dc.contributor | Díaz Moreno, Amanda Consuelo | |
dc.contributor | Zuluaga Domínguez, Carlos Mario | |
dc.contributor | Bioalimentos | |
dc.creator | Diaz Villamizar, Maria Angelica | |
dc.date.accessioned | 2022-08-16T15:10:47Z | |
dc.date.accessioned | 2022-09-21T16:24:57Z | |
dc.date.available | 2022-08-16T15:10:47Z | |
dc.date.available | 2022-09-21T16:24:57Z | |
dc.date.created | 2022-08-16T15:10:47Z | |
dc.date.issued | 2022-08-15 | |
dc.identifier | https://repositorio.unal.edu.co/handle/unal/81913 | |
dc.identifier | Universidad Nacional de Colombia | |
dc.identifier | Repositorio Institucional Universidad Nacional de Colombia | |
dc.identifier | https://repositorio.unal.edu.co/ | |
dc.identifier.uri | http://repositorioslatinoamericanos.uchile.cl/handle/2250/3392505 | |
dc.description.abstract | Para evaluar cómo el origen y época de cosecha del café afectan los perfiles de compuestos volátiles, en este estudio se empleó de nariz electrónica y análisis estadístico multivariado para la caracterización de cinco muestras de café colombiano, tostado en grano y tostado molido, recolectadas en distintas épocas de cosecha (junio y diciembre) de tres fincas cafeteras en zonas del país (Caldas, Huila y Sierra Nevada de Santa Marta). Para ello, se estandarizaron los parámetros de operación en una nariz electrónica comercial (10 sensores semiconductores de óxido de metal) para café tostado, variando el tiempo de equilibrio del headspace y flujo de gas. Con estos parámetros estandarizados y junto a análisis fisicoquímicos y sensoriales se describieron las muestras. El análisis de datos se efectuó con análisis univariados y bivariados para los resultados fisicoquímicos, análisis no paramétrico y análisis de correspondencia (AC) para los resultados del panel sensorial, análisis multivariado (análisis de componentes principales (PCA), análisis de clústeres jerárquico (HCA), y análisis factorial multivariante (MFA)) para los resultados obtenidos por la nariz electrónica. Las características aromáticas del café tostado por origen sí permitieron una separación por origen, y la influencia de la época de cosecha se encontró significativa para los parámetros fisicoquímicos, pero no permitió una separación por clases con el perfil aromático. Se observó a través de esta exploración, que la nariz electrónica es una alternativa práctica y confiable de valoración y descripción del perfil aromático para café tostado que puede ser empleada para análisis rutinarios a nivel industrial. (Texto tomado de la fuente) | |
dc.description.abstract | To evaluate how the origin and harvest time of coffee affect the profiles of volatile compounds, this study used electronic nose and multivariate statistical analysis to characterize five samples of Colombian coffee, roasted beans and ground roasted, collected in different harvest times (June and December) of three coffee farms in areas of the country (Caldas, Huila, and Sierra Nevada de Santa Marta). For this, the operating parameters were standardized in a commercial electronic nose (10 metal oxide semiconductor sensors) for roasted coffee, varying the headspace equilibrium time and gas flow. With these standardized parameters and together with physicochemical and sensory analyses, the samples were described. Data analysis was performed with univariate and bivariate analyzes for the physicochemical results, nonparametric analysis, and correspondence analysis (CA) for the sensory panel results, multivariate analysis (principal component analysis (PCA), hierarchical cluster analysis (HCA), and multivariate factor analysis (MFA)) for the results obtained by the electronic nose. The aromatic characteristics of roasted coffee by origin did allow a separation by classes, and the influence of the harvest season was found to be significant for the physicochemical parameters, but it did not allow a separation by classes with the aromatic profile. Through this exploration, it was observed that the electronic nose is a practical and reliable alternative for the evaluation and description of the aromatic profile for roasted coffee that can be used for routine analyzes at an industrial level. | |
dc.language | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher | Bogotá - Ciencias Agrarias - Maestría en Ciencia y Tecnología de Alimentos | |
dc.publisher | Instituto de Ciencia y Tecnología de Alimentos (ICTA) | |
dc.publisher | Facultad de Ciencias Agrarias | |
dc.publisher | Bogotá, Colombia | |
dc.publisher | Universidad Nacional de Colombia - Sede Bogotá | |
dc.relation | RedCol | |
dc.relation | LaReferencia | |
dc.relation | Abdelwareth, A., Zayed, A., & Farag, M. A. (2021). Chemometrics-based aroma profiling for
revealing origin, roasting indices, and brewing method in coffee seeds and its commercial
blends in the Middle East. Food Chemistry, 349.
https://doi.org/10.1016/j.foodchem.2021.129162 | |
dc.relation | Aishima, T. (1991). Aroma Discrimination by Pattern Recognition Analysis of Responses from
Semiconductor Gas Sensor Array. In J. Agric. Food Chem (Vol. 39). | |
dc.relation | Alkarkhi, A. F. M., & Alqaraghuli, W. A. A. (2019). Factor Analysis. Easy Statistics for Food
Science with R, 143–159. https://doi.org/10.1016/B978-0-12-814262-2.00009-1 | |
dc.relation | Arcila, P. J. (2007a). Crecimiento y desarrollo de la planta de café. In Sistemas de producción
de café en Colombia (pp. 22–60) | |
dc.relation | Arcila, P. J. (2007b). Enovación y administración de los cafetales para estabilizar la producción
de la finca. In Sistemas de producción de café (pp. 146–160). | |
dc.relation | Backhaus, K., Erichson, B., Gensler, S., Weiber, R., & Weiber, T. (2021). Multivariate Analysis | |
dc.relation | Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). Chemometrics: A Practical Guide. Wiley.
https://books.google.com.co/books/about/Chemometrics.html?id=EzcvAQAAIAAJ&redir_
esc=y | |
dc.relation | Belitz, H. D., Grosch, W., & Schieberle, P. (2009). Food chemistry. In Food Chemistry. Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-540-69934-7 | |
dc.relation | Benavides, P. M., Góngora, C. E. B., Acuña, J. R. Z., Molina, D. M. v, & Salazar, L. F. G. (2021).
Aplicación de ciencia tecnología e innovación en el cultivo del café ajustado a las
condiciones particulares del Huila: Vol. 2. 2015-2021. In Aplicación de ciencia tecnología e
innovación en el cultivo del café ajustado a las condiciones particulares del Huila: Vol. 2.
2015-2021. Cenicafé. https://doi.org/10.38141/cenbook-0008 | |
dc.relation | Bertrand, B., Boulanger, R., Dussert, S., Ribeyre, F., Berthiot, L., Descroix, F., & Joët, T. (2012).
Climatic factors directly impact the volatile organic compound fingerprint in green Arabica
coffee bean as well as coffee beverage quality. Food Chemistry, 135(4), 2575–2583.
https://doi.org/10.1016/j.foodchem.2012.06.060 | |
dc.relation | Bodner, M., Morozova, K., Kruathongsri, P., Thakeow, P., & Scampicchio, M. (2019). Effect of
harvesting altitude, fermentation time and roasting degree on the aroma released by coffee
powder monitored by proton transfer reaction mass spectrometry. European Food
Research and Technology, 245(7), 1499–1506. https://doi.org/10.1007/s00217-019-
03281-5 | |
dc.relation | Bona, E., & da Silva, R. S. D. S. F. (2016). Coffee and the Electronic Nose. In Electronic Noses
and Tongues in Food Science (pp. 31–38). Elsevier Inc. https://doi.org/10.1016/B978-0-12-
800243-8.00004-4 | |
dc.relation | Boo, C. G., Hong, S. J., & Shin, E. C. (2021). Comparative evaluation of the volatile profiles and
taste properties of commercial coffee products using electronic nose, electronic tongue,
and GC/MSD. Journal of the Korean Society of Food Science and Nutrition, 50(8), 810–
822. https://doi.org/10.3746/jkfn.2021.50.8.810 | |
dc.relation | Builes, R. V. (2014). La fenología del café, una herramienta para apoyar la toma de decisiones.
www.cenicafe.org | |
dc.relation | Buitrago, O. J., Tinoco, H. A., Perdomo, H. L., Rincón, J. A., Ocampo, O., Berrio, L. v, Pineda,
M. F., & López, G. J. (2022). Physical-mechanical characterization of coffee fruits Coffea
arabica L. var. Castillo classified by a colorimetry approach. Materialia, 21, 101330.
https://doi.org/10.1016/J.MTLA.2022.101330 | |
dc.relation | Buratti, S., Benedetti, S., & Giovanelli, G. (2017). Application of electronic senses to characterize
espresso coffees brewed with different thermal profiles. European Food Research and
Technology, 243(3), 511–520. https://doi.org/10.1007/s00217-016-2769-y | |
dc.relation | Cárdenas, G. J. (1993). Industria del café en Colombia. | |
dc.relation | Carvalho, L. C. C., da Silva, F. M., Ferraz, G. A. E. S., Stracieri, J., Ferraz, P. F. P., &
Ambrosano, L. (2017). Geostatistical analysis of arabic coffee yield in two crop seasons.
Revista Brasileira de Engenharia Agricola e Ambiental, 21(6), 410–414.
https://doi.org/10.1590/1807-1929/agriambi.v21n6p410-414 | |
dc.relation | Castañeda, A. L. (2018). RIIIT. Revista internacional de investigación e innovación tecnológica.
In RIIIT. Revista internacional de investigación e innovación tecnológica (Vol. 6, Issue 33).
Centro Kappa de Conocimiento S.C (CKC).
http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S2007-
97532018000300004&lng=es&nrm=iso&tlng=es | |
dc.relation | Caudillo, O. N. A., Salas, A. A. G., Blancas, H. L. E., Lona, L. S. P., Rocha, M. M. A., Mares, M.
E., & Rivera, D. C. (2020). Investigación y Desarrollo en Ciencia y Tecnología de Alimentos Análisis químico del café variedad arábica durante el proceso del tostado artesanal (Vol.
5). | |
dc.relation | Ceballos, D. A. C., Meneses, J. A. M., Luna, D. A. R., Lopez, C. A. G., Garcia, J. H., &
Narvaez, J. A. G. (2020, November 4). Estudio de fragancia y aroma del café tostado con
la nariz electrónica Coffee-NOSE. 2020 9th International Congress of Mechatronics
Engineering and Automation, CIIMA 2020 - Conference Proceedings.
https://doi.org/10.1109/CIIMA50553.2020.9290177 | |
dc.relation | Cenicafé. (2012). Recolección del café. | |
dc.relation | Cenicafé. (2021). Guía más agronomía, más productividad, más calidad. Cenicafé.
https://doi.org/10.38141/cenbook-0014 | |
dc.relation | Cid, M. C., & de Peña, M. P. (2015). Coffee: Analysis and Composition. In Encyclopedia of Food
and Health (pp. 225–231). Elsevier Inc. https://doi.org/10.1016/B978-0-12-384947-
2.00185-9 | |
dc.relation | Cincotta, F., Tripodi, G., Merlino, M., Verzera, A., & Condurso, C. (2020). Variety and shelf-life
of coffee packaged in capsules. LWT, 118, 108718.
https://doi.org/10.1016/J.LWT.2019.108718 | |
dc.relation | Clarke, R. T., & Greenacre, M. J. (1985). Theory and Applications of Correspondence Analysis.
In The Journal of Animal Ecology (Vol. 54, Issue 3). https://doi.org/10.2307/4399 | |
dc.relation | Córdoba, N., Moreno, F. L., Osorio, C., Velásquez, S., Fernández, A. M., & Ruiz, P. Y. (2021).
Specialty and regular coffee bean quality for cold and hot brewing: Evaluation of sensory
profile and physicochemical characteristics. LWT, 145, 111363.
https://doi.org/10.1016/J.LWT.2021.111363 | |
dc.relation | Cruz, O. R., Piraneque, G. N., & Aguirre, F. S. (2020). Physicochemical, microbiological, and
sensory analysis of fermented coffee from Sierra Nevada of Santa Marta, Colombia. Coffee
Science, 15(1), 1–6. https://doi.org/10.25186/.V15I.179 | |
dc.relation | Daba, G., Helsen, K., Berecha, G., Lievens, B., Debela, A., & Honnay, O. (2019). Seasonal and
altitudinal differences in coffee leaf rust epidemics on coffee berry disease-resistant
varieties in Southwest Ethiopia. Tropical Plant Pathology, 44(3), 244–250.
https://doi.org/10.1007/s40858-018-0271-8 | |
dc.relation | Dan, D. C., Liu, Y., Chen, P. Y., Feng, X., Lu, Y., & Yu, B. (2020). Application of SPME-GC TOFMS, E-nose, and sensory evaluation to investigate the flavor characteristics of Chinese
Yunnan coffee at three different conditions (beans, ground powder, and brewed coffee).
https://doi.org/10.1002/ffj.3597 | |
dc.relation | de Assis Silva, S., de Souza LIMA, J. S., & Alves, A. I. (2010). Spatial study of grain yield and
percentage of bark of two varieties of Coffea arabica L. to the production of quality coffee.
Bioscience Journal, 26(4), 558–565. | |
dc.relation | de Carvalho Neto, P. D., Vinícius de Melo Pereira, G., A Tanobe, V. O., Thomaz Soccol, V.,
José da Silva, B. G., Rodrigues, C., & Ricardo Soccol, C. (2017). Yeast Diversity and
Physicochemical Characteristics Associated with Coffee Bean Fermentation from the
Brazilian Cerrado Mineiro Region. https://doi.org/10.3390/fermentation3010011 | |
dc.relation | de Melo Pereira, G. v., de Carvalho Neto, D. P., Magalhães Júnior, A. I., Vásquez, Z. S.,
Medeiros, A. B. P., Vandenberghe, L. P. S., & Soccol, C. R. (2019). Exploring the impacts
of postharvest processing on the aroma formation of coffee beans – A review. Food
Chemistry, 272(August 2018), 441–452. https://doi.org/10.1016/j.foodchem.2018.08.061 | |
dc.relation | Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and
Engineering: B, 229, 206–217. https://doi.org/10.1016/J.MSEB.2017.12.036 | |
dc.relation | Di Donfrancesco, B., Gutierrez Guzman, N., & Chambers, E. (2019). Similarities and differences
in sensory properties of high-quality Arabica coffee in a small region of Colombia. Food
Research International, 116, 645–651. https://doi.org/10.1016/j.foodres.2018.08.090 | |
dc.relation | Dong, W., Hu, R., Long, Y., Li, H., Zhang, Y., Zhu, K., & Chu, Z. (2019). Comparative evaluation
of the volatile profiles and taste properties of roasted coffee beans as affected by drying
method and detected by electronic nose, electronic tongue, and HS-SPME-GC-MS. Food
Chemistry, 272, 723–731. https://doi.org/10.1016/j.foodchem.2018.08.068 | |
dc.relation | Dou, T. X., Shi, J. F., Li, Y., Bi, F. C., Gao, H. J., Hu, C. H., Li, C. Y., Yang, Q. S., Deng, G. M.,
Sheng, O., He, W. di, Yi, G. J., & Dong, T. (2020). Influence of harvest season on volatile
aroma constituents of two banana cultivars by electronic nose and HS-SPME coupled with
GC-MS. Scientia Horticulturae, 265. https://doi.org/10.1016/j.scienta.2020.109214 | |
dc.relation | Durán, C. (2005). Diseño y optimización de los subsistemas de un sistema de olfato electrónico
para aplicaciones agroalimentarias e industriales. | |
dc.relation | Durán, C., Acevedo, M., Gualdron, E., Guerrero, O., & Hernández, M. O. (2014). Nariz
electrónica para determinar el índice de madurez del tomate de árbol (Cyphomandra
Betacea Sendt). http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-
77432014000300003 | |
dc.relation | Echeverria, G., Correa, E., Ruiz-Altisent, M., Graell, J., Puy, J., & Lopez, L. (2004). Erratum:
Characterization of Fuji apples from different harvest dates and storage conditions from
measurements of volatiles by gas chromatography and electronic nose (Journal of
Agricultural and Food Chemistry (2004) 52 (3069)). In Journal of Agricultural and Food
Chemistry (Vol. 52, Issue 14, p. 4582). https://doi.org/10.1021/jf040262a | |
dc.relation | Federación Nacional de Cafeteros. (2022a). Cafés Suaves.
https://federaciondecafeteros.org/wp/glosario/cafes-suaves/#:~:text=Las%20principales%20variedades%20de%20caf%C3%A9,Caturra%20y
%20la%20Variedad%20Castillo. | |
dc.relation | Federación Nacional de Cafeteros. (2022b). Producción de café de Colombia en 2020 fue de
13,9 millones de sacos. https://federaciondecafeteros.org/wp/listado-noticias/produccion de-cafe-de-colombia-en-2020-fue-de-139-millones-de sacos/#:~:text=Producci%C3%B3n%20de%20caf%C3%A9%20de%20Colombia,sacos%
20%2D%20Federaci%C3%B3n%20Nacional%20de%20Cafeteros | |
dc.relation | Fisk, I. D., Kettle, A., Hofmeister, S., Virdie, A., & Kenny, J. S. (2012). Discrimination of roast
and ground coffee aroma. http://www.flavourjournal.com/content/1/1/14 | |
dc.relation | Flambeau, K. J., Lee, W. J., & Yoon, J. (2017). Discrimination and geographical origin prediction
of washed specialty Bourbon coffee from different coffee growing areas in Rwanda by using
electronic nose and electronic tongue. Food Science and Biotechnology, 26(5), 1245–1254.
https://doi.org/10.1007/s10068-017-0168-1 | |
dc.relation | Flores, V. H., & Ku, L. C. (2011). Diseño de una nariz electrónica como discriminador de olores
utilizando Algoritmos Genéticos y Redes Neuronales Artificiales. | |
dc.relation | Fraden, J. (2010). Handbook of Modern Sensors. In Handbook of Modern Sensors. Springer
New York. https://doi.org/10.1007/978-1-4419-6466-3 | |
dc.relation | Frank, I. E., & Todeschini, R. (1994). The Data Analysis Handbook -. Elsevier B.V.
https://books.google.com.co/books?id=SXEpB0H6L3YC&printsec=frontcover&hl=es&sour
ce=gbs_ge_summary_r&cad=0#v=onepage&q&f=false | |
dc.relation | Gardner, J. W., & Bartlett, P. N. (1994). A brief history of electronic noses. Sensors and
Actuators: B. Chemical, 18(1–3), 210–211. https://doi.org/10.1016/0925-4005(94)87085-3 | |
dc.relation | Gardner, J. W., Shurmer, H. v., & Tan, T. T. (1992). Application of an electronic nose to the
discrimination of coffees. Sensors and Actuators: B. Chemical, 6(1–3), 71–75.
https://doi.org/10.1016/0925-4005(92)80033-T | |
dc.relation | Giraldo, P. J. R., Sanz, J. R. U., & Oliveros, C. E. T. (2010). Identificación y clasificación de
frutos de café en tiempo real, a través de la medición de color. | |
dc.relation | Gómez, L., Caballero, A., & Baldión, J. V. (1991). Ecotopos cafeteros de Colombia. Cenicafé,
Agroclimatología División de Desarrollo Social, 138.
http://biblioteca.cenicafe.org/bitstream/10778/818/1/lib13731.pdf | |
dc.relation | Guzmán, R. B. V. (2012). Seguimiento de la producción del aroma del yogurt durante la
fermentación ácido láctica mediante nariz electrónica y evaluación sensorial. | |
dc.relation | Hong, X., Wang, J., & Qiu, S. (2014). Authenticating cherry tomato juices—Discussion of
different data standardization and fusion approaches based on electronic nose and tongue. Food Research International, 60, 173–179.
https://doi.org/10.1016/J.FOODRES.2013.10.03 | |
dc.relation | Hu, Z., Wang, H., & Liu, Y. (2013). The applied research on discrimination of volatile substance
of rice using electronic nose. Journal of the Chinese Cereals and Oils Association, 28(7),
93–98. | |
dc.relation | IDEAM, MinAgricultura, & Mesa Técnica Agroclimática Nacional. (2020). Boletín Agroclimático
Nacional. | |
dc.relation | Jaramillo, R. A. (2016). Épocas recomendadas para la siembra del café en Colombia.
www.cenicafe.org | |
dc.relation | Khamitova, G., Angeloni, S., Borsetta, G., Xiao, J., Maggi, F., Sagratini, G., Vittori, S., & Caprioli,
G. (2020). Optimization of espresso coffee extraction through variation of particle sizes,
perforated disk height and filter basket aimed at lowering the amount of ground coffee used.
Food Chemistry, 314, 126220. https://doi.org/10.1016/J.FOODCHEM.2020.126220 | |
dc.relation | Knysak, D. (2017). Volatile compounds profiles in unroasted Coffea arabica and Coffea
canephora beans from different countries. Food Science and Technology, 37(3), 444–448.
https://doi.org/10.1590/1678-457x.19216 | |
dc.relation | la República. (2019). Tecnología en sector cafetero para atraer al consumidor milenial.
https://www.larepublica.co/internet-economy/tecnologia-en-sector-cafetero-para-atraer-al consumidor-milenial-2909894 | |
dc.relation | Liberto, E., Bressanello, D., Strocchi, G., Cordero, C., Ruosi, M. R., Pellegrino, G., Bicchi, C., &
Sgorbini, B. (2019). HS-SPME-MS-enose coupled with chemometrics as an analytical
decision maker to predict in-cup coffee sensory quality in routine controls: Possibilities and
limits. Molecules, 24(24). https://doi.org/10.3390/molecules24244515 | |
dc.relation | Maekawa, T., Cai, K., Suzuki, K., Dougami, N., Takada, T., & Egashira, M. (2001).
Compensatory methods for the odor concentration in an electronic nose system using
software and hardware. Sensors and Actuators, B: Chemical, 76(1–3), 430–435.
https://doi.org/10.1016/S0925-4005(01)00651-7 | |
dc.relation | Mahmud, M. M. C., Shellie, R. A., & Keast, R. (2020). Unravelling the relationship between
aroma compounds and consumer acceptance: Coffee as an example. Comprehensive
Reviews in Food Science and Food Safety, 19(5), 2380–2420.
https://doi.org/10.1111/1541-4337.12595 | |
dc.relation | Makimori, G. Y. F., & Bona, E. (2019). Commercial Instant Coffee Classification Using an
Electronic Nose in Tandem with the ComDim-LDA Approach. Food Analytical Methods,
12(5), 1067–1076. https://doi.org/10.1007/s12161-019-01443-5 | |
dc.relation | Manganaro, A., Ballabio, D., Consonni, V., Mauri, A., Pavan, M., & Todeschini, R. (2008).
Chapter 9 The DART (Decision Analysis by Ranking Techniques) Software. Data Handling
in Science and Technology, 27, 193–207. https://doi.org/10.1016/S0922-3487(08)10009-0 | |
dc.relation | Marín, S., Arcila, J., Montoya, E., & Oliveros, C. (2003). Cambios físicos y químicos durante la
maduración del fruto de café (Coffea arabica L. var. Colombia). Cenifcafé, 54(3), 208–225. | |
dc.relation | Michishita, T., Akiyama, M., Hirano, Y., Ikeda, M., Sagara, Y., & Araki, T. (2010). Gas
Chromatography/Olfactometry and Electronic Nose Analyses of Retronasal Aroma of
Espresso and Correlation with Sensory Evaluation by an Artificial Neural Network. Journal
of Food Science, 75(9). https://doi.org/10.1111/j.1750-3841.2010.01828.x | |
dc.relation | Moreno, I., Caballero, R., Galán, R., Matía, F., & Jiménez, A. (2009). La Nariz Electrónica:
Estado del Arte. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 6(3),
76–91. https://doi.org/10.1016/s1697-7912(09)70267-5 | |
dc.relation | Oestreich, J. S. (2010). Chemistry of coffee. In Comprehensive Natural Products II: Chemistry
and Biology (Vol. 3, pp. 1085–1117). Elsevier Ltd. https://doi.org/10.1016/b978-
008045382-8.00708-5 | |
dc.relation | Osorio, V., Pabón, J., Calderón, P. A., & Imbachi, L. C. (2021a). Calidad física, sensorial y
composición química del café cultivado en el departamento del Huila. Revista Cenicafé,
72(2), e72201. https://doi.org/10.38141/10778/72201 | |
dc.relation | Osorio, V., Pabón, J., Calderón, P. A., & Imbachi, L. C. (2021b). Calidad física, sensorial y
composición química del café cultivado en el departamento del Huila. Revista Cenicafé,
72(2), e72201. https://doi.org/10.38141/10778/72201 | |
dc.relation | Otiveros, C. E. T., & Gonzalo, R. (1985). Coeficiente de fricción, angulo de reposo, densidades
aparentes de granos de café Coffea arabica variedad Caturra. | |
dc.relation | Pardo, M., Niederjaufner, G., Benussi, G., Comini, E., Faglia, G., Sberveglieri, G., Holmberg, M.,
& Lundstrom, I. (2000). Data preprocessing enhances the classification of different brands
of Espresso coffee with an electronic nose. Sensors and Actuators, B: Chemical, 69(3),
397–403. https://doi.org/10.1016/S0925-4005(00)00499-8 | |
dc.relation | Patel, H. K. (2014). The Electronic Nose: Artificial Olfaction Technology. In Biological and
Medical Physics. http://www.springer.com/series/3740 | |
dc.relation | Pearce, T. C., Schiffman, S. S., Nagle, H. T., & Gardner, J. W. (2003). Handbook of Machine
Olfaction. | |
dc.relation | Puerta, G. I. Q. (2006). La humedad controlada del grano preserva la calidad del café. | |
dc.relation | Puerta, I., & Rojas, G. (2017). Aromas del café. Cenicafé. | |
dc.relation | Puerta, Q. G. I. (1998). Calidad en taza de las variedades de Coffea arábica L. cultivadas en
Colombia (Vol. 49, Issue 4). | |
dc.relation | Puerta, Q. G. I. (2011). Composición química de una taza de café. www.cenicafe.org | |
dc.relation | Puerta, Q. G. I. (2016). Calidad física del café de varias regiones de Colombia según altitud,
suelos y buenas prácticas de beneficio (Vol. 67, Issue 1). | |
dc.relation | Puerta, Q. G. I., Bolívar, F. C. P., & Gallego, A. C. P. (2017). Composición química de elementos
minerales en café verde y tostado, con relación a suelos y altitud. Cenicafé, 68(2), 28–60. | |
dc.relation | Puerta, Q. G. I. (2000). Influencia de los granos de café cosechados verdes en la calidad física
y organoléptica de la bebida. In 136 Cenicafé (Vol. 51, Issue 2). | |
dc.relation | Quicazán, M. C., Díaz, A. C., & Zuluaga, C. M. (2011). La nariz electrónica, una novedosa
Herramienta para el control de procesos y calidad en la industria agroalimentaria. | |
dc.relation | Ramírez, M. A., Salgado, C. M. A., Rodríguez, J. G. C., García, A. M. A., Cherblanc, F., & Benet,
J. C. (2013). Water transport in parchment and endosperm of coffee bean. Journal of Food
Engineering, 114, 375–383. https://doi.org/10.1016/j.jfoodeng.2012.08.028ï | |
dc.relation | Rendón, J., Arcila, J., & Montoya, E. (2008). Estimación de la producción de café con base en
los registros de floración. Cenicafé, 59(3), 238–259. | |
dc.relation | Ribeiro, D. E., Borém, F. M., Nunes, C. A. ônio, Alves, A. P. de C., Santos, C. M. dos S., Taveira,
J. H. da S., & Dias, L. L. de C. (2018). Profile of Organic Acids and Bioactive Compounds
in. Coffee Science, 13(2), 187–197. | |
dc.relation | Rodríguez, J., Durán, C., & Reyes, A. (2010). Electronic nose for quality control of Colombian
coffee through the detection of defects in “Cup Tests.” Sensors, 10(1), 36–46.
https://doi.org/10.3390/s100100036 | |
dc.relation | Rodríguez, N., Sanz, J., Oliveros, C., & Ramírez, C. (2015). Beneficio de café en Colombia. In
Avances Técnicos Cenicafé. | |
dc.relation | Sadeghian, K. S. (2008). Fertilidad del suelo y nutrición de café en Colombia. 44.
https://doi.org/0120-047-X | |
dc.relation | Sadeghian, K. S., Mejía, M. B., & Arcila, P. (2006). Composición elemental de frutos de café y
extracción de nutrientes por la cosecha en la zona cafetera de Colombia (Vol. 57, Issue 4). | |
dc.relation | Salamanca, A., & González, O. H. (2020). Respuesta del café a la aplicación foliar de nutrientes.
Revista Cenicafé, 71(2), 124–142. https://doi.org/10.38141/10778/71210 | |
dc.relation | Santinato, F., Ruas, R. A. A., da Silva, R. P., Paixão, C. S. S., & Ormond, A. T. S. (2019).
Morphological and productive influence of harvest on coffee plants. Australian Journal of
Crop Science, 13(1), 144–150. https://doi.org/10.21475/ajcs.19.13.01.p6955 | |
dc.relation | Sberveglieri, V., Concina, I., Falasconi, M., Ongo, E., Pulvirenti, A., & Fava, P. (2011).
Identification of geographical origin of coffee before and after roasting by electronic noses.
AIP Conference Proceedings, 1362, 86–87. https://doi.org/10.1063/1.3626316 | |
dc.relation | Sergi, A. :, & Bosch, R. (2001). Diseño y realización de una nariz electrónica para la
discriminación de aceites. | |
dc.relation | Su, M., Ye, Z., Zhang, B., & Chen, K. (2017). Ripening season, ethylene production and
respiration rate are related to fruit non-destructively-analyzed volatiles measured by an
electronic nose in 57 peach (Prunus persica L.) samples. Emirates Journal of Food and
Agriculture, 29(10), 807–814. https://doi.org/10.9755/ejfa.2017.v29.i10.696 | |
dc.relation | Su, M., Zhang, B., Ye, Z., Chen, K., Guo, J., Gu, X., & Shen, J. (2013). Pulp volatiles measured
by an electronic nose are related to harvest season, TSS concentration and TSS/TA ratio
among thirty-nine peaches and nectarines. Scientia Horticulturae, 150, 146–153.
https://doi.org/10.1016/j.scienta.2012.10.020 | |
dc.relation | Tan, J., & Xu, J. (2020). Applications of electronic nose (e-nose) and electronic tongue (e tongue) in food quality-related properties determination: A review. Artificial Intelligence in
Agriculture, 4, 104–115. https://doi.org/10.1016/J.AIIA.2020.06.003 | |
dc.relation | Thepudom, T., Sricharoenchai, N., & Kerdcharoen, T. (2013). Classification of instant coffee
odors by electronic nose toward quality control of production. 2013 10th International
Conference on Electrical Engineering/Electronics, Computer, Telecommunications, and
Information Technology, ECTI-CON 2013. https://doi.org/10.1109/ECTICon.2013.6559482 | |
dc.relation | Tiggemann, L., Ballen, S. C., Bocalon, C. M., Graboski, A. M., Manzoli, A., Steffens, J., Valduga,
E., & Steffens, C. (2017). Electronic nose system based on polyaniline films sensor array
with different dopants for discrimination of artificial aromas. Innovative Food Science and
Emerging Technologies, 43, 112–116. https://doi.org/10.1016/j.ifset.2017.08.003 | |
dc.relation | Toci, A. T., & Farah, A. (2014). Volatile fingerprint of Brazilian defective coffee seeds:
Corroboration of potential marker compounds and identification of new low quality | |
dc.relation | Varmuza, K., & Filzmoser, P. (2009). Introduction to multivariate statistical analysis in
chemometrics | |
dc.relation | Velásquez, S., Peña, N., Bohórquez, J. C., Gutiérrez, N., & Sacks, G. L. (2019). Volatile and
sensory characterization of roast coffees – Effects of cherry maturity. Food Chemistry,
274(May 2018), 137–145. https://doi.org/10.1016/j.foodchem.2018.08.127 | |
dc.relation | Velez, J., Montoya, E., & Oliveros, C. (1999). Estudio de tiempos y movimientos para el
mejoramiento de la cosecha manual del café. | |
dc.relation | Vignoli, J. A., Viegas, M. C., Bassoli, D. G., & Benassi, M. de T. (2014). Roasting process affects
differently the bioactive compounds and the antioxidant activity of arabica and robusta
coffees. Food Research International, 61, 279–285.
https://doi.org/10.1016/j.foodres.2013.06.006 | |
dc.relation | Virtualpro. (2022). La nariz de café (le nez du café). https://www.virtualpro.co/files bv/20170401/20170401-003/secciones/la-nariz.html | |
dc.relation | Wang, G., Wang, J., & Xue, X. (2018). Fruit quality and volatile compounds of ‘Jinhong’ plums
harvested at different times. Acta Horticulturae, 1214, 117–123.
https://doi.org/10.17660/ActaHortic.2018.1214.2 | |
dc.relation | Wang, X., Wang, Y., Hu, G., Hong, D., Guo, T., Li, J., Li, Z., & Qiu, M. (2022). Review on factors
affecting coffee volatiles: from seed to cup. In Journal of the Science of Food and
Agriculture (Vol. 102, Issue 4, pp. 1341–1352). John Wiley and Sons Ltd.
https://doi.org/10.1002/jsfa.11647 | |
dc.relation | Yang, N., Liu, C., Liu, X., Degn, T. K., Munchow, M., & Fisk, I. (2016). Determination of volatile
marker compounds of common coffee roast defects. Food Chemistry, 211, 206–214.
https://doi.org/10.1016/j.foodchem.2016.04.124 | |
dc.relation | Yeretzian, C., Opitz, S., Smrke, S., & Wellinger, M. (2019). CHAPTER 33. Coffee Volatile and
Aroma Compounds – From the Green Bean to the Cup. In Coffee (pp. 726–770). Royal
Society of Chemistry. https://doi.org/10.1039/9781782622437-00726 | |
dc.relation | Zhang, L., Tian, F., & Zhang, D. (2018). Electronic Nose: Algorithmic Challenges. | |
dc.relation | Zuluaga, C. M. D., Díaz Moreno, A. C., & Quicazán de Cuenca, M. C. (2014). Nariz Electrónica
Fundamentos, Manejo de Datos y Aplicación en Productos Apícolas | |
dc.rights | Atribución-SinDerivadas 4.0 Internacional | |
dc.rights | http://creativecommons.org/licenses/by-nd/4.0/ | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.title | Evaluación del perfil aromático de café colombiano de distintas zonas y épocas de cosecha, usando de nariz electrónica y análisis estadístico multivariado | |
dc.type | Tesis | |