dc.contributorEspinosa Oviedo, Jairo José
dc.contributorUniversidad Nacional de Colombia - Sede Medellín
dc.contributorGAUNAL
dc.creatorViana Villa, Juan Pablo
dc.date.accessioned2020-08-27T22:50:16Z
dc.date.accessioned2022-09-21T16:24:31Z
dc.date.available2020-08-27T22:50:16Z
dc.date.available2022-09-21T16:24:31Z
dc.date.created2020-08-27T22:50:16Z
dc.date.issued2020-08
dc.identifierhttps://repositorio.unal.edu.co/handle/unal/78301
dc.identifier.urihttp://repositorioslatinoamericanos.uchile.cl/handle/2250/3392414
dc.description.abstractIn this thesis a power system secondary voltage control scheme based on distributed model predictive control with zone control (DMPC-ZC) is proposed. The mathematical framework of the proposed strategy is developed step by step from a simple classical formulation to the final proposal. Sufficient conditions to guarantee closed-loop stability are stated and applied. A platform for dynamic simulation of power system is implemented from scratch using the scripting programming language Python. The performance is compared to a well known open-source toolbox, obtaining satisfactory results. The methods for linearizing and discretizing dynamic systems in order to obtain suitable prediction models are described and validated. Additionally, a power system influence-based partitioning method is proposed. The buses are grouped according to their voltage sensitivity to the reactive power injected by controllable devices using a hierarchical clustering method for that purpose. The performance of the proposed methodology is illustrated in two stages. In the first stage a centralized version is applied to the IEEE 9 Bus - 3 Unit test system and the performance after the disconnection of a transmission line is compared to a classic SVR based on PI controllers and a scheme based on MPC without zone control. The scheme based on MPC-ZC was able to keep voltages close to the set-point values without violating operational constraints and with lower reactive power requirements than the scheme based on MPC. In the second stage the proposed distributed SVR based on MPC-ZC was applied to the New England 10 Units - 39 Bus test system and the performance is compared to a classic SVR based on PI controllers after the disconnection of transmission lines. The proposed scheme was able to reduce the violation of operational constraints and minimize the average deviation at load buses while keeping an acceptable performance at the pilot buses.
dc.description.abstractEn esta tesis se propone un esquema de control de voltaje secundario del sistema eléctrico empleando control predictivo basado en modelo distribuido con control de zona (DMPC-ZC). El marco matemático necesario para la estrategia propuesta se desarrolla paso a paso desde una simple formulación clásica hasta la propuesta final. Se establecen y aplican condiciones suficientes para garantizar la estabilidad en circuito cerrado. Una plataforma para la simulación dinámica de sistemas de potencia se implementa desde cero utilizando el lenguaje de programación Python. El desempeño se compara con un conocido paquete de simulación de código abierto, obteniendo resultados satisfactorios. Se describen y validan los métodos de linealización y discretización de sistemas dinámicos con el fin de obtener modelos de predicción adecuados. Además, se propone un método de partición de sistemas de potencia basado en la influencia de los elementos controlables. Los buses se agrupan según su sensibilidad de voltaje a la potencia reactiva inyectada por dispositivos controlables utilizando un método de agrupamiento jerárquico para tal fin. El desempeño de la metodología propuesta se ilustra en dos etapas. En una primera etapa se aplica una versión centralizada al sistema de prueba IEEE 9 Bus - 3 Unidades y se compara el rendimiento después de la desconexión de una línea de transmisión con un SVR clásico basado en controladores PI y un esquema basado en MPC sin control de zona. El esquema basado en MPC-ZC fue capaz de mantener los voltajes cercanos a los valores del punto de ajuste sin violar las restricciones operativas y con menores requisitos de potencia reactiva que el esquema basado en MPC. En la segunda etapa se aplicó el SVR distribuido propuesto basado en MPC-ZC al sistema de prueba New England 39 Buses - 10 Unidades y se comparó el desempeño con un SVR clásico basado en controladores PI después de la ocurrencia de un evento de desconexión de línea de transmisión. El esquema propuesto pudo reducir la violación de las restricciones operativas y minimizar la desviación promedio en los buses de carga, manteniendo un rendimiento aceptable en los buses piloto.
dc.languageeng
dc.publisherMedellín - Minas - Maestría en Ingeniería - Ingeniería Eléctrica
dc.publisherDepartamento de Ingeniería Eléctrica y Automática
dc.publisherUniversidad Nacional de Colombia - Sede Medellín
dc.relation[Abur and Exposito, 2004] Abur, A. and Exposito, A. G. (2004). Power System State Estimation: Theory and Implementation. CRC Press.
dc.relation[Alvarez et al., 2018] Alvarez, S. R., Mazo, E. H. L., and Oviedo, J. E. (2018). Evaluation of power system partitioning methods for secondary voltage regulation application. In 2017 IEEE 3rd Colombian Conference on Automatic Control, CCAC 2017 - Conference Proceedings, volume 2018-Janua, pages 1–6. IEEE.
dc.relation[Arcidiacono et al., 1990] Arcidiacono, V., Corsi, S., Natale, A., and Raffaelli, C. (1990). New developments in the application of ENEL transmission system voltage and reactive power automatic control. CIGRE Session - Paris.
dc.relation[Bellman, 1957] Bellman, R. (1957). Dynamic Programming. PRINCETON UNIVERSITY PRESS.
dc.relation[Boyce and DiPrima, 2012] Boyce, W. E. and DiPrima, R. C. (2012). Elementary Differential Equations and Boundary Value Problems, 10th Edition. Wiley Global Education.
dc.relation[Boyd and Vandenberghe, 2004] Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
dc.relation[Byrd et al., 1999] Byrd, R. H., Hribar, M. E., and Nocedal, J. (1999). An interior point algorithm for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–900.
dc.relation[Camacho and Bordons, 2007] Camacho, E. F. and Bordons, C. (2007). Model Predictive control. Advanced Textbooks in Control and Signal Processing. Springer London, London.
dc.relation[CND, 2017] CND (2017). Documento xm cnd 2017 - 048 - propuesta de requerimientos tEcnicos para la integraciOn de fuentes de generaci On no s Incrona al sin.
dc.relation[Conejo et al., 1993] Conejo, A., Gomez, T., and de la Fuente, J. I. (1993). Pilot-bus selection for secondary voltage control. European Transactions on Electrical Power, 3(5):359–366.
dc.relation[Corsi, 2015] Corsi, S. (2015). Voltage Control and Protection in Electrical Power Systems. Advances in Industrial Control. Springer London, London.
dc.relation[Corsi et al., 2004] Corsi, S., Pozzi, M., Sabelli, C., and Serrani, A. (2004). The Coordinated Automatic Voltage Control of the Italian Transmission Grid—Part I: Reasons of the Choice and Overview of the Consolidated Hierarchical System. IEEE Transactions on Power Systems, 19(4):1723–1732.
dc.relation[CREG, 2018] CREG (2018). Documento creg - 018 - gestion del flujo de potencia reactiva.
dc.relation[Frias et al., 2006] Frias, P., Gomez, T., and Soler, D. (2006). Voltage Control and Reactive Power Support in the Spanish Transmission Network. In MELECON 2006 - 2006 IEEE Mediterranean Electrotechnical Conference, pages 916–919. IEEE.
dc.relation[Geidl, 2010] Geidl, M. (2010). Implementation of coordinated voltage control for the Swiss transmission system. In Melecon 2010 - 2010 15th IEEE Mediterranean Electrotechnical Conference, pages 230–236. IEEE.
dc.relation[Gomez-Exposito et al., 2010] Gomez-Exposito, A., De La Villa Jaen, A., Gomez-Quiles, C., Rousseaux, P., and Cutsem, T. V. (2010). A taxonomy of multi-area state estimation methods. Electric Power Systems Research, 81:1060–1069.
dc.relation[Grainger and Stevenson, 1994] Grainger, J. J. and Stevenson, W. D. (1994). Power System Analysis. McGraw-Hill.
dc.relation[GREG, 1999] GREG (1999). Resolucion no. 080 de 1999 - por la cual se reglamentan las funciones de planeacion, coordinacion supervision y control entre el centro nacional de despacho (cnd) y los agentes del sin.
dc.relation[Hu et al., 2010] Hu, Z., Wang, X., and Taylor, G. (2010). Stochastic optimal reactive power dispatch: Formulation and solution method. International Journal of Electrical Power & Energy Systems, 32(6):615–621.
dc.relation[Jin et al., 2010] Jin, L., Kumar, R., and Elia, N. (2010). Model Predictive Control-Based RealTime Power System Protection Schemes. IEEE Transactions on Power Systems, 25(2):988–998. [Khalil and Grizzle, 2002] Khalil, H. K. and Grizzle, J. W. (2002). Nonlinear systems, volume 3. Prentice hall Upper Saddle River, NJ.
dc.relation[Kraft et al., 1988] Kraft, D. et al. (1988). A software package for sequential quadratic programming.
dc.relation[Kundur et al., 1994] Kundur, P. P., Balu, N. J., and Lauby, M. G. (1994). Power system stability and control. McGraw-Hill.
dc.relation[Kwon and Han, 2005] Kwon, W. H. and Han, S. (2005). Receding horizon control: Model predictive control for state models. In Advanced Textbooks in Control and Signal Processing, number 9781846280245, pages 323–380. Springer.
dc.relation[Larsson et al., 2002] Larsson, M., Hill, D. J., and Olsson, G. (2002). Emergency voltage control using search and predictive control. International Journal of Electrical Power and Energy Systems, 24(2):121–130.
dc.relation[Larsson and Karlsson, 2003] Larsson, M. and Karlsson, D. (2003). Coordinated system protection scheme against voltage collapse using heuristic search and predictive control. IEEE Transactions on Power Systems, 18(3):1001–1006.
dc.relation[Lefebvre et al., 2000] Lefebvre, H., Fragnier, D., Boussion, J., Mallet, P., and Bulot, M. (2000). Secondary coordinated voltage control system: feedback of EDF. In 2000 Power Engineering Society Summer Meeting (Cat. No.00CH37134), volume 1, pages 290–295. IEEE.
dc.relation[Lopera-Mazo and Espinosa, 2018] Lopera-Mazo, E. H. and Espinosa, J. (2018). Secondary voltage regulation based on average voltage control. TecnoLogicas, 21(42):63–78.
dc.relation[Loureiro de Oliveira, 1996] Loureiro de Oliveira, S. (1996). MODEL PREDICTIVE CONTROL (MPC) FOR CONSTRAINED NONLINEAR SYSTEMS. PhD thesis, California Institute of Technology.
dc.relation[Machowski et al., 2013] Machowski, J., Bumby, J., and Bialek, J. (2013). Power system dynamics : stability and control. Wiley.
dc.relation[Maciejowski, 2002] Maciejowski, J. M. (2002). Predictive control: with constraints. Pearson education.
dc.relation[Maestre and Negenborn, 2014] Maestre, J. M. and Negenborn, R. R. (2014). Distributed Model Predictive Control Made Easy. Intelligent Systems, Control and Automation: Science and Engineering, 69.
dc.relation[Marquez et al., 2013] Marquez, A., Gomez, C., Deossa, P., and Espinosa, J. J. (2013). Hierarchical control of large scale systems: A zone control approach. In IFAC Proceedings Volumes (IFACPapersOnline), volume 13, pages 438–443. Elsevier.
dc.relation[Martins and Corsi, 2007] Martins, N. and Corsi, S. (2007). Technical Brochure 310 - Coordinated Voltage Control in Transmission Networks. Technical report, CIGRE.
dc.relation[Martins et al., 2001] Martins, N., Ferraz, J. C., Gomes, S., Quintao, P. E., and Passos, J. A. (2001). A demonstration example of secondary voltage regulation: Dynamic simulation and continuation power flow results. In Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, volume 2, pages 791–796.
dc.relation[Mayne et al., 2000] Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000). Constrained model predictive control: Stability and optimality. Automatica, 36(6):789–814.
dc.relation[Mazo, 2018] Mazo, E. H. L. (2018). Voltaje/VAR, Esquemas de Control de Control, Jerarquicos basados en Predictivo. PhD thesis, Universidad Nacional de Colombia.
dc.relation[Milano, 2005] Milano, F. (2005). An Open Source Power System Analysis Toolbox. IEEE Transactions on Power Systems, 20(3):1199–1206.
dc.relation[Milano, 2008] Milano, F. (2008). PSAT - Documentation for PSAT version 2.0.0.
dc.relation[Milano, 2010] Milano, F. (2010). Power system modelling and scripting. Springer.
dc.relation[Moradzadeh, 2012] Moradzadeh, M. (2012). Voltage coordination in multi-area power systems via distributed model predictive control. Master’s thesis, Ghent University.
dc.relation[Morattab, 2018] Morattab, A. (2018). Decentralized multi-agent coordinated secondary voltage control of power systems. PhD thesis, Ecole de technologie superieure.
dc.relation[Morattab et al., 2017] Morattab, A., Akhrif, O., and Saad, M. (2017). Decentralised coordinated secondary voltage control of multi-area power grids using model predictive control. IET Generation, Transmission & Distribution, 11(18):4546–4555.
dc.relation[Negenborn et al., 2009] Negenborn, R., Leirens, S., De Schutter, B., and Hellendoorn, J. (2009). Supervisory nonlinear MPC for emergency voltage control using pattern search. Control Engineering Practice, 17(7):841–848.
dc.relation[Negenborn et al., 2007] Negenborn, R. R., Beccuti, A. G., Demiray, T., Leirens, S., Damm, G., De Schutter, B., and Morari, M. (2007). Supervisory hybrid model predictive control for voltage stability of power networks. In Proceedings of the American Control Conference, pages 5444– 5449. IEEE.
dc.relation[Negenborn and Maestre, 2014] Negenborn, R. R. and Maestre, J. M. (2014). Distributed model predictive control: An overview and roadmap of future research opportunities. IEEE Control Systems, 34(4):87–97.
dc.relation[Nuthalapati, 2018] Nuthalapati, S. (2018). Power System Grid Operation Using Synchrophasor Technology. Power Electronics and Power Systems. Springer International Publishing.
dc.relation[Ogata, 1997] Ogata, K. (1997). Modern Control Engineering. Prentice Hall.
dc.relation[Pai, 1989] Pai, M. A. (1989). Energy Function Analysis for Power System Stability. Springer US, first edition.
dc.relation[Paul et al., 1987] Paul, J. P., Leost, J. Y., and Tesseron, J. M. (1987). Survey of the Secondary Voltage Control in France : Present Realization and Investigations. IEEE Transactions on Power Systems, 2(2):505–511.
dc.relation[Pedregosa et al., 2011] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12:2825–2830.
dc.relation[Qin, 2018] Qin, N. (2018). Voltage Control in the Future Power Transmission Systems. Springer, first edition.
dc.relation[Rawlings and Muske, 1993] Rawlings, J. B. and Muske, K. R. (1993). The stability of constrained receding horizon control. IEEE Transactions on Automatic Control, 38(10):1512–1516.
dc.relation[Rossiter, 2003] Rossiter, J. A. (2003). Model- Based Predictive Control - A practical approach.
dc.relation[Rueda Acosta, 2015] Rueda Acosta, L. M. (2015). Verificacion de los controles VQC instalados en la subestaciones Virginia y San Marcos. Master’s thesis, Universidad Pontificia Bolivariana.
dc.relation[Stellato et al., 2017] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2017). OSQP: An operator splitting solver for quadratic programs. ArXiv e-prints.
dc.relation[Stellato et al., 2020] Stellato, B., Banjac, G., Goulart, P., Bemporad, A., and Boyd, S. (2020). Osqp: An operator splitting solver for quadratic programs. Mathematical Programming Computation, pages 1–36.
dc.relation[Sun et al., 2013] Sun, H., Guo, Q., Zhang, B., Wu, W., and Wang, B. (2013). An Adaptive Zone-Division-Based Automatic Voltage Control System With Applications in China. IEEE Transactions on Power Systems, 28(2):1816–1828.
dc.relation[Van Loan, 1978] Van Loan, C. (1978). Computing integrals involving the matrix exponential. IEEE Transactions on Automatic Control, 23(3):395–404.
dc.relation[Vandenberghe, 2010] Vandenberghe, L. (2010). The cvxopt linear and quadratic cone program solvers. Online: http://cvxopt. org/documentation/coneprog. pdf.
dc.relation[Viana and Arboleda, 2020] Viana, J. and Arboleda, B. (2020). Pypowersystems. https:// github.com/jpvianav/pypowersystem.
dc.relation[Viana et al., 2019] Viana, J. P., Palacios, V., Sanchez, M., and Espinosa, J. (2019). Multiarea secondary voltage regulation with optimal shunt elements coordinated maneuvers. In 4th IEEE Colombian Conference on Automatic Control: Automatic Control as Key Support of Industrial Productivity, CCAC 2019 - Proceedings. Institute of Electrical and Electronics Engineers Inc.
dc.relation[Yan et al., 2015] Yan, W., Cui, W., Lee, W.-J., Yu, J., and Zhao, X. (2015). Pilot-bus-centered automatic voltage control with high penetration level of wind generation. In 2015 IEEE Industry Applications Society Annual Meeting, pages 1–8. IEEE.
dc.relation[Zimmerman et al., 2011] Zimmerman, R. D., Murillo-Sanchez, C. E., and Thomas, R. J. (2011). MATPOWER: Steady-State Operations, Planning, and Analysis Tools for Power Systems Research and Education. IEEE Transactions on Power Systems, 26(1):12–19.
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAtribución-SinDerivadas 4.0 Internacional
dc.rightsAcceso abierto
dc.rightshttp://creativecommons.org/licenses/by-nd/4.0/
dc.rightsinfo:eu-repo/semantics/openAccess
dc.rightsDerechos reservados - Universidad Nacional de Colombia
dc.titleControl secundario de voltaje en sistemas eléctricos de potencia: una aproximación usando control predictivo distribuido basado en modelo con Control de zonas
dc.typeOtros


Este ítem pertenece a la siguiente institución