of Advanced Research (Vol. 22, pp. 119–135). Elsevier B.V. https://doi.org/10.1016/j.jare.2019.10.013 | |
dc.relation | Ambawat, S., Sharma, P., Yadav, N. R., & Yadav, R. C. (2013). MYB transcription factor genes as regulators for plant responses: an overview. Physiology and Molecular Biology of Plants, 19(3), 307. https://doi.org/10.1007/S12298-013-0179-1 | |
dc.relation | Andrade‐Aguilar, J. A., & Jackson, M. T. (1988). Attempts at Interspecific Hybridization Between Phaseolus vulgaris L. and P. acutifolius A. Gray‐Using Embryo Rescue. Plant Breeding, 101(3), 173–180. https://doi.org/10.1111/j.1439-0523.1988.tb00285.x | |
dc.relation | Baird, L. M., & Caruso, K. J. (1994). Development of root nodules in Phaseolus vulgaris inoculated with rhizobium and mycorrhizal fungi. International Journal of Plant Sciences, 55(6), 633–639. https://doi.org/10.1086/297203 | |
dc.relation | Barrera, S., Escobar, R., & Beebe, S. E. (2018). ADVANCED INTERSPECIFIC HYBRIDS OF COMMON BEAN & TEPARY BEAN WITHOUT EMBRYO RESCUE. BEAN IMPROVEMENT COOPERATIVE, 43–44. https://www.researchgate.net/profile/Ana-Kawashima/publication/333965285_PREDADOR_AND_PARASITOID_ARTROPOD’S_OCCURRENCE_IN_COMMON_BEAN_Phaseolus_vulgaris_L_CULTIVATED_IN_THE_STATE_OF_PARANA_BRAZIL/links/5d0eed89299bf1547c77309c/PREDADOR-AND-PARASITOID-ARTR | |
dc.relation | Barrett, J. C., Fry, B., Maller, J., & Daly, M. J. (2005). Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics, 21(2), 263–265. https://doi.org/10.1093/BIOINFORMATICS/BTH457 | |
dc.relation | Beebe, Stephen, Rao, I., Blair, M., & Acosta, J. (2013). Phenotyping common beans for adaptation to drought. Frontiers in Physiology, 0, 35. https://doi.org/10.3389/FPHYS.2013.00035 | |
dc.relation | Beebe, Steven. (2012). Common Bean Breeding in the Tropics. Plant Breeding Reviews, 36, 357–426. https://doi.org/10.1002/9781118358566.ch5 | |
dc.relation | Beebe, Steven, & Villegas, J. (2013). Potential benefits from heat-tolerant common beans under climate change. | |
dc.relation | Bitocchi, E., Rau, D., Bellucci, E., Rodriguez, M., Murgia, M. L., Gioia, T., Santo, D., Nanni, L., Attene, G., & Papa, R. (2017). Beans (Phaseolus ssp.) as a Model for Understanding Crop Evolution. Frontiers in Plant Science, 8(May), 1–21. https://doi.org/10.3389/fpls.2017.00722 | |
dc.relation | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/10.1093/bioinformatics/btu170 | |
dc.relation | Cajiao, C., Kornegay, J., & Ramirez, H. F. (1998). Cruzamiento dentro y entre acervos genéticos y hábitos de crecimiento para incrementar la tolerancia al calor en fríjoles andinos volubles. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina. | |
dc.relation | Chacón S, M. I., Pickersgill, B., & Debouck, D. G. (2005). Domestication patterns in common bean (Phaseolus vulgaris L.) and the origin of the Mesoamerican and Andean cultivated races. Theoretical and Applied Genetics, 110(3), 432–444. https://doi.org/10.1007/s00122-004-1842-2 | |
dc.relation | Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought - From genes to the whole plant. Functional Plant Biology, 30(3), 239–264. https://doi.org/10.1071/FP02076 | |
dc.relation | Coyne, D. P., Schuster, M. L., & Al-Yasiri, S. (1963). Reaction studies of bean species and varieties to common blight and bacterial wilt. Plant Disease Reporter, 47(6), 534–537. | |
dc.relation | Debouck, D. G. (1979). Algunos aspectos morfologicos y agronomicos de otras especies de Phaseolus. Posibilidades para hibridacion interespecifica. https://hdl.handle.net/10568/71390 | |
dc.relation | Debouck, D., & Hida, R. (1998). Introducción MORFOLOGIA DE LA PLANTA DE FRIJOL COMUN. https://cgspace.cgiar.org/bitstream/handle/10568/81884/morfologia-7eba331e.pdf?sequence=1 | |
dc.relation | Delfini, J., Moda-Cirino, V., dos Santos Neto, J., Zeffa, D. M., Nogueira, A. F., Ribeiro, L. A. B., Ruas, P. M., Gepts, P., & Gonçalves, L. S. A. (2021). Genome-Wide Association Study Identifies Genomic Regions for Important Morpho-Agronomic Traits in Mesoamerican Common Bean. Frontiers in Plant Science, 12, 2249. https://doi.org/10.3389/FPLS.2021.748829/BIBTEX | |
dc.relation | Doyle, J. J., & Doyle, J. L. (1987). A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. 11–15. | |
dc.relation | Elshire, R. J., Glaubitz, J. C., Sun, Q., Poland, J. A., Kawamoto, K., Buckler, E. S., & Mitchell, S. E. (2011a). A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE, 6(5), 1–10. https://doi.org/10.1371/journal.pone.0019379 | |
dc.relation | Farooq, M., Nadeem, F., Gogoi, N., Ullah, A., Alghamdi, S. S., Nayyar, H., & Siddique, K. H. M. (2017). Heat stress in grain legumes during reproductive and grain-filling phases. Crop and Pasture Science, 68(10–11), 985–1005. https://doi.org/10.1071/CP17012 | |
dc.relation | Faure, B., Benitez, R., & Carballo, R. M. (1996). Mejoramiento del Fríjol común para la tolerancia a altas temperaturas. In Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina (pp. 79–86). CIAT. | |
dc.relation | Feller, V. C., Bleiholder, H., Buhr, L., Hack, H., Heẞ, M., Klose, R., Meier, U., Stauẞ, R., van den Boom, T., & Webe, E. (1995). II . Fruchtgemuse und Hulsenfruchte. 47(9). | |
dc.relation | Fernandez, F., Gepts, P., & López, M. (1986). Etapas de desarrollo de la planta de frijol común (Phaseolus vulgaris L.). CIAT. | |
dc.relation | Freytag, G. F., & Debouck, D. G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. BRIT. | |
dc.relation | Gao, X., Becker, L. C., Becker, D. M., Starmer, J. D., & Province, M. A. (2010). Avoiding the high Bonferroni penalty in genome-wide association studies. Genetic Epidemiology, 34(1), 100. https://doi.org/10.1002/GEPI.20430 | |
dc.relation | Gao, X., Starmer, J., & Martin, E. R. (2008). A multiple testing correction method for genetic association studies using correlated single nucleotide polymorphisms. Genetic Epidemiology, 32(4), 361–369. https://doi.org/10.1002/gepi.20310 | |
dc.relation | García-Fernández, C., Campa, A., Garzón, A. S., Miklas, P., & Ferreira, J. J. (2021). GWAS of pod morphological and color characters in common bean. BMC Plant Biology, 21(1), 184. https://doi.org/10.1186/s12870-021-02967-x | |
dc.relation | Garvin, D. F., Federici, C. T., Stockinger, E. J., & Waines, J. G. (1997). Genetic marker transmission in early generation common x tepary bean hybrids. Journal of Heredity, 88(6), 537–540. https://doi.org/10.1093/oxfordjournals.jhered.a023153 | |
dc.relation | Gaut, B. S. (2014). The complex domestication history of the common bean. In Nature Genetics (Vol. 46, Issue 7, pp. 663–664). Nature Publishing Group. https://doi.org/10.1038/ng.3017 | |
dc.relation | Ge, S. X., Jung, D., Jung, D., & Yao, R. (2020). ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics, 36(8), 2628. https://doi.org/10.1093/BIOINFORMATICS/BTZ931 | |
dc.relation | Gepts, P. (1981). Introducción a las hibridacioenes interespecíficas con el fríjol común. CIAT. | |
dc.relation | Gepts, P. (1988). Genetic Resources of Phaseolus Beans (P. Gepts (ed.); Vol. 6, Issue x). Springer Netherlands. https://doi.org/10.1007/978-94-009-2786-5 | |
dc.relation | Gil, A. M. (2011). La selección asistida por marcadores (MAS, “Markerassisted selection”) en el mejoramiento genético del tomate (Solanum lycopersicum L.). http://www.sgn.cornell.edu/about/solanum | |
dc.relation | Gross, Y., & Kigel, J. (1991). The Effect of Temperature on the Production and Abscission of Flowers and Pods in Snap Bean (Phaseolus vulgaris L.). Annals of Botany, 67(5), 391–399. https://doi.org/10.1093/oxfordjournals.aob.a088173 | |
dc.relation | Gross, Y., & Kigel, J. (1994). Differential sensitivity to high temperature of stages in the reproductive development of common bean (Phaseolus vulgaris L.). Field Crops Research, 36(3), 201–212. https://doi.org/10.1016/0378-4290(94)90112-0 | |
dc.relation | Huang, M., Liu, X., Zhou, Y., Summers, R. M., & Zhang, Z. (2018). BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. GigaScience, 8(2), 1–12. https://doi.org/10.1093/gigascience/giy154 | |
dc.relation | Janni, M., Gullì, M., Maestri, E., Marmiroli, M., Valliyodan, B., Nguyen, H. T., Marmiroli, N., & Foyer, C. (2020). Molecular and genetic bases of heat stress responses in crop plants and breeding for increased resilience and productivity. Journal of Experimental Botany, 71(13), 3780–3802. https://doi.org/10.1093/jxb/eraa034 | |
dc.relation | Jones, A. L. (1999). PHASEOLUS BEAN: Post-harvest Operations. In Lexicon of Pulse Crops. https://doi.org/10.1201/b22282-13 | |
dc.relation | Kaler, A. S., Gillman, J. D., Beissinger, T., & Purcell, L. C. (2020). Comparing Different Statistical Models and Multiple Testing Corrections for Association Mapping in Soybean and Maize. Frontiers in Plant Science, 10(February), 1–13. https://doi.org/10.3389/fpls.2019.01794 | |
dc.relation | Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. Nature Methods, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923 | |
dc.relation | Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/JSS.V025.I01 | |
dc.relation | Lipka, A. E., Tian, F., Wang, Q., Peiffer, J., Li, M., Bradbury, P. J., Gore, M. A., Buckler, E. S., & Zhang, Z. (2012). GAPIT: Genome association and prediction integrated tool. Bioinformatics, 28(18), 2397–2399. https://doi.org/10.1093/bioinformatics/bts444 | |
dc.relation | Lobaton, J. D., Miller, T., Gil, J., Ariza, D., de la Hoz, J. F., Soler, A., Beebe, S., Duitama, J., Gepts, P., & Raatz, B. (2018). Resequencing of common bean identifies regions of inter–gene pool introgression and provides comprehensive resources for molecular breeding. Plant Genome, 11(2), 1–21. https://doi.org/10.3835/plantgenome2017.08.0068 | |
dc.relation | MacQueen, A. H., White, J. W., Lee, R., Osorno, J. M., Schmutz, J., Miklas, P. N., Myers, J., McClean, P. E., & Juenger, T. E. (2019). Genetic Associations in Four Decades of Multi-Environment Trials Reveal Agronomic Trait Evolution in Common Bean. BioRxiv, 215(May), 267–284. https://doi.org/10.1101/734087 | |
dc.relation | Martinez Rojo, J. (2010). Tolerance to sub-zero temperatures in Phaseolus acutifolius and development of interspecies hybrids with P. vulgaris. University of Saskatchewan. | |
dc.relation | Martins, L., Knuesting, J., Bariat, L., Dard, A., Freibert, S. A., Marchand, C. H., Young, D., Dung, N. H. T., Voth, W., Debures, A., Saez-Vasquez, J., Lemaire, S. D., Lill, R., Messens, J., Scheibe, R., Reichheld, J. P., & Riondet, C. (2020). Redox Modification of the Iron-Sulfur Glutaredoxin GRXS17 Activates Holdase Activity and Protects Plants from Heat Stress. Plant Physiology, 184(2), 676. https://doi.org/10.1104/PP.20.00906 | |
dc.relation | Mejía-Jiménez, A., Muñoz, C., Jacobsen, H. J., Roca, W. M., & Singh, S. P. (1994). Interspecific hybridization between common and tepary beans: increased hybrid embryo growth, fertility, and efficiency of hybridization through recurrent and congruity backcrossing. Theoretical and Applied Genetics, 88(3–4), 324–331. https://doi.org/10.1007/BF00223640 | |
dc.relation | Moehring, J., Williams, E. R., & Piepho, H. P. (2014). Efficiency of augmented p‑rep designs in multi‑environmental trials. Theoretical and Applied Genetics, 127(5), 1049–1060. https://doi.org/10.1007/s00122-014-2278-y | |
dc.relation | Moghaddam, S. M., Mamidi, S., Osorno, J. M., Lee, R., Brick, M., Kelly, J., Miklas, P., Urrea, C., Song, Q., Cregan, P., Grimwood, J., Schmutz, J., & McClean, P. E. (2016). Genome-Wide Association Study Identifies Candidate Loci Underlying Agronomic Traits in a Middle American Diversity Panel of Common Bean. The Plant Genome, 9(3), plantgenome2016.02.0012. https://doi.org/10.3835/PLANTGENOME2016.02.0012 | |
dc.relation | Mohammadi, V., Peyghambari, S. A., Bai, G., Alipour, H., Zhang, G., & Bihamta, M. R. (2019). Imputation accuracy of wheat genotyping-by-sequencing (GBS) data using barley and wheat genome references. Plos One, 14(1), e0208614. https://doi.org/10.1371/journal.pone.0208614 | |
dc.relation | Murube, E., Campa, A., Song, Q., McClean, P., & Ferreira, J. J. (2020). Toward validation of QTLs associated with pod and seed size in common bean using two nested recombinant inbred line populations. Molecular Breeding, 40(1), 7. https://doi.org/10.1007/s11032-019-1085-1 | |
dc.relation | Nakano, H., & Kobayashi, M. (1998). Sensitive Stages to Heat Stress in Pod Setting of Common Bean (Phaseolus vulgaris L.). In Jpn. J. Trop. Agr (Vol. 42, Issue 2). | |
dc.relation | Nguyen, L. T., Schmidt, H. A., Von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300 | |
dc.relation | Oakey, H., Verbyla, A., Pitchford, W., Cullis, B., & Kuchel, H. (2006). Joint modeling of additive and non-additive genetic line effects in single field trials. Theoretical and Applied Genetics, 113(5), 809–819. https://doi.org/10.1007/s00122-006-0333-z | |
dc.relation | Omae, H., Kumar, A., & Shono, M. (2012). Adaptation to High Temperature and Water Deficit in the Common Bean ( Phaseolus vulgaris L.) during the Reproductive Period . Journal of Botany, 2012, 1–6. https://doi.org/10.1155/2012/803413 | |
dc.relation | Osmond, C. B., Austin, M. P., Berry, J. A., Billings, W. D., Boyer, J. S., Decey, J. W. H., Nobel, P. S., Smith, S. D., & Winner, W. E. (1987). Stress and the Physiology of Plants Distribution. The survival of plants in any ecosystem depends on their physiological reactions to various stresses of the environment. BioScience, 37(1), 37–48. http://www.jstor.org/stable/1310176%0Ahttp://www.jstor.org/stable/1310176?seq=1&cid=pdf-reference#references_tab_contents%0Ahttp://about.jstor.org/terms | |
dc.relation | Parker, J. P., & Michaels, T. E. (1986). Simple Genetic Control of Hybrid Plant Development in Interspecific Crosses between Phaseolus vulgaris L. and P. acutifolius A. Gray. Plant Breeding, 97(4), 315–323. https://doi.org/10.1111/J.1439-0523.1986.TB01072.X | |
dc.relation | Polania, J., Chaves, N., Lobaton, J., Cajiao, C., Rao, I., Raatz, B., & Beebe, S. (2017). Heat tolerance in common bean derived from interspecific crosses Leveraging legumes to combat poverty, hunger, malnutrition and environmental degradation. | |
dc.relation | Porch, T., Bernsten, R., Rosas, J. C., & Jahn, M. (2017). Climate change and the potential economic benefits of heat-tolerant bean varieties for farmers in Atlántida, Honduras. | |
dc.relation | Porch, T. G., & Jahn, M. (2001). Effects of high-temperature stress on microsporogenesis in heat-sensitive and heat-tolerant genotypes of Phaseolus vulgaris. Plant, Cell and Environment, 24(7), 723–731. https://doi.org/10.1046/j.1365-3040.2001.00716.x | |
dc.relation | Puechmaille, S. J. (2016). The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Molecular Ecology Resources, 16(3), 608–627. https://doi.org/10.1111/1755-0998.12512 | |
dc.relation | Rainey, K. M., & Griffiths, P. D. (2005). Differential response of common bean genotypes to high temperature. Journal of the American Society for Horticultural Science, 130(1), 18–23. | |
dc.relation | Raj, A., Stephens, M., & Pritchard, J. K. (2014). FastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics, 197(2), 573–589. https://doi.org/10.1534/genetics.114.164350 | |
dc.relation | Rao, I., Beebe, S., Polania, J., Ricaurte, J., Cajiao, C., Garcia, R., & Rivera, M. (2013). Can Tepary Bean Be a Model for Improvement of Drought Resistance in Common Bean. African Crop Science Journal, 21(4), 265–281. https://doi.org/10.4314/acsj.v21i4 | |
dc.relation | Rawlik, K., Canela-Xandri, O., Woolliams, J., & Tenesa, A. (2020). SNP heritability: What are we estimating? BioRxiv, 2020.09.15.276121. https://doi.org/10.1101/2020.09.15.276121 | |
dc.relation | Rochette, N. C., Rivera‐Colón, A. G., & Catchen, J. M. (2019). Stacks 2: Analytical methods for paired‐end sequencing improve RADseq‐based population genomics. Molecular Ecology, 28(21), 4737–4754. https://doi.org/10.1111/mec.15253 | |
dc.relation | Román-Aviles, B., & Beaver, J. S. (2003). Inheritance of heat tolerance in common bean of Andean origin 1. In J. Agrie. Univ. P.R (Vol. 87, Issue 4). | |
dc.relation | Santiago, J. P., Soltani, A., Bresson, M. M., Preiser, A. L., Lowry, D. B., & Sharkey, T. D. (2021). Contrasting anther glucose‐6‐phosphate dehydrogenase activities between two bean varieties suggest an important role in reproductive heat tolerance. Plant, Cell & Environment, 44(7), 2185. https://doi.org/10.1111/PCE.14057 | |
dc.relation | Santiago, J. P., Ward, J. M., & Sharkey, T. D. (2020). Phaseolus vulgaris SUT1.1 is a high affinity sucrose‐proton co‐transporter. Plant Direct, 4(8). https://doi.org/10.1002/PLD3.260 | |
dc.relation | Schmutz, J., McClean, P. E., Mamidi, S., Wu, G. A., Cannon, S. B., Grimwood, J., Jenkins, J., Shu, S., Song, Q., Chavarro, C., Torres-Torres, M., Geffroy, V., Moghaddam, S. M., Gao, D., Abernathy, B., Barry, K., Blair, M., Brick, M. A., Chovatia, M., … Jackson, S. A. (2014). A reference genome for common bean and genome-wide analysis of dual domestications. Nature Genetics, 46(7), 707–713. https://doi.org/10.1038/ng.3008 | |
dc.relation | Schoonhove, A., & Pastor-Corrales, M. (1987). Sistema Estándar para la Evaluación de Germoplasma de Frijol. 56. | |
dc.relation | Scott, M. F., Ladejobi, O., Amer, S., Bentley, A. R., Biernaskie, J., Boden, S. A., Clark, M., Dell’Acqua, M., Dixon, L. E., Filippi, C. V., Fradgley, N., Gardner, K. A., Mackay, I. J., O’Sullivan, D., Percival-Alwyn, L., Roorkiwal, M., Singh, R. K., Thudi, M., Varshney, R. K., … Mott, R. (2020). Multi-parent populations in crops: a toolbox integrating genomics and genetic mapping with breeding. In Heredity (Vol. 125, Issue 6, pp. 396–416). Springer Nature. https://doi.org/10.1038/s41437-020-0336-6 | |
dc.relation | Shonnard, G. C., & Gepts, P. (1994). Genetics of Heat Tolerance during Reproductive Development in Common Bean. Crop Science, 34(5), 1168–1175. https://doi.org/10.2135/cropsci1994.0011183X003400050005x | |
dc.relation | Singh, S. P., & Voysest, O. (1996). Taller de mejoramiento de fríjol para el siglo XXI. Bases para una estrategia para America Latina. In Taller de Mejoramiento de Frijol para el siglo XXI. Bases para una Estrategia para América Latina. | |
dc.relation | Soltani, A., Weraduwage, S. M., Sharkey, T. D., & Lowry, D. B. (2019). Elevated temperatures cause loss of seed set in common bean (Phaseolus vulgaris L.) potentially through the disruption of source-sink relationships. BMC Genomics 2019 20:1, 20(1), 1–18. https://doi.org/10.1186/S12864-019-5669-2 | |
dc.relation | Souter, J. R., Gurusamy, V., Porch, T. G., & Bett, K. E. (2017). Successful introgression of abiotic stress tolerance from wild tepary bean to common bean. Crop Science, 57(3), 1160–1171. https://doi.org/10.2135/cropsci2016.10.0851 | |
dc.relation | Suárez, J. C., Polanía, J. A., Contreras, A. T., Rodríguez, L., Machado, L., Ordoñez, C., Beebe, S., & Rao, I. M. (2020). Adaptation of common bean lines to high temperature conditions: genotypic differences in phenological and agronomic performance. Euphytica, 216(2). https://doi.org/10.1007/s10681-020-2565-4 | |
dc.relation | Tavaré, S. (1986). Some Probabilistic and Statistical Problems in the Analysisi of DNA Sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86. | |
dc.relation | Tello, D., Gil, J., Loaiza, C. D., Riascos, J. J., Cardozo, N., & Duitama, J. (2019). NGSEP3: Accurate variant calling across species and sequencing protocols. Bioinformatics, 35(22), 4716–4723. https://doi.org/10.1093/bioinformatics/btz275 | |
dc.relation | Tibbs Cortes, L., Zhang, Z., & Yu, J. (2021). Status and prospects of genome-wide association studies in plants. In Plant Genome (Vol. 14, Issue 1). John Wiley and Sons Inc. https://doi.org/10.1002/tpg2.20077 | |
dc.relation | Toro, O., Tohme, J., & Debouck, D. (1990). Wild bean (Phaseolus vulgaris L.):Descriptión and distribution. | |
dc.relation | Vargas, Y., Manuel, V., ¤a, M.-D., Buendia, H. F., Ruiz-Guzman, H., & Raatzid, B. (2021). Physiological and genetic characterization of heat stress effects in a common bean RIL population. https://doi.org/10.1371/journal.pone.0249859 | |
dc.relation | Vaz Patto, M. C., Amarowicz, R., Aryee, A. N. A., Boye, J. I., Chung, H. J., Martín-Cabrejas, M. A., & Domoney, C. (2015). Achievements and Challenges in Improving the Nutritional Quality of Food Legumes. Critical Reviews in Plant Sciences, 34, 105–143. https://doi.org/10.1080/07352689.2014.897907 | |
dc.relation | Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61(3), 199–223. https://doi.org/10.1016/j.envexpbot.2007.05.011 | |
dc.relation | Wray, N. R., & Maier, R. (2014). Genetic Basis of Complex Genetic Disease: The Contribution of Disease Heterogeneity to Missing Heritability. Current Epidemiology Reports, 1(4), 220–227. https://doi.org/10.1007/s40471-014-0023-3 | |
dc.relation | Yu, G. (2020). Using ggtree to Visualize Data on Tree-Like Structures. Current Protocols in Bioinformatics, 69(1), e96. https://doi.org/10.1002/cpbi.96 | |
dc.relation | Zheng, X., Levine, D., Shen, J., Gogarten, S. M., Laurie, C., & Weir, B. S. (2012). A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics, 28(24), 3326–3328. https://doi.org/10.1093/bioinformatics/bts606 | |
dc.rights | Atribución-NoComercial 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Identificación de QTLs asociados a la resistencia al estrés por calor usando poblaciones de fríjol común interespecíficas derivadas de Phaseolus acutifolius | |
dc.type | Tesis | |