dc.relation | [1] Steven Weinberg. A model of leptons. Phys. Rev. Lett., 19:1264–1266, Nov 1967.
[2] Abdus Salam. Weak and Electromagnetic Interactions. Conf. Proc., C680519:367–377,
1968.
[3] Sheldon L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics,
22(4):579 – 588, 1961.
[4] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A.A. Abdelalim, O. Abdinov, R. Aben, B. Abi, and et al. M. Abolins. Observation of a new particle in the
search for the standard model higgs boson with the atlas detector at the lhc. Physics
Letters B, 716(1):1 – 29, 2012.
[5] Super-Kamiokande Collaboration. Evidence for oscillation of atmospheric neutrinos.
Phys. Rev. Lett., 81:1562–1567, Aug 1998.
[6] Carlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astrophysics.
2007.
[7] Rabindra N. Mohapatra. Mechanism for understanding small neutrino mass in superstring theories. Phys. Rev. Lett., 56:561–563, Feb 1986.
[8] E. Cataño M., R Martínez, and F. Ochoa. Neutrino masses in a 331 model with righthanded neutrinos without doubly charged higgs bosons via inverse and double seesaw
mechanisms. Phys. Rev. D, 86:073015, Oct 2012.
[9] Howard Georgi. The flavor problem. Physics Letters B, 169(2):231 – 233, 1986.
[10] G. Bernardi, M. Carena, and T. Junk. Higgs Bosons, theory and searches. 2008.
[11] H. Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436 – 440, 1977.
[12] H. Fritzsch and J. Plankl. Mixing of quark flavors. Phys. Rev. D, 35:1732–1735, Mar
1987.
[13] C.D. Froggatt and H.B. Nielsen. Hierarchy of quark masses, cabibbo angles and cp
violation. Nuclear Physics B, 147(3):277 – 298, 1979.
[14] K. S. Babu and Ernest Ma. Natural hierarchy of radiatively induced majorana neutrino
masses. Phys. Rev. Lett., 61:674–677, Aug 1988.
[15] Ernest Ma. Radiative quark and lepton masses induced by a fourth generation. Phys.
Rev. Lett., 62:1228–1231, Mar 1989.
[16] Zhi zhong Xing. Implications of the quark mass hierarchy on flavour mixings. Journal
of Physics G: Nuclear and Particle Physics, 23(11):1563–1578, nov 1997.
[17] Nima Arkani-Hamed and Martin Schmaltz. Hierarchies without symmetries from extra
dimensions. Phys. Rev. D, 61:033005, Jan 2000.
[18] K. Yoshioka. On fermion mass hierarchy with extra dimensions. Modern Physics Letters
A, 15(01):29–39, 2000.
[19] Naoyuki Haba and Hitoshi Murayama. Anarchy and hierarchy: An approach to study
models of fermion masses and mixings. Phys. Rev. D, 63:053010, Feb 2001.
[20] S. F. Mantilla, R. Martinez, and F. Ochoa. Neutrino and cp-even higgs boson masses
in a nonuniversal u(1)0
extension. Phys. Rev. D, 95:095037, May 2017.
[21] R. Martínez, J. Nisperuza, F. Ochoa, and J. P. Rubio. Some phenomenological aspects
of a new u(1)0
model. Phys. Rev. D, 89:056008, Mar 2014.
[22] S. F. Mantilla and R. Martinez. Nonuniversal anomaly-free u(1) model with three higgs
doublets and one singlet scalar field. Phys. Rev. D, 96:095027, Nov 2017.
[23] A. D. Sakharov. Violation of CP Invariance, C asymmetry, and baryon asymmetry of the
universe. Pisma Zh. Eksp. Teor. Fiz., 5:32–35, 1967. [Usp. Fiz. Nauk161,no.5,61(1991)].
[24] J. W. Cronin. The discovery of CP violation. Eur. Phys. J., H36:487–508, 2012.
[25] S.Yu. Khlebnikov and M.E. Shaposhnikov. The statistical theory of anomalous fermion
number non-conservation. Nuclear Physics B, 308(4):885 – 912, 1988.
[26] G. Schierholz. Towards a dynamical solution of the strong CP problem. Nucl. Phys.
Proc. Suppl., 37A(1):203–210, 1994.
[27] M. A. B. Bég and H. S. Tsao. Strong p and t noninvariances in a superweak theory.
Phys. Rev. Lett., 41:278–281, Jul 1978.
[28] Howard Georgi. Model of soft cp violation. Hadronic J.;(United States), 1(1), 1978.
[29] RN Mohapatra. Rn mohapatra and g. senjanovic, phys. lett. 126b, 283 (1978). Phys.
Lett., 126:283, 1978.
[30] Yakov Boris Zel’dovich, I Yu Kobzarev, and Lev Borisovich Okun. Cosmological consequences of spontaneous violation of discrete symmetry. Zh. Eksp. Teor. Fiz., 40:3–11,
1974.
[31] Stephen M Barr. Natural class of non-peccei-quinn models. Physical Review D,
30(8):1805, 1984.
[32] Stephen M Barr. Survey of a new class of models of cp violation. Physical Review D,
34(5):1567, 1986.
[33] Ann Nelson. Naturally weak cp violation. Physics Letters B, 136(5-6):387–391, 1984.
[34] Ann Nelson. Calculation of θ barr. Physics Letters B, 143(1-3):165–170, 1984.
[35] David B Kaplan and Aneesh V Manohar. Current-mass ratios of the light quarks.
Physical Review Letters, 56(19):2004, 1986.
[36] Roberto D Peccei and Helen R Quinn. Cp conservation in the presence of instantons.
Phys. Rev. Lett., 38(ITP-568-STANFORD):1440–1443, 1977.
[37] R. D. Peccei and Helen R. Quinn. Constraints imposed by CP conservation in the
presence of pseudoparticles. Phys. Rev. D, 16:1791–1797, Sep 1977.
[38] Jürg Gasser and Hubert Leutwyler. Quark masses. Physics Reports, 87(3):77–169, 1982.
[39] M Tanabashi, PD Grp, K Hagiwara, K Hikasa, Katsumasa Nakamura, Y Sumino, F Takahashi, J Tanaka, K Agashe, G Aielli, Claude Amsler, Mario Antonelli, DM Asner,
Howard Baer, S Banerjee, RM Barnett, T Basaglia, Christian Bauer, and J. Beatty.
Review of particle physics: Particle data group. Physical Review D, 98, 08 2018.
[40] R. D. Peccei and Helen R. Quinn. CP conservation in the presence of pseudoparticles.
Phys. Rev. Lett., 38:1440–1443, Jun 1977.
[41] Roberto D. Peccei. The Strong CP Problem and Axions, pages 3–17. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2008.
[42] K. C. Freeman. On the Disks of Spiral and S0 Galaxies. , 160:811, Jun 1970.
[43] Douglas Clowe, Anthony Gonzalez, and Maxim Markevitch. Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657-558: Direct Evidence for the Existence
of Dark Matter. , 604(2):596–603, Apr 2004.
[44] Steven Weinberg. Cosmology. Oxford University Press, USA, oup edition, 2008.
[45] Edwin Hubble. A relation between distance and radial velocity among extra-galactic
nebulae. Proceedings of the National Academy of Sciences, 15(3):168–173, 1929.
[46] Louise M. Griffiths, Alessandro Melchiorri, and Joseph Silk. Cosmic Microwave Background Constraints on a Baryonic Dark Matter-dominated Universe. , 553(1):L5–L9,
May 2001.
[47] G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees. Formation of galaxies
and large-scale structure with cold dark matter. , 311:517–525, Oct 1984.
[48] Paul Langacker. The physics of heavy Z
0
gauge bosons. Rev. Mod. Phys., 81:1199–1228,
Aug 2009.
[49] D. Suematsu and Y. Yamagishi. Chaotic inflation based on an abelian d-flat direction.
Modern Physics Letters A, 10(38):2923–2930, 1995.
[50] R.N. Mohapatra. Unification and Supersymmetry: The Frontiers of Quark-Lepton Physics. Graduate Texts in Contemporary Physics. Springer, 2003.
[51] Nima Arkani-Hamed, Andrew G. Cohen, and Howard Georgi. Electroweak symmetry
breaking from dimensional deconstruction. Physics Letters B, 513(1):232 – 240, 2001.
[52] S. Sahoo and L. Maharana. Flavour-changing neutral currents in models with extra z’
boson. Pramana, 63(3):491–507, Sep 2004.
[53] Vernon Barger, Paul Langacker, and Hye-Sung Lee. Primordial nucleosynthesis constraints on Z
0
properties. Phys. Rev. D, 67:075009, Apr 2003.
[54] S. F. King, S. Moretti, and R. Nevzorov. Theory and phenomenology of an exceptional
supersymmetric standard model. Phys. Rev. D, 73:035009, Feb 2006.
[55] Taeil Hur, Hye-Sung Lee, and Salah Nasri. Supersymmetric u(1)0
model with multiple
dark matters. Phys. Rev. D, 77:015008, Jan 2008.
[56] Geneviève Bélanger, Alexander Pukhov, and Géraldine Servant. Dirac neutrino dark
matter. Journal of Cosmology and Astroparticle Physics, 2008(01):009, 2008.
[57] Reinhold A. Bertlmann. Anomalies in quantum field theory. The International series of
monographs on physics 91 Oxford science publications. Clarendon Press, 1996.
[58] M.A. Shifman. Anomalies in gauge theories. Physics Reports, 209(6):341 – 378, 1991.
[59] C. Adam, R. A. Bertlmann, and P. Hofer. Overview on the anomaly and schwinger
term in two-dimensionalqed. La Rivista del Nuovo Cimento (1978-1999), 16(8):1–52,
Aug 1993.
[60] Roberto E. Martínez. Teoría cuántica de campos. Colección Textos. Universidad Nacional de Colombia, 2002.
[61] Dan V. Schroeder Michael E. Peskin. An introduction to quantum field theory. Frontiers
in Physics. Addison-Wesley Pub. Co, 1995.
[62] Kazuo Fujikawa. Path-integral measure for gauge-invariant fermion theories. Phys. Rev.
Lett., 42:1195–1198, Apr 1979.
[63] Mark Srednicki. Quantum field theory. Cambridge University Press, 1 edition, 2007.
[64] Steven Weinberg. The u(1) problem. Phys. Rev. D, 11:3583–3593, Jun 1975.
[65] Steven Weinberg. Quantum theory of fields. Modern applications, volume Volume 2.
Cambridge University Press, 1 edition, 1996.
[66] M. et. al Tanabashi. Review of particle physics. Phys. Rev. D, 98:030001, Aug 2018.
[67] Fu-Guang Cao. Determination of the η-η
0 mixing angle. Phys. Rev. D, 85:057501, Mar
2012.
[68] Ling-Fong Li Ta-Pei Cheng. Gauge theory of elementary particle physics. Oxford
University Press, USA, 2000.
[69] Sidney Coleman. Aspects of symmetry: selected Erice lectures of Sidney Coleman. Cambridge University Press, 1985.
[70] G. ’t Hooft. How instantons solve the u(1) problem. Physics Reports, 142(6):357 – 387,
1986.
[71] A.A. Belavin, A.M. Polyakov, A.S. Schwartz, and Yu.S. Tyupkin. Pseudoparticle solutions of the yang-mills equations. Physics Letters B, 59(1):85 – 87, 1975.
[72] Giovanni Grilli di Cortona, Edward Hardy, Javier Pardo Vega, and Giovanni Villadoro.
The qcd axion, precisely. 2015.
[73] R.J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten. Chiral estimate of the
electric dipole moment of the neutron in quantum chromodynamics. Physics Letters B,
88(1):123 – 127, 1979.
[74] Cumrun Vafa and Edward Witten. Parity conservation in quantum chromodynamics.
Phys. Rev. Lett., 53:535–536, Aug 1984.
[75] Y. Asano, E. Kikutani, S. Kurokawa, T. Miyachi, M. Miyajima, Y. Nagashima, T. Shinkawa, S. Sugimoto, and Y. Yoshimura. Search for a Rare Decay Mode K+ —>pi+
Neutrino anti-neutrino and Axion. Phys. Lett., 107B:159, 1981. [,411(1981)].
[76] G. G. Raffelt. Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles. University of Chicago press, 1996.
[77] Pierre Sikivie. Axion cosmology. 2006.
[78] Jihn E. Kim. Weak-interaction singlet and strong CP invariance. Phys. Rev. Lett.,
43:103–107, Jul 1979.
[79] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov. Can confinement ensure natural cp
invariance of strong interactions? Nuclear Physics B, 166(3):493 – 506, 1980.
[80] Michael Dine, Willy Fischler, and Mark Srednicki. A simple solution to the strong cp
problem with a harmless axion. Physics Letters B, 104(3):199 – 202, 1981.
[81] A.R. Zhitnitsky. On possible suppression of the axion hadron interactions. Soviet
Journal of Nuclear Physics, 31:260, 1980.
[82] Basudeb Dasgupta, Ernest Ma, and Koji Tsumura. Weakly interacting massive particle
dark matter and radiative neutrino mass from peccei-quinn symmetry. Phys. Rev. D,
89:041702, Feb 2014.
[83] S. Bertolini and A. Santamaria. The strong cp problem and the solar neutrino puzzle:
Are they related? Nuclear Physics B, 357(1):222 – 240, 1991. | |