dc.contributorMartínez Martínez, Roberto Enrique
dc.contributorGrupo de Física Teórica de Altas Energías
dc.creatorGarnica Garzón, Yadir Alexander
dc.date.accessioned2020-02-24T15:27:14Z
dc.date.available2020-02-24T15:27:14Z
dc.date.created2020-02-24T15:27:14Z
dc.date.issued2019-07-19
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/75693
dc.description.abstractWe present a non-universal U (1)X extension and an additional global anomala Peccei-Quinn (PQ) symmetry to the standard model (SM). The scheme proposed allow us to distinguish among fermion families without introducing additional discrete symmetries and generating the correct ansatz of mass matrix to obtain the fermionic mass spectrum in SM. The symmetry breakdown is performed by two scalar Higgs doublets and two scalar singlets, where one of these has the excitation associated with the axion-particle which turns out to be a candidate for dark matter. The exotic sector is composed of an invisible axion a, one up-type T and two down-type J1,2 heavy quarks, two heavy charged leptons E, E and one right-handed νR e,μ,τ additional neutrino per family. In addition, the large energy scale associated with the spontaneously breaking (SSB) of the PQ-symmetry provides a solution to the strong CP-problem, also giving masses to the right neutrinos in such manner that the active neutrinos acquire eV -mass values due to the see-saw mechanism implementation. Non-universal extensions, Peccei-Quinn symmetry, chiral anomalies, instantons, effec-
dc.description.abstractEl presente proyecto tiene como objetivo utilizar una extensión U(1)X no universal al modelo estándar que permita explicar el problema de jerarquía de masas. Posteriormente, aplicando una simetría global axial tipo Peccei-Quinn U(1)PQ se pretende obtener un modelo que permita además interpretar el problema CP -fuerte. El esquema propuesto permite distinguir entre familias fermiónicas sin introducir simetrías discretas adicionales, generando los ansatz de matrices de masa correctos para obtener el espectro de masas fermiónico observado experimentalmente en el modelo estándar. El rompimiento espontáneo de las simetrías del modelo es producido por dos dobletes escalares de Higgs y dos singletes, donde uno de estos últimos tiene la excitación asociada con el axion, el cual posee una rica fenomenología estudiada en la literatura. El sector exótico esta compuesto de un axion invisible a, un quark pesado T tipo up y dos quarks pesados J1,2 tipo down, dos leptones pesados cargados E, E y un neutrino derecho νR e,μ,τ adicional por familia. Además, la gran escala de energía asociada con el rompimiento espontáneo de la simetría de PQ permite generar masas para los neutrinos derechos. Así, a través de un mecanismo see-saw tipo I, los neutrinos activos adquieren masas del orden de los eV .
dc.languageeng
dc.publisherDepartamento de Física
dc.publisherUniversidad Nacional de Colombia - Sede Bogotá
dc.relation[1] Steven Weinberg. A model of leptons. Phys. Rev. Lett., 19:1264–1266, Nov 1967. [2] Abdus Salam. Weak and Electromagnetic Interactions. Conf. Proc., C680519:367–377, 1968. [3] Sheldon L. Glashow. Partial-symmetries of weak interactions. Nuclear Physics, 22(4):579 – 588, 1961. [4] G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A.A. Abdelalim, O. Abdinov, R. Aben, B. Abi, and et al. M. Abolins. Observation of a new particle in the search for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B, 716(1):1 – 29, 2012. [5] Super-Kamiokande Collaboration. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett., 81:1562–1567, Aug 1998. [6] Carlo Giunti and Chung W. Kim. Fundamentals of Neutrino Physics and Astrophysics. 2007. [7] Rabindra N. Mohapatra. Mechanism for understanding small neutrino mass in superstring theories. Phys. Rev. Lett., 56:561–563, Feb 1986. [8] E. Cataño M., R Martínez, and F. Ochoa. Neutrino masses in a 331 model with righthanded neutrinos without doubly charged higgs bosons via inverse and double seesaw mechanisms. Phys. Rev. D, 86:073015, Oct 2012. [9] Howard Georgi. The flavor problem. Physics Letters B, 169(2):231 – 233, 1986. [10] G. Bernardi, M. Carena, and T. Junk. Higgs Bosons, theory and searches. 2008. [11] H. Fritzsch. Calculating the cabibbo angle. Physics Letters B, 70(4):436 – 440, 1977. [12] H. Fritzsch and J. Plankl. Mixing of quark flavors. Phys. Rev. D, 35:1732–1735, Mar 1987. [13] C.D. Froggatt and H.B. Nielsen. Hierarchy of quark masses, cabibbo angles and cp violation. Nuclear Physics B, 147(3):277 – 298, 1979. [14] K. S. Babu and Ernest Ma. Natural hierarchy of radiatively induced majorana neutrino masses. Phys. Rev. Lett., 61:674–677, Aug 1988. [15] Ernest Ma. Radiative quark and lepton masses induced by a fourth generation. Phys. Rev. Lett., 62:1228–1231, Mar 1989. [16] Zhi zhong Xing. Implications of the quark mass hierarchy on flavour mixings. Journal of Physics G: Nuclear and Particle Physics, 23(11):1563–1578, nov 1997. [17] Nima Arkani-Hamed and Martin Schmaltz. Hierarchies without symmetries from extra dimensions. Phys. Rev. D, 61:033005, Jan 2000. [18] K. Yoshioka. On fermion mass hierarchy with extra dimensions. Modern Physics Letters A, 15(01):29–39, 2000. [19] Naoyuki Haba and Hitoshi Murayama. Anarchy and hierarchy: An approach to study models of fermion masses and mixings. Phys. Rev. D, 63:053010, Feb 2001. [20] S. F. Mantilla, R. Martinez, and F. Ochoa. Neutrino and cp-even higgs boson masses in a nonuniversal u(1)0 extension. Phys. Rev. D, 95:095037, May 2017. [21] R. Martínez, J. Nisperuza, F. Ochoa, and J. P. Rubio. Some phenomenological aspects of a new u(1)0 model. Phys. Rev. D, 89:056008, Mar 2014. [22] S. F. Mantilla and R. Martinez. Nonuniversal anomaly-free u(1) model with three higgs doublets and one singlet scalar field. Phys. Rev. D, 96:095027, Nov 2017. [23] A. D. Sakharov. Violation of CP Invariance, C asymmetry, and baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz., 5:32–35, 1967. [Usp. Fiz. Nauk161,no.5,61(1991)]. [24] J. W. Cronin. The discovery of CP violation. Eur. Phys. J., H36:487–508, 2012. [25] S.Yu. Khlebnikov and M.E. Shaposhnikov. The statistical theory of anomalous fermion number non-conservation. Nuclear Physics B, 308(4):885 – 912, 1988. [26] G. Schierholz. Towards a dynamical solution of the strong CP problem. Nucl. Phys. Proc. Suppl., 37A(1):203–210, 1994. [27] M. A. B. Bég and H. S. Tsao. Strong p and t noninvariances in a superweak theory. Phys. Rev. Lett., 41:278–281, Jul 1978. [28] Howard Georgi. Model of soft cp violation. Hadronic J.;(United States), 1(1), 1978. [29] RN Mohapatra. Rn mohapatra and g. senjanovic, phys. lett. 126b, 283 (1978). Phys. Lett., 126:283, 1978. [30] Yakov Boris Zel’dovich, I Yu Kobzarev, and Lev Borisovich Okun. Cosmological consequences of spontaneous violation of discrete symmetry. Zh. Eksp. Teor. Fiz., 40:3–11, 1974. [31] Stephen M Barr. Natural class of non-peccei-quinn models. Physical Review D, 30(8):1805, 1984. [32] Stephen M Barr. Survey of a new class of models of cp violation. Physical Review D, 34(5):1567, 1986. [33] Ann Nelson. Naturally weak cp violation. Physics Letters B, 136(5-6):387–391, 1984. [34] Ann Nelson. Calculation of θ barr. Physics Letters B, 143(1-3):165–170, 1984. [35] David B Kaplan and Aneesh V Manohar. Current-mass ratios of the light quarks. Physical Review Letters, 56(19):2004, 1986. [36] Roberto D Peccei and Helen R Quinn. Cp conservation in the presence of instantons. Phys. Rev. Lett., 38(ITP-568-STANFORD):1440–1443, 1977. [37] R. D. Peccei and Helen R. Quinn. Constraints imposed by CP conservation in the presence of pseudoparticles. Phys. Rev. D, 16:1791–1797, Sep 1977. [38] Jürg Gasser and Hubert Leutwyler. Quark masses. Physics Reports, 87(3):77–169, 1982. [39] M Tanabashi, PD Grp, K Hagiwara, K Hikasa, Katsumasa Nakamura, Y Sumino, F Takahashi, J Tanaka, K Agashe, G Aielli, Claude Amsler, Mario Antonelli, DM Asner, Howard Baer, S Banerjee, RM Barnett, T Basaglia, Christian Bauer, and J. Beatty. Review of particle physics: Particle data group. Physical Review D, 98, 08 2018. [40] R. D. Peccei and Helen R. Quinn. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett., 38:1440–1443, Jun 1977. [41] Roberto D. Peccei. The Strong CP Problem and Axions, pages 3–17. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008. [42] K. C. Freeman. On the Disks of Spiral and S0 Galaxies. , 160:811, Jun 1970. [43] Douglas Clowe, Anthony Gonzalez, and Maxim Markevitch. Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657-558: Direct Evidence for the Existence of Dark Matter. , 604(2):596–603, Apr 2004. [44] Steven Weinberg. Cosmology. Oxford University Press, USA, oup edition, 2008. [45] Edwin Hubble. A relation between distance and radial velocity among extra-galactic nebulae. Proceedings of the National Academy of Sciences, 15(3):168–173, 1929. [46] Louise M. Griffiths, Alessandro Melchiorri, and Joseph Silk. Cosmic Microwave Background Constraints on a Baryonic Dark Matter-dominated Universe. , 553(1):L5–L9, May 2001. [47] G. R. Blumenthal, S. M. Faber, J. R. Primack, and M. J. Rees. Formation of galaxies and large-scale structure with cold dark matter. , 311:517–525, Oct 1984. [48] Paul Langacker. The physics of heavy Z 0 gauge bosons. Rev. Mod. Phys., 81:1199–1228, Aug 2009. [49] D. Suematsu and Y. Yamagishi. Chaotic inflation based on an abelian d-flat direction. Modern Physics Letters A, 10(38):2923–2930, 1995. [50] R.N. Mohapatra. Unification and Supersymmetry: The Frontiers of Quark-Lepton Physics. Graduate Texts in Contemporary Physics. Springer, 2003. [51] Nima Arkani-Hamed, Andrew G. Cohen, and Howard Georgi. Electroweak symmetry breaking from dimensional deconstruction. Physics Letters B, 513(1):232 – 240, 2001. [52] S. Sahoo and L. Maharana. Flavour-changing neutral currents in models with extra z’ boson. Pramana, 63(3):491–507, Sep 2004. [53] Vernon Barger, Paul Langacker, and Hye-Sung Lee. Primordial nucleosynthesis constraints on Z 0 properties. Phys. Rev. D, 67:075009, Apr 2003. [54] S. F. King, S. Moretti, and R. Nevzorov. Theory and phenomenology of an exceptional supersymmetric standard model. Phys. Rev. D, 73:035009, Feb 2006. [55] Taeil Hur, Hye-Sung Lee, and Salah Nasri. Supersymmetric u(1)0 model with multiple dark matters. Phys. Rev. D, 77:015008, Jan 2008. [56] Geneviève Bélanger, Alexander Pukhov, and Géraldine Servant. Dirac neutrino dark matter. Journal of Cosmology and Astroparticle Physics, 2008(01):009, 2008. [57] Reinhold A. Bertlmann. Anomalies in quantum field theory. The International series of monographs on physics 91 Oxford science publications. Clarendon Press, 1996. [58] M.A. Shifman. Anomalies in gauge theories. Physics Reports, 209(6):341 – 378, 1991. [59] C. Adam, R. A. Bertlmann, and P. Hofer. Overview on the anomaly and schwinger term in two-dimensionalqed. La Rivista del Nuovo Cimento (1978-1999), 16(8):1–52, Aug 1993. [60] Roberto E. Martínez. Teoría cuántica de campos. Colección Textos. Universidad Nacional de Colombia, 2002. [61] Dan V. Schroeder Michael E. Peskin. An introduction to quantum field theory. Frontiers in Physics. Addison-Wesley Pub. Co, 1995. [62] Kazuo Fujikawa. Path-integral measure for gauge-invariant fermion theories. Phys. Rev. Lett., 42:1195–1198, Apr 1979. [63] Mark Srednicki. Quantum field theory. Cambridge University Press, 1 edition, 2007. [64] Steven Weinberg. The u(1) problem. Phys. Rev. D, 11:3583–3593, Jun 1975. [65] Steven Weinberg. Quantum theory of fields. Modern applications, volume Volume 2. Cambridge University Press, 1 edition, 1996. [66] M. et. al Tanabashi. Review of particle physics. Phys. Rev. D, 98:030001, Aug 2018. [67] Fu-Guang Cao. Determination of the η-η 0 mixing angle. Phys. Rev. D, 85:057501, Mar 2012. [68] Ling-Fong Li Ta-Pei Cheng. Gauge theory of elementary particle physics. Oxford University Press, USA, 2000. [69] Sidney Coleman. Aspects of symmetry: selected Erice lectures of Sidney Coleman. Cambridge University Press, 1985. [70] G. ’t Hooft. How instantons solve the u(1) problem. Physics Reports, 142(6):357 – 387, 1986. [71] A.A. Belavin, A.M. Polyakov, A.S. Schwartz, and Yu.S. Tyupkin. Pseudoparticle solutions of the yang-mills equations. Physics Letters B, 59(1):85 – 87, 1975. [72] Giovanni Grilli di Cortona, Edward Hardy, Javier Pardo Vega, and Giovanni Villadoro. The qcd axion, precisely. 2015. [73] R.J. Crewther, P. Di Vecchia, G. Veneziano, and E. Witten. Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics. Physics Letters B, 88(1):123 – 127, 1979. [74] Cumrun Vafa and Edward Witten. Parity conservation in quantum chromodynamics. Phys. Rev. Lett., 53:535–536, Aug 1984. [75] Y. Asano, E. Kikutani, S. Kurokawa, T. Miyachi, M. Miyajima, Y. Nagashima, T. Shinkawa, S. Sugimoto, and Y. Yoshimura. Search for a Rare Decay Mode K+ —>pi+ Neutrino anti-neutrino and Axion. Phys. Lett., 107B:159, 1981. [,411(1981)]. [76] G. G. Raffelt. Stars as laboratories for fundamental physics: The astrophysics of neutrinos, axions, and other weakly interacting particles. University of Chicago press, 1996. [77] Pierre Sikivie. Axion cosmology. 2006. [78] Jihn E. Kim. Weak-interaction singlet and strong CP invariance. Phys. Rev. Lett., 43:103–107, Jul 1979. [79] M.A. Shifman, A.I. Vainshtein, and V.I. Zakharov. Can confinement ensure natural cp invariance of strong interactions? Nuclear Physics B, 166(3):493 – 506, 1980. [80] Michael Dine, Willy Fischler, and Mark Srednicki. A simple solution to the strong cp problem with a harmless axion. Physics Letters B, 104(3):199 – 202, 1981. [81] A.R. Zhitnitsky. On possible suppression of the axion hadron interactions. Soviet Journal of Nuclear Physics, 31:260, 1980. [82] Basudeb Dasgupta, Ernest Ma, and Koji Tsumura. Weakly interacting massive particle dark matter and radiative neutrino mass from peccei-quinn symmetry. Phys. Rev. D, 89:041702, Feb 2014. [83] S. Bertolini and A. Santamaria. The strong cp problem and the solar neutrino puzzle: Are they related? Nuclear Physics B, 357(1):222 – 240, 1991.
dc.rightsAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleCP-strong problem and U(1)' non-universal symmetry
dc.typeOtro


Este ítem pertenece a la siguiente institución